N

N

FaaSLoad: fine-grained performance and resource
measurement for function-as-a-service
Mathieu Bacou

» To cite this version:

Mathieu Bacou. FaaSLoad: fine-grained performance and resource measurement for function-as-a-
service. 2024. hal-04836444

HAL Id: hal-04836444
https://hal.science/hal-04836444v1

Preprint submitted on 13 Dec 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-04836444v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

FaaSLoad: Fine-grained Performance and Resource
Measurement for Function-as-a-Service

Mathieu Bacou &
Samovar, Télécom SudParis, Institut Polytechnique de Paris, France
Inria Saclay, France

—— Abstract
Cloud computing relies on a deep stack of system layers: virtual machine, operating system,
distributed middleware and language runtime. However, those numerous, distributed, virtual layers
prevent any low-level understanding of the properties of FaaS applications, considered as programs
running on real hardware. As a result, most research analyses only consider coarse-grained properties
such as global performance of an application, and existing datasets include only sparse data.

FAASLOAD is a tool to gather fine-grained data about performance and resource usage of the
programs that run on Function-as-a-Service cloud platforms. It considers individual instances of
functions to collect hardware and operating-system performance information, by monitoring them
while injecting a workload. FAASLOAD helps building a dataset of function executions to train
machine learning models, studying at fine grain the behavior of function runtimes, and replaying
real workload traces for in situ observations.

This research software project aims at being useful to cloud system researchers with features
such as guaranteeing reproducibility and correctness, and keeping up with realistic FaaS workloads.
Our evaluations show that FAASLOAD helps us understanding the properties of FaaS applications,
and studying the latter under real conditions.

2012 ACM Subject Classification Computer systems organization — Cloud computing; General
and reference — Measurement

Keywords and phrases cloud, serverless, Function-as-a-Service, measurement, performance, resource
utilization, dataset generation, workload injection

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2024.12

Supplementary Material Source code of FAASLOAD
Software (Source code): https://gitlab.com/faasload/faasload/
archived at swh:1:dir:575aaacc28c42d89a438e4c2c147faf9565d777f

Acknowledgements While the paper’s author is the main developer of FAASLOAD, many other
people contributed to it. Their contributions are listed in a dedicated file in FAASLOAD’s repository.
Experiments presented in this paper were carried out using the Grid’5000 testbed, supported by a
scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as
well as other organizations (see https://www.grid5000.1r).

The author thanks Gaél Thomas for his edits, and Myléne Chameron-Moindrot for her help on

figures. Lastly, many thanks to the anonymous reviewers of the conference for their comments.

1 Introduction

There are many ways to use the computing resources of cloud computing. The latest, and
arguably most complex one, is serverless. Far from monolithic applications, a serverless
deployment entails using cloud platform-provided services (such as database servers, message
queues, object stores, etc.) to provide the service of an application that is itself cut down
into atomic functions. An application is deployed and runs as the concurrent compositions
of functions: this paradigm is called Function-as-a-Service, or FaaS. A FaaS platform serves
requests to its applications by routing them to managed instances of cloud functions.

© Mathieu Bacou;
37 licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles of Distributed Systems (OPODIS 2024).
Editors: Silvia Bonomi, Letterio Galletta, Etienne Riviére, and Valerio Schiavoni; Article No. 12; pp. 12:1-12:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:mathieu.bacou@telecom-sudparis.eu
https://orcid.org/0000-0002-1658-9804
https://doi.org/10.4230/LIPIcs.OPODIS.2024.12
https://gitlab.com/faasload/faasload/
https://archive.softwareheritage.org/swh:1:dir:575aaacc28c42d89a438e4c2c147faf9565d777f;origin=https://gitlab.com/faasload/faasload.git;visit=swh:1:snp:2ba9b4948291037f6151210b7aec36ec8cb99044;anchor=swh:1:rev:6e751925eda03e37c4ab72453bd6523bbbc5b5a5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2

FaaSLoad: Fine-grained Performance and Resource Measurement for FaaS

From a systems point of view, FaaS is a wide software stack (listed below bottom-to-top):

1. a hypervisor (e.g., KVM) running virtual machines (VMs);

N

. an operating system (e.g., Linux) running as a guest inside a VM;
3. a cluster manager (e.g., Kubernetes) administrating a fleet of guest OSes:
it relies on container runtimes (e.g., CONTAINERD) to manage containers in guest OSes;
and then a container engine (e.g., RUNC) actually runs containers in guest OSes;
4. a FaaS platform (e.g., OpenWhisk) to implement the FaaS paradigm over the cluster;
5. a managed language runtime (e.g., the Java VM) to run useful application code.

Stacking those numerous layers on top of the hardware can be justified, notably to
manage the distributed computing of the FaaS model, and its trade-off between application
performance (that benefits from instances being kept idle-warm) and resource efficiency
(idle-warm instances occupy resources). However, it makes difficult to do research on the
behavior of the actual end-user application code that is running: does the garbage collector
of a Java virtual machine performs well under FaaS workloads? Does this function suffer
from lack of cache locality? Etc. Indeed, most studies focus on coarse properties of the FaaS
platform or applications: request latency [17], end-to-end performance of the porting of an
existing application to the FaaS model [18, 11], resource management versus application
performance [9]...Nonetheless, it remains paramount to understand finely how a given
program behaves on the actual hardware that eventually executes its instructions [28, 27, 30].

Moreover, most research studies avoid the problem of scale by focusing on a single
application at once, but real FaaS applications do not run in a vacuum. Researchers need
to understand how functions interfere with all other instances of themselves, and of other
functions across the platform. Towards this objective, the best reference trace of a real FaaS
workload [29] is mostly incomplete, due to privacy constraints and sheer scale: it does not
include application code, and it only provides statistical aggregates of properties such as
execution times of functions, their memory usage, etc. Again, this is because the objective
behind collecting those, was to study at high-level and coarse grain the properties of FaaS
applications, instead of finely discovering the properties of programs in a FaaS platform.

To summarize, studying the properties of real programs, running on real hardware,
is difficult in the deep, distributed system stack of cloud FaaS platforms. We attribute
this difficulty to the lack of adequate tooling to produce relevant data, and to replay and
experiment with synthetic or real workload traces.

We identify three hard use cases: (i) building a dataset of function executions, (ii) studying
the behavior of FaaS functions, and (iii) replaying a real workload trace. In the first one,
the purpose is to build sizeable datasets of function executions, with exact data on them:
duration, CPU usage and memory usage over the execution, date of invocation, etc. The end
goal could be, for example, to train machine learning models to predict memory usage. In
the second use case, the target is to understand the properties of the programs running in
FaaS platforms under varied context. It entails injecting a controlled workload, for example
to observe the behavior of language runtimes under different circumstances. Finally, the
third use case is to observe functions in situ, by reproducing the real constraints encountered
in FaaS platforms. Transversal to every use case is the need for fine-grained measurements,
for example to understand how architectures behave under FaaS workloads [28, 30].

Inspired by those three use cases, we developed FAASLOAD, a tool to gather fine-grained
data about cloud functions. It injects a workload, as invocations of cloud functions, to a
FaaS platform. The workload comes either from existing traces, for realistic experiments, or
from a synthesizer, to make observations under interesting conditions. During the injection,

M. Bacou

FAASLOAD monitors the execution of the functions at the scale of a single request: it collects
fine-grained properties about their native programs throughout their execution (e.g., resource
usage, architectural performance counters, software events such as context switches, etc.).

FAASLOAD is designed for the FaaS. Its implementation shows flexibility, scalability,
agnosticism from the FaaS platform, and features targeted towards systems researchers.

FAASLOAD is written in Python (4177 lines of code!). It uses PostgreSQL? with the
TimescaleDB? extension. Its FaaS-platform agnostic core is implemented for Kubernetes
and Docker. It is compatible with on-premises Apache OpenWhisk* and Knative®.

We exerted FAASLOAD on the three use cases presented above, including a published
work [26], and to summarize, we learnt:

FaaS, thus also FAASLOAD, is fundamentally asynchronous, with high request frequency;
FaaS platforms hide the matching between function invocations and function instances;
not all FaaS platforms implement the FaaS paradigm in the same ways;

real workload traces could be made more useful with minimal additions;

FAASLOAD accelerates experiments and observations about FaaS applications.

Section 2 presents related studies and benchmarks about Function-as-a-Service. Then, the
paper gives details on the design and implementation of FAASLOAD in Section 3. Injecting real
workload traces using FAASLOAD is described in Section 4. Finally, we evaluate FAASLOAD
in terms of performance, and on the three use cases above, in Section 5.

2 Related work

When Function-as-a-Service emerged in commercial cloud platforms, there were many inter-
rogations on its properties, as well as how existing and new applications behaved.

2.1 Studies and benchmarks on Faa$S platforms

Authors of [33] studied the commercial platforms of Amazon Web Services Lambda, Microsoft
Azure Functions, and Google Cloud Functions from the constrained point of view of customers,
trying to understand the distributed architecture and finding limitations on performance and
security. By nature, this work is limited by the need to reverse-engineer the inner workings
of the platform (e.g., to accurately identify colocated function instances).

A lot of benchmark suites, with some companion tooling, have been published [24, 25, 35,
15, 31]. One most advanced example is ServerlessBench [35], but again, it focuses on the
FaaS platforms by evaluating global function performance.

Some benchmarks are provided also as tools to lead experiments. BeFaaS [19] has an
interesting focus on fine-grained evaluation of applications, although the goal is to evaluate
and compare performance of FaaS platforms. vHive [32] is a experimental, representative
serverless platform to experiment on the serverless stack. For both, the focus is on the
platform itself rather than understanding the programs running in cloud functions.

FAASLOAD can be a support for benchmarking, but its purpose is to support systems-level
studies by injecting a workload and collecting fine-grained data about the functions’ programs.

Counted with CLOC: https://github.com/AlDanial/cloc.

Home page of PostgresSQL: https://wuw.postgresql.org/.
TimescaleDB home page: https://www.timescale.com/.

Apache OpenWhisk home page: https://openwhisk.apache.org/.
Knative home page: https://openwhisk.apache.org/.

o I N

12:3

OPODIS 2024

https://github.com/AlDanial/cloc
https://www.postgresql.org/
https://www.timescale.com/
https://openwhisk.apache.org/
https://openwhisk.apache.org/

12:4

FaaSLoad: Fine-grained Performance and Resource Measurement for FaaS

2.2 Discovering the properties of FaaS programs

Other works focused more on the serverless applications. Authors of [23] have added
characterization of function properties in a DevOps pipeline. While in a different context
than FAASLOAD, their work also include workload generation and profiling of resource usage.

In a more general setting, there is the Serverless Application Analytics Framework [16].
It allows to collect per-function low-level and platform-level metrics, and comes with a tool
to lead experiments. By comparison, FAASLOAD avoids function modifications for most data
collection, and provides more extended tooling to inject workloads.

Finally, with FaaSProfiler [28], researchers looked into the architectural implications of
FaaS. This is close to FAASLOAD’s purpose of being able to profile at low-level the programs
running in FaaS platforms. However, FAASLOAD covers more use cases, with more complex
workloads, in more representative FaaS platforms.

3 Design and implementation of FaaSLoad

In this section, we describe how FAASLOAD’s design and implementation respond to the
three use cases identified in Section 1: building a dataset of function executions, studying
the behavior of FaaS functions, and replaying a real workload trace.

3.1 Design directions

In a nutshell, the purpose of FAASLOAD is to inject a workload into a FaaS platform, and to
collect fine-grained, low-level data about the functions that respond to it. The workload is
represented as traces of discrete invocations of functions. This is important: FAASLOAD does
not send queries to an application, following given parameters; instead, it triggers individual
functions with specified arguments. The point is to gather fine-grained data about functions,
instead of wholistic information about an application’s performance; for example, to gather
memory or CPU usage of programs, instead of end-to-end latency of an application.

We identify many properties that FAASLOAD’s design must have. First at high level,
the design of FAASLOAD is motivated by the need for flexibility. It must be useful to
any researcher wanting to have a focused look on the programs in cloud functions in varied
contexts. This includes their resource usage and performance profiles, at the levels of the
system and the architecture. It must also be agnostic from FaaS platforms.

In addition, FAASLOAD’s design must answer to inherent constraints of FaaS platforms.
First is the scalability: invoking thousands of functions at the rate of hundreds of requests
per second. Second are semantic features such as cold starts (see Section 3.5), etc.

Furthermore, it is also important to FAASLOAD’s design to be able to inject any shape of
workload. Our system is also science-focused, and as such strives to be useful in the context
of systems research: it seeks reproducibility and correctness of its workload injection,
and includes checkpointing for its long-running dataset generation process. Finally, the
data it produces is easy to explore and exploit.

3.2 Overview: the injection process of FaaSLoad

The general process of FAASLOAD injecting a workload is shown in Figure 1.

Offline, (1) a trace builder writes injection traces in FAASLOAD’s format. Upon starting,
(2) the system reads those traces to extract information about the cloud functions to invoke,
as well as the injection trace points, i.e., invocation requests to send. The main part are the
invokers, which (3a) send invocation requests. Actually, they use the platform connector, that

M. Bacou

invokes the requested functions by connecting to the FaaS platform. The latter eventually
schedules the request to a function instance observed by FAASLOAD’s function monitor.
An important point is that the invokers do not wait for any injection; instead, there is an
injection monitor that watches over the whole injection process, waiting for every invocation
(3b) sent by the invokers, to terminate. When (4) one invocation terminates, it fetches
its related data from the FaaS platform through the platform connector, as well as (5) the

data about the execution of the function that served the request, from the function monitor.

Finally, the injection monitor (6) stores the data to a database for offline use.

As can be seen in this process, there are two main components to FAASLOAD: a workload
injector (that gathers the invokers and the injection monitor, and uses the platform connector),
and a function monitor. This modularity allows to only uses the necessary parts of FAASLLOAD
(e.g., using only the function monitor, with a custom client), making it flexible.

We detail below the designs and implementations of FAASLOAD’s workload injector and
function monitor. They are illustrated, with their internal components, in Figure 2.

3.3 Workload injector

We detail first the workload injector (left side of Figure 2). There are three parts to the
workload injector: (i) the injection monitor; (ii) the invoker threads; and (iii) the platform
connector (the public interface to the platform in Figure 2).

3.3.1 Injection monitor

The whole workload injection is supervised by the injection monitor, which acts as a central
point. This thread periodically polls the FaaS platform through the platform connector
for terminated invocations. When it happens, it fetches the execution data from the FaaS
platform (to collect semantic information) as well as from FAASLOAD’s function monitor
(right side of Figure 2, see Section 3.4), and updates the database.

Notice that the injection is done in an open loop: invocations are asynchronous. Indeed,
the invoker threads (upper part of the injector in Figure 2, see Section 3.3.2) notify the
injection monitor with every invocation they send, and it is the monitor’s task to keep track
of them, and to handle their termination.

FAASLOAD’s injection monitor centralizes collected data offline in a PostgreSQL database,

with a special table for timeseries to store resource usage measurements, etc., over time.

This standardized storage helps exploring and exploiting, by allowing cross-comparison

Workload injector FaaS ——
Platform platform | —Requests
connector
A
Invokers >
A
Ll
@ Invocation IDs ee
N Execution data
Injection ' '
. ' '
Injection fentioy 5 V *
data Invocation execution data
Function monitor

Figure 1 Overview of FAASLOAD’s design and its workload injection process.

12:5

OPODIS 2024

12:6 FaaSLoad: Fine-grained Performance and Resource Measurement for FaaS

([atle:rt;]llf(;:]];(zrgsgsh Manage containers R Docker
p Faa$ platform > perf,
% . l
— Docker socket === — T cgroups
In\lnkc\ Invocations 1 1 Terminated Notification of Docker __ -1 Resource
/ functions\ T fnvocations operation _ _ - -- 1 usage data” ¥
[e S N
: : v,— REEEE R R —4—._._*_.::: _<.Y RRREEEE :
o Notificati ‘58 T
t - = O i N
i server 2 -‘:_.: '
" : N
S s . [Docker 1_ _ _ e el [P
g, || o LT g
S ™ ; ; Query monitoring || Docker ops. | i Z |5
Ei .. data PSS log S Resource usage, E 2
= <Lblock |ﬂje(t|0n —<] --" Doerr perf measurements =
= monitor maeE operations . : S
3 v [RREN Measurements W2
= Read ! T meas. |8 meas. [N} S
g injection Invocation data, 1 Resource usage, server =1
traces resource usage, __perf < =)
perf data, Docker 1

operations

AN
P S—
tr_ace Build f traces database B[] raaSLoad components
builder 7 = = = TFaaSLoad's interfaces with the Faa$ platform and Docker containers

Figure 2 Implementation of FAASLOAD, with the workload injector and the function monitor.

of data, and getting non trivial views on the workload (see Appendix A about the database).

3.3.2 Invoker threads

An injection trace may include several different functions. Furthermore, multiple different
users can be simulated; if the same function is invoked under different users, then it is
considered as different functions (as is the case in FaaS platforms).

Respective invocations of different functions should be independent from each other, to
ensure scalability and correctness of invocation date. This is why FAASLOAD’s invoking
component is actually designed as distinct invoker threads, each dedicated to a single function
(see upper part of the workload injector in Figure 2).

3.3.2.1 Working principle

While functions are of course invoked concurrently by different invoker threads, invocations
of one function are scheduled sequentially per invoker thread. One invoker thread is fed the
invocation requests of its function from the injection trace, and sends invocation queries to
the FaaS platform through the platform connector (see Section 3.3.3). Reading injections
points from an offline trace makes the process reproducible; moreover, the invoker threads’
states can be checkpointed and restored, to generate huge datasets in multiple runs.

An invoker thread communicates with the injection monitor (see Section 3.3.1) by pushing
in the latter’s queue, the invocations it sends. It also notifies it of its termination, whether
because of the end of the injection trace, or because it ended in error. In this regard, invoker
threads are made robust by themselves so as not to crash the whole injection, and instead to
terminate it gracefully through the injection monitor.

3.3.2.2 Invoker threads as chains of timer threads

The implementation of invoker threads is better detailed in Figure 3. One thread is actually
a daisy chain of timer threads [7], i.e., threads that start executing after a delay. Starting
an invoker thread equates to scheduling a thread to run at the time specified by the first

M. Bacou

5 .S Timer thread A4 Timer thread A, Timer thread Ay
B c
i.g Schedule |eq+timing error | Schedule | e,<timing error inject Iy
c O Ld
£ 5 atty schedule I, att-e1 ~lschedule 13 " " " lterminate
pr inject 1 inj
7] J 1 inject I,
A A A
:) '
' o o
Injection 14 (t1,P4) Injection I (t2,P2) Injection Iy (ty.Pn)

Figure 3 Invoker threads are daisy chains of timer threads, that amortize injection timing errors.

invocation in the injection trace. This thread, before invoking the function as instructed, will
similarly schedule the next invocation, and so on, thus constructing a chain of timer threads.

This implementation has two advantages. First, it relates to correctness of trace point
injections, by scheduling independently each invocation; essentially, invocations are delegated
to the OS’s scheduler, instead of invoking in a loop with delayed iterations. Second, it
helps scalability by alleviating the weight on the system by not creating a huge number of
threads and timers at once. Indeed, any injection trace may be several hundreds of thousands
of invocations long, multiplied by several hundreds of functions. FAASLOAD avoids any
performance cost on this side by scheduling each invocation one by one, thus keeping the
number of timer threads simultaneously in-flight equal to the number of functions to invoke.

3.3.2.3 Amplification of injection timing errors

However, daisy chaining threads may encounter a problem of amplifying timing errors.
Indeed, a timer thread schedules the next invocation to happen after the delay given by the
injection trace. In the case this timer thread is late or early (due to timing imprecisions,’
scheduling delays, etc.), this injection timing error will propagate to the next invocation.
Recursively, timing errors will accumulate through the entire invoker thread. Timing errors
are compensated by deducting any earliness or lateness from the delay to the next invocation.

3.3.3 Platform connector

As seen in Figure 1, FAASLOAD is designed to neatly define the interfaces it requires from a
FaaS platform, to be agnostic to it and remain flexible. This is embodied by the platform
connector (represented as the public interface to the FaaS platform in the upper side of
Figure 2). It is the platform-specific implementation of workload injector’s interactions with

the FaaS platform: (i) querying information about invocations, and (ii) invoking functions.

New platforms may be supported by FAASLOAD simply by extending an abstract Python
class, and implementing those two features.

In this section, we show how the platform connector is implemented for two platforms:
Apache OpenWhisk and Knative; we also highlight interesting differences between them.

6 FAASLOAD is bound to the resolution of the nanosecond-scale system timers.

12:7

OPODIS 2024

12:8

FaaSLoad: Fine-grained Performance and Resource Measurement for FaaS

3.3.3.1 Invoking functions

To invoke a function, the platform connector translates one point in the injection trace as a
query directed at the function via the FaaS platform. While both platforms expose RESTful
Web APIs, the semantics to invoke a function interestingly differ.

Knative only allows to invoke a function through a public URI, forcing the user to consider
it as a web service; Knative acts as a very scalable, dynamic HT'TP proxy. This is consistent
with Knative’s model where functions must handle themselves HTTP requests.

On the opposite, OpenWhisk provides a Web API to invoke a function as a REST object
that receives processed parameters instead of the raw HTTP request. This is an interesting
difference: Knative only is a set of Kubernetes resources to provide Function-as-a-Service,
while OpenWhisk really implements objects and semantics specific to FaaS. In our experience,
it is much easier to work with OpenWhisk, thanks to well-defined APIs.

Interestingly, while OpenWhisk supports asynchronous requests via its REST API, Knative
requires a convoluted setup. Thanks to FAASLOAD’s implementation of invoker threads
using timer chains (see Paragraph 3.3.2.2), this is not a problem: one invocation of a function
may block while the next invocations are scheduled anyway.

3.3.3.2 Monitoring terminated invocations

Monitoring terminated invocations is achieved in the injection monitor by polling. This
is either through a dedicated REST URI for OpenWhisk, or by parsing logs of internal
components for Knative. Nonetheless, in both cases, matching an invocation ID with the
function instance that served it (in order to query execution data from the function monitor,
see Section 3.4) requires awkward parsing of internal logs of the FaaS platform. While it is
understandable that normal users of FaaS platforms cannot request such low-level, internal
information, it would be helpful to provide it for administration and monitoring purposes.

3.4 Function monitor

After covering the design and implementation of the workload injector, we focus on the
function monitor that can supplement FAASLOAD’s workload injection (right side of Figure 2).

The role of the function monitor is to collect fine-grained data about the programs running
in the cloud functions: CPU and memory usage during the execution, CPU cache misses,
etc.; additionally, it watches events related to the management of functions instances (i.e.,
Docker containers”): creation, deletion, etc.

3.4.1 Architecture of the function monitor

In FAASLoOAD’s global view, the monitor is a server, independent from the workload injector
for flexibility: it is the job of the latter to request the former, to fetch the fine-grained
data about the execution of the function that served an invocation. However, to ensure
scalability, the monitor is actually distributed: one instance of it exists on each Kubernetes
node of the platform, to monitor local cloud functions. It is the workload injector that
requests the right monitor instance to fetch function execution data.

This design limits its use to FaaS platforms deployed on-premises; i.e., it cannot be used
on commercial platforms such as Amazon Web Services, Microsoft Azure, Google Cloud, etc.

7 The function monitor requires Docker to monitor its socket, but could easily be made to work on other
container backends that also use a UNIX socket where it could listen for function container events.

M. Bacou

This is aligned to FAASLOAD’s goal of collecting any low-level performance information at
fine grain, which would not be permitted on them.

In addition, the monitor scales one-to-one with the function instances. Indeed, the
monitor is a manager of threads: for every function instance, it spawns a monitor thread
(upper part of the monitor in Figure 2) to collect the related data, which is stored in a shared
data structure. The monitor responds to a request from the injector via its measurements
server (lower part of the monitor in Figure 2), that looks into this structure.

3.4.2 Monitoring functions

Here, we detail how the function monitor collects function execution data at fine grain.

3.4.2.1 Data collection

By itself, the function monitor only monitors memory usage of functions, via one thread per
function, that periodically measures the sum of its resident-set size (RSS) and the total size
of its mapped files [6]. Most monitoring is done by delegating the production of measurements
to external programs, so the monitoring capabilities can be extended. The function monitor
runs, in a dedicated thread per function, the multipurpose monitoring tool PERF [5]: it can
be configured from FAASLOAD’s configuration files to monitor many hardware and software
performance counters, including CPU usage, CPU cache misses, system calls, etc.®

In the end, the function monitor gathers all measurements in a map shared between
monitoring threads and a measurement server. An element of this map represents all
measurements about a single function instance. Thus, measurements for a given function
instance are only shared between its monitor thread and the measurement server.

3.4.2.2 Monitoring interfaces

The monitoring programs such as PERF work at the process level. Thus, the function monitor
matches function instances with processes for them, and collects their output. It is designed
to work at a lower level than the FaaS platform. For flexibility, it even works standalone.

Monitoring occurs through the low-level interface of control groups, a feature of the Linux
kernel required to implement containers. Indeed, a function container is built, among other
things, from a memory control group; while it is firstly used by the FaaS platform to limit
the memory usage of the function, the function monitor reads its accounting files to measure
the memory usage (see Paragraph 3.4.2.1). PERF also accepts monitoring processes identified
by a control group. In case another performance monitoring program would require a process
ID instead, it is easy to retrieve the list of processes inside a control group.

By monitoring functions from the outside, the monitor does not incur any overhead
on the functions nor on the FaaS platform themselves. At worst, it incurs a CPU usage
penalty on the node of the FaaS platform, which can be ignored by properly separating its
resources from resources allocated to the FaaS platform and its function instances. This
method also does not require any modification to the functions under study. Nonetheless,
because FAASLOAD’s injection monitor also collects the data returned by an invocation (see
Section 3.3.1), functions can be augmented to return meaningful information, adding to
flexibility. For example, a function that processes an image could return a more precise

8 Using PERF is currently hardcoded in FAASLOAD, but integrating another such tool would be quick, as
collecting measurements is abstracted from parsing PERF’s output.

12:9

OPODIS 2024

12:10

FaaSLoad: Fine-grained Performance and Resource Measurement for FaaS

view of the execution time by detailing the time to extract the image from data storage, the
time to transform the image, and the time to load the result back to data storage.

3.4.2.3 Data servicing: matching invocations with function instances

A client (e.g., the injection monitor, see Section 3.3.1) requests the function monitor for
execution data of an invocation. Recall that the monitor does not interact with the FaaS
platform, thus it does not know anything about invocations. Its client must cross the gap
between invocations and function instances, by providing in its request to the measurements
server, the container ID matching an invocation. This information relates to a FaaS platform-
specific internal scheduling decision, obtained via the platform connector (see Section 3.3.3).

Moreover, the function monitor’s monitoring threads always run as long as their target
function instance exists. It means that the monitor collects measurements that may not
match an invocation. Indeed, an instance may be kept warm by the FaaS platform to quickly
serve future requests. Thus, a client must provide the measurements server with the time
window of measurements: the start and end time of the invocation. To this request, the
measurements server responds with all the measurements that match these criteria.

This implementation allows the function monitor to be completely independent from any
FaaS platform, but also to be useful at lower levels than the FaaS platforms.

3.5 FaaS semantics

FAASLOAD is designed for the FaaS context. It includes notions of functions, as well as
different users to invoke functions separately on the FaaS platform. Its workload injector
invokes functions with parameters through the public interface of FaaS platforms (i.e., it does
not bypass the normal path), and it gathers their results, including their potential failure.

Most importantly, FAASLOAD takes into account cold starts, by storing the added
initialization time, and marking invocations served by a cold-started instance. Indeed, when
a FaaS platform serves a request to a function, it has two choices: spawn a new instance,
or reuse a previous idle instance. The former case is called a cold start, while the latter is
conversely called a warm start. A cold start increases the response latency of the function,
because the FaaS platform must first initialize a new instance [10, 17]. Information about
cold starts is provided by the FaaS platform, via the platform connector (see Section 3.3.3).

Finally, FAASLOAD gathers a global view of function instance events (see Section 3.4). In
addition, mapping invocations to instances is easily achieved by customizing cloud functions
to keep track of their instances, and return this piece of information as a result to be stored
by FAASLOAD (see Section 5.3 for another example of function customization).

4 \Workload traces

FAASLOAD injects workloads provided under its own format. This format is designed to
allow injecting any shape of workload, by including only the minimum but complete
(for reproducibility) information required: the function to invoke, and a list of invocations.
FAASLOAD relies on off-line trace producers (see Section 4.2 and Appendix C for examples)
to make the traces. Here, we describe the trace format, and how to use real workloads.

4.1 Trace format

Injection traces are simple text files containing lines of tab-separated values. An example is
given in Appendix B. One invocation is simply one line listing the inter-arrival time from the

M. Bacou

previous invocation, and the arguments to pass to the function.

FAASLOAD’s traces declare injection points using delays between each other, instead of
relative time since the beginning of the trace. This has two advantages: it simplifies imple-
menting the invoker threads explained in Section 3.3.2; and it simplifies implementing trace
generators based on statistical distributions of the inter-arrival time (IAT) (see Appendix C).

4.2 Real workload injection

FAASLOAD allows to inject real workloads into a FaaS platform. This relies on two pieces:

1. a dummy cloud function which execution time and memory usage are set by its parameters;
2. a converter from the real workload traces to FAASLOAD’s injection traces.

While the first one is straightforward, the second one, converting real workload traces,
is much more difficult. Indeed, the canonical data of real workload traces published by
Microsoft Azure [29] does not include essential information such as the actual functions that
are executed, or even exact invocation dates. First, this comes from the obvious confidentiality
requirement of the workloads; and second, the sheer amount of invocations in any sizeable
dataset makes collecting complete data prohibitive, so Azure’s data only include statistical
properties that summarize features: quantiles of the inter-arrival times for a given time slice,
of the memory usage of whole applications instead of individual functions. ..

4.2.1 Converting Azure workload traces for FaaSLoad

We worked on processing the Azure dataset of cloud function traces into injection traces.
Based on previous work [20], we implemented the following process:

1. sampling down: Azure traces must be reduced for the experimental testbed: selecting
a time window, keeping “interesting” functions, randomly selecting a subsample of users;

2. building the call graph: refine the traces by finding dependencies between functions,
and allow replaying causality;

3. computing concrete values from statistics: Azure traces include averages and
quantiles for function invocation rates and execution times, and application memory
usage that must be “realized” into workable function IATS, durations and memory usages.

4.2.2 Limits of the conversion process

The conversion process of Azure workload traces has hard limits: sampling criteria are
arbitrary; we compute concrete IATs by assuming they follow a Poisson arrival process, which
is only correct for a small fraction of functions [29]; and we compute concrete memory usage
of functions by distributing an application’s memory usage to its functions depending on
their relative execution duration, despite no correlation.

To inject more correct traces, and beside exhaustive traces, we suggest including the
following features that would still preserve the confidentiality of the workload, and increase
weakly to moderately, the size of the dataset:

scale of the hosting hardware (number of machines, CPU specifications...) to reduce
arbitrary sampling, by doing linear scaling instead;

triggered side-effects: functions can be triggered by many sources, so including the sources
triggered by functions allows deducing the call graph of functions inside an application;
IAT statistics instead of invocation rates;

12:11

OPODIS 2024

12:12

FaaSLoad: Fine-grained Performance and Resource Measurement for FaaS

per-function memory usage statistics.

Newest datasets [22, 13, 21] show improvements. The latest from Huawei data centers
[21] includes exact invocation timestamps and per-function resource usage. Information
about the call graph is still missing, as well as the scale of the hosting data centers.

5 Evaluation

In this section, we first evaluate FAASLOAD’s performance to inject a workload in Section 5.1.
Then, we showcase its features through three use cases: building a data of function executions
for machine learning in Section 5.2, studying the Java Virtual Machine in a FaaS setting in
Section 5.3, and replaying a real workload trace in Section 5.4.

5.1 Scalability of FaaSLoad

First, we evaluate the scalability of FAASLOAD’s workload injector through two experiments.
In the first one, we check the scalability of one invoker thread in the face of a bursting
injection trace. In the second one, we check the scalability of the whole injector over the
number of functions it has to invoke. In both experiments, the metric is the injection timing
error, i.e., the time difference between the actual invocation date and the expected invocation
date from the trace. Positive errors mean it was late; negative errors denote early invocations.

The setup is as follows: FAASLOAD runs on a dedicated machine, connected to a
Kubernetes cluster of 8 nodes. In the cluster, Apache OpenWhisk is deployed, and configured
for scalability (2 invokers per node, all memory available). All machines are identical: every
machine is a Dell PowerEdge R640 from 2019, with 96 GiB of memory and an Intel Xeon Gold
5220 at 2.20 GHz with 18 cores, running Debian 11 (or Debian 12 for the machine running
FAASLOAD), from the distributed testbed Grid’5000 [12]. We provision an OpenWhisk
deployment that can serve without overhead the requests sent by FAASLOAD while it is
under test, so that the results are not affected by OpenWhisk’s performance.

5.1.1 Scalability of invoker threads

In this experiment, a single function is injected by FAASLOAD. The function is the dummy
function used to inject real workload traces, see Section 5.4. The function’s invocation profile
is based on the function from the Azure dataset [29] with the 99% highest invocation rate.
The injected function starts at its low invocation rate of 0.017inv./s, i.e., once per minute;
then ramps up to its high invocation rate of 32.4inv./s, and finally ramps down back to the
low invocation rate. Its synthetic trace (see Appendix C) repeats this bursting phase 5 times.
Results are displayed in Figure 4a. The bottom plot illustrates the invocation profile of
the function described above. The top plot shows the timing errors of the invocations.
Timing errors range in absolute value from 1pus to 92ms, with a mean of absolute timing
errors of 12ms. For reference, in Azure traces [29], the median execution time is a bit
under 900 ms. Note that in practice, FAASLOAD does not compensate timing errors below a
configurable threshold (usually set at 10ms) to avoid overcompensating insignificant errors.

5.1.2 Scalability of the workload injector

In this experiment, the dummy function is injected under the same rate (0.033 inv./s, i.e.,
twice per minute, the median maximum rate in the Azure dataset), but under different users,
i.e., as concurrent, different functions. The number of concurrent functions being injected

M. Bacou

Timing errors when injecting workload trace points Timing errors and CPU usage when injecting workload trace points

0.08

g X <okl x 100

RO R it I 3} %
S EUI T O N
E 0.00 % m‘_ H; m! “% E s
002 bl el DB da Akl ki

—0.04 ¥ . 2

30 S5 e 808 §

o
o
@
Wi

202(]|

Invocation rate (inv./s)
[T
S o
===
———
===
—— e
R——— s
—— e
===
—— e
===
———
usage (CPU
coor
>0 00

— o
0 100 200 300 400 500 600 0'%01 901 1001 1101 1201 1301 1401 1501 1601
Time (s) Number of injection traces

(a) Bursting workload. (b) Concurrent workload.

Figure 4 Scalability of FAASLOAD’s invoker threads: timing errors when sending invocations of
functions. (a) A single invoker thread under a bursting workload; (b) concurrent invoker threads.

increases over time. The rate of an individual function is low enough to avoid timing errors

in a single invoker thread, so this experiment evaluates the scalability of the whole injector.

The results are presented in Figure 4b. The bottom plot shows the CPU usage, and
context switches lives by FAASLOAD’s workload injector. The top plot is as in Section 5.1.1,
showing the timing errors for all invoker threads alike.

Results start at 801 concurrent traces, because the invoker shows no significant timing

errors before this point. Timing errors start to explode after 1001 concurrent functions.

FAASLoAD’s workload injector, using only Python’s threads, is not parallelized because of
Python’s Global Interpreter Lock, as shown by the CPU usage capping at 1 full CPU.

5.1.3 Conclusion on the scalability of FaaSLoad

FAASLOAD is capable of handling bursting workloads at the scale of real workload traces.
However, the runtime limitations of the threading implementation of Python interpreters
severely inhibits its capability to scale to the breadth of real workload traces in terms of
concurrent workloads, capping at around 1000 concurrent traces of function invocations.
Nonetheless, Table 1 in Section 5.4 shows this is enough for a representative workload trace.
Possible improvements include rewriting the invoker threads in different ways:

in Python, using multiprocessing [3]: spawn new interpreters in subprocesses, with
separate GILs, but without implicitly shared memory, making the implementation harder;
in Python, with the coming feature of subinterpreters [4]: a lighter form of multiprocessing
with less overhead and implicitly shared memory;

in a systems language: best potential performance, but this would require the most work.

5.2 Use case 1: building a dataset for machine learning

FAASLOAD was used for building a dataset for machine learning, in a published paper [26].
In this work, we studied the impact of features of functions inputs on their memory usage,
and then developed ML models to infer the memory usage. For instance, image processing
functions may use different amounts of memory depending on the image size, format, etc.
FAASLOAD collected a dataset of memory usage of 12 functions.

12:13

OPODIS 2024

12:14

FaaSLoad: Fine-grained Performance and Resource Measurement for FaaS

le8 le8 le8 le7

w
L
IS
s
IS
L

N
N

N
L
N
N

Memory (B)
Memory (B)
Memory (B)
Memory (B)

=
s

=)
L
o
=)
L
o

T j j
0 1 2 0 20 40 0 25 50 75 0.0 0.5 1.0
Time (s) Time (s) Time (s) Time (s)

(a) Blurring an image (b) Blurring an image (c) Blurring an image (d) Summarizing a text
with SHARP (NodeJS): with sHARP (NodeJS): with sHARP (NodeJS): with sumy (Python):
image dimensions. image format. blur coefficient. length of text.

Figure 5 Examples of data collected with FAASLOAD: variability of memory usage during function
execution, depending on input features. In each figure, one color represents one value of the feature.

To build a dataset with FAASLOAD, the setup is a follows: declare functions under study
in a manifest file,” then use FAASLOAD’s helper tool to load the functions into OpenWhisk;
finally to build the dataset, let FAASLOAD run automatically under a reproducibly random
injection trace, and with the function monitor configured to collect needed data.

Figure 5 shows a few example results of the data obtained by FAASLOAD. In this work, we
successfully trained J48 (C4.5) models [34] with up to 91% of accuracy, thanks to FAASLOAD
providing data to identify significant features, and to train models. In addition, data showed
how memory usage can vary during a function execution, with different patterns.

5.3 Use case 2: studying the Java Virtual Machine for Faa$S

Using FAASLOAD, we conduct an experiment on a Java virtual machine (IBM Semeru OpenJ9
VM1 used as the default Java VM by OpenWhisk): we examine the Garbage Collector
(GC) and the Just-In-Time (JIT) compiler. In the Java VM, the GC runs concurrently to
the application, to free memory from the heap by clearing unused objects. As for the JIT,
it profiles the application on its first run to find code pieces that would benefit from being
executed natively, i.e., compiled to the host architecture, instead of being interpreted.

Specifically, we measure the effects of cold starts on the Java VM itself, beyond the
latency they add to function invocations. In this experiment, we check if, and how, cold
starts affect the function’s language runtime, by focusing on the Java VM’s GC and JIT.

We ran FAASLOAD to generate a dataset of executions for 3 Java applications: (I) an
identity function returning its parameters without any processing, (R) an image resizing
function, and (A) an autocompletion algorithm (taking a radix as parameter, it returns the
most probable matches from a dictionary). We had FAASLOAD collect the detailed CPU
usage of the Java VM. This uses the VM’s specific interface JvmCpuMonitorMXBean [2], that
provides the breakdown of total CPU usage between GC+JIT (i.e., the Garbage Collector
and the Just-In-Time compiler) and application. Functions have been modified to return
this breakdown, and FAASLOAD collects it for data processing.

Figure 6 shows transposed CDFs of CPU usage for the three functions. There is a visible
increase in CPU usage and variability between cold and warm starts, both for GC+JIT and for
application. About warm executions, this is easily explained: the Java code has been JIT
compiled, it is now optimized and simply runs more efficiently. About cold executions, the

9 This is inspired by OpenWhisk’s manifest files used by its tool WSKDEPLOY [1].
' Home page of Semeru: https://developer.ibm.com/languages/java/semeru-runtimes/.

https://developer.ibm.com/languages/java/semeru-runtimes/

M. Bacou

1o (1) identity 7200 (R) resize 2800 A) autocomplete Func. total GC+JIT %
— warm (total) — cold (total)
- 9.01 - warm (GC+)IT) gggg cold (GCH)IT) || 2400 (1)/w 1.2 04 33
ETS izgg (1)/c 4.5 2.9 64
v 6.0 |

£ us #1200 (R)/w 1150 260.9 23
g 3.0 . PY010) IR (R)/c 3840.0 2022.0 53
(1)-3 402) (8)/w 42.8 222 52

) e ; b [—]
0.000.250.500.751.00 0.000.250.500.751.00 0.00 0.25 0.50 0.75 1.00 (A)/c 1470.0 922.1 63

CDF
(b) CPU usage (mean, ms).

(a) Distribution of CPU usage. /w = warm start, /c = cold start.

Figure 6 Impact of cold starts on CPU usage by Java functions and their VM’s GC and JIT.

results show that both the GC and the JIT compiler use more CPU time (both in absolute,
and relatively to the total CPU time) in cold executions. By definition, the cold execution
of a function instance is the very first one, and this is the one that suffers the JIT overhead
the most, as well as some GC overhead of cleaning initialization objects.

As a takeaway, during cold start invocations, GC+JIT CPU usage can represent more
than 60% of total CPU time: the cold function instance spends more time optimizing the
program, than running it. This trade-off may be beneficial for long-running applications, but
in FaaS applications, a function instance may never be reused: then the optimizations are
lost, because they are not shared between instances (although some works started looking
into that [14]). We conclude that current language runtimes are not FaaS-ready.

5.4 Use case 3: replaying a real workload trace

In Section 4.2, we showed our conversion algorithm for the Microsoft Azure Functions Dataset
from 2019 [29]. In this section, we evaluate their correctness when converted for replaying by
FAASLOAD. Note that in this evaluation, we skip building the call graph (see Section 4.2.1),
because it was not reliable due to the lack of data from the original traces.

Major challenges are to compute concrete values for Inter-Arrival Times (IATs), and
function execution times and memory usage, while keeping the same statistical properties
as the original, incomplete and at times inconsistent traces. We evaluate the fidelity of the
conversion, by calculating the same parameters as in the companion paper to the traces.!!

They are shown in Table 1. For execution times, the parameters are the log-mean and
standard deviation of the log-normal fit to their distribution; as for memory, they are the
parameters of a fitted Burr XII distribution of the memory usage of applications.

As expected, the shorter the sampling window, and the smallest the sampling subset, the
less representative the resulting traces. Nonetheless, results would vary on the exact sampled
time windows (here, they all start at the beginning of the traces). As shown in Section 5.1.2,
FAASLOAD can handle up to around 1000 concurrent functions, so Table 1 indicates that the
best trade-offs would be to sample over 1h and 1% (closest log-mean execution time), or over
10 min at 2% (closest memory statistics), although it of course depends on the objectives.

' Note that the values of the parameters we calculated over the original traces sampled at 100%, are
different from those given in the companion paper, because the authors published different traces.

12:15

OPODIS 2024

12:16 FaaSLoad: Fine-grained Performance and Resource Measurement for FaaS

Table 1 Comparison of FAASLOAD traces sampled from a real workload, with the original
workload. In bold: values of fitting parameters closest to 100% of original. TATs distrib. gives
fractions of applications invoked less than once per hour, and less than once per min.

Sampling IATs distrib. (%) Exec. time Memory
Window Sub% # funcs. <1/h < 1/min L o c k A
original 100.00 49816 67 91 -0.52 2.68 7.023 0.681 143.671
original 1.00 11874 42 77 -0.45 2.33 14.446 0.217 112.216
1 day 100.00 26151 31 72 -0.81 3.58 14.212 0.217 116.108
1day 1.00 4913 19 63 -0.74 2.89 14.794 0.233 110.707
6h 100.00 13248 16 63 -1.04 4.10 17.147 0.177 114.513
6h 1.00 2198 17 52 -0.29 2.83 17.077 0.196 111.673
1h 100.00 8389 0 55 -1.38 4.75 17.901 0.164 113.775
1h 1.00 1086 0 49 -0.46 3.80 26.227 0.125 111.074
30 min 100.00 7443 0 51 -1.54 4.94 17.913 0.161 113.163
30 min 1.00 919 0 42 -0.64 3.45 42.380 0.083 112.989
10 min 100.00 6034 0 44 -1.85 5.23 268.939 0.005 73.303
10 min 2.00 980 0 64 -1.34 2.43 8.268 0.413 132.611
10 min 1.00 449 0 37 -220 4.39 453.219 0.004 95.477

6 Conclusion

In this paper, we introduced FAASLOAD, a workload injector for FaaS platforms to gather
fine-grained data about functions. FAASLOAD’s aim is to help in systems research on FaaS
platforms, by collecting fine-grained performance and resource data about the actual programs
running serverless, and by injecting synthetic and real workloads into FaaS platforms for
experiments. We showed that FAASLOAD is efficient in conducting experiment in FaaS
environments, and allows to replay real workloads.

In the long term, we hope that FAASLOAD will encourage systems research in directions
that cross-cut the deep software layers of cloud computing.

For now, we will work on improving the performance of the workload injector, by rewriting
critical components in a system language instead of Python. Additionally, FAASL.OAD could
support the concept of applications as seen in Serverless platforms (most often, graphs of
functions), to handle more realistic workloads based on causality. Another interesting feature
would be to control the cold starts, given how impactful they are on application performance.
Finally, a community effort could expand FAASLOAD’s utility to more use cases.

—— References

1 Apache OpenWhisk utility for deploying and managing OpenWhisk projects and packages.
URL: https://github.com/apache/openwhisk-wskdeploy/tree/master.

2 Interface JvmCpuMonitorMXBean. URL: https://www.ibm.com/docs/api/v1l/content/
SSYKE2_8.0.0/0openj9/api/jdk8/jre/management/extension/com/ibm/lang/management/
JvmCpuMonitorMXBean.html.

3 multiprocessing — process-based parallelism. URL: https://docs.python.org/3/library/
multiprocessing.html.

PEP 684 — A Per-Interpreter GIL. URL: https://peps.python.org/pep-0684/.

5 perf: Linux profiling with performance counters. URL: https://perf.wiki.kernel.org/
index.php/Main_Page.

6 The Linux kernel documentation: Memory Resource Controller: Misc. interfaces: stat file.
URL: https://www.kernel.org/doc/html/latest/admin-guide/cgroup-vi/memory.html.

https://github.com/apache/openwhisk-wskdeploy/tree/master
https://www.ibm.com/docs/api/v1/content/SSYKE2_8.0.0/openj9/api/jdk8/jre/management/extension/com/ibm/lang/management/JvmCpuMonitorMXBean.html
https://www.ibm.com/docs/api/v1/content/SSYKE2_8.0.0/openj9/api/jdk8/jre/management/extension/com/ibm/lang/management/JvmCpuMonitorMXBean.html
https://www.ibm.com/docs/api/v1/content/SSYKE2_8.0.0/openj9/api/jdk8/jre/management/extension/com/ibm/lang/management/JvmCpuMonitorMXBean.html
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://peps.python.org/pep-0684/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/memory.html

M. Bacou

10

11

12

13

14

15

16

17

threading — Thread-based parallelism: Timer Objects. URL: https://docs.python.org/3/
library/threading.html#threading.Timer.

What AWS Lambda’s Performance Stats Reveal: Memory Usage, April 2019. URL: https:
//thenewstack.io/what-aws-lambdas-performance-stats-reveal/.

Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf Neugebauer,
Phil Piwonka, and Diana- Maria Popa. Firecracker: Lightweight Virtualization for Serverless
Applications. In Ranjita Bhagwan and George Porter, editors, 17th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2020, Santa Clara, CA, USA, February
25-27, 2020, pages 419-434. USENIX Association, 2020. URL: https://www.usenix.org/
conference/nsdi20/presentation/agache.

Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke, Andre Beck,
Paarijaat Aditya, and Volker Hilt. SAND: Towards High-Performance Serverless Computing.
In Haryadi S. Gunawi and Benjamin C. Reed, editors, Proceedings of the 2018 USENIX
Annual Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018,
pages 923-935. USENIX Association, 2018. URL: https://www.usenix.org/conference/
atcl18/presentation/akkus.

Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter. Sprocket: A Serverless
Video Processing Framework. In Proceedings of the ACM Symposium on Cloud Computing,
SoCC 2018, Carlsbad, CA, USA, October 11-13, 2018, pages 263-274. ACM, 2018. doi:
10.1145/3267809.3267815.

Daniel Balouek, Alexandra Carpen-Amarie, Ghislain Charrier, Frédéric Desprez, Emmanuel
Jeannot, Emmanuel Jeanvoine, Adrien Lébre, David Margery, Nicolas Niclausse, Lucas
Nussbaum, Olivier Richard, Christian Pérez, Flavien Quesnel, Cyril Rohr, and Luc Sarzyniec.
Adding Virtualization Capabilities to the Grid’5000 Testbed. In Ivan I. Ivanov, Marten van
Sinderen, Frank Leymann, and Tony Shan, editors, Cloud Computing and Services Science -
Second International Conference, CLOSER 2012, Porto, Portugal, April 18-21, 2012. Revised
Selected Papers, volume 367 of Communications in Computer and Information Science, pages
3—20. Springer, 2012. doi:10.1007/978-3-319-04519-1_1.

André Bauer, Haochen Pan, Ryan Chard, Yadu N. Babuji, Josh Bryan, Devesh Tiwari,
Tan T. Foster, and Kyle Chard. The globus compute dataset: An open function-as-a-service
dataset from the edge to the cloud. Future Gener. Comput. Syst., 153:558-574, 2024. URL:
https://doi.org/10.1016/j.future.2023.12.007, doi:10.1016/J.FUTURE.2023.12.007.

Jodo Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro Fonseca. From warm to hot starts:
leveraging runtimes for the serverless era. In Sebastian Angel, Baris Kasikci, and Eddie Kohler,
editors, HotOS ’21: Workshop on Hot Topics in Operating Systems, Ann Arbor , Michigan,
USA, June, 1-3, 2021, pages 58-64. ACM, 2021. doi:10.1145/3458336.3465305.

Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and Torsten Hoefler.
SeBS: a serverless benchmark suite for function-as-a-service computing. In Kaiwen Zhang,
Abdelouahed Gherbi, Nalini Venkatasubramanian, and Luis Veiga, editors, Middleware ’21:
22nd International Middleware Conference, Québec City, Canada, December 6 - 10, 2021,
pages 64-78. ACM, 2021. doi:10.1145/3464298.3476133.

Robert Cordingly, Hanfei Yu, Varik Hoang, Zohreh Sadeghi, David Foster, David Perez,
Rashad Hatchett, and Wes Lloyd. The Serverless Application Analytics Framework: Enabling
Design Trade-off Evaluation for Serverless Software. In WoSC@Middleware 2020: Proceedings
of the 2020 Sizth International Workshop on Serverless Computing, Virtual Event / Delft, The
Netherlands, December 7-11, 2020, pages 67-72. ACM, 2020. doi:10.1145/3429880.3430103.
Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin, Qixuan Wu, and
Haibo Chen. Catalyzer: Sub-millisecond Startup for Serverless Computing with Initialization-
less Booting. In James R. Larus, Luis Ceze, and Karin Strauss, editors, ASPLOS ’20:
Architectural Support for Programming Languages and Operating Systems, Lausanne, Switzer-
land, March 16-20, 2020, pages 467-481. ACM, 2020. doi:10.1145/3373376.3378512.

12:17

OPODIS 2024

https://docs.python.org/3/library/threading.html#threading.Timer
https://docs.python.org/3/library/threading.html#threading.Timer
https://thenewstack.io/what-aws-lambdas-performance-stats-reveal/
https://thenewstack.io/what-aws-lambdas-performance-stats-reveal/
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.usenix.org/conference/atc18/presentation/akkus
https://doi.org/10.1145/3267809.3267815
https://doi.org/10.1145/3267809.3267815
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1016/j.future.2023.12.007
https://doi.org/10.1016/J.FUTURE.2023.12.007
https://doi.org/10.1145/3458336.3465305
https://doi.org/10.1145/3464298.3476133
https://doi.org/10.1145/3429880.3430103
https://doi.org/10.1145/3373376.3378512

12:18

FaaSLoad: Fine-grained Performance and Resource Measurement for FaaS

18

19

20

21

22

23

24

25

26

27

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Balasubramaniam, William
Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and Keith Winstein. Encod-
ing, Fast and Slow: Low-Latency Video Processing Using Thousands of Tiny Threads. In
Aditya Akella and Jon Howell, editors, 14th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017, pages
363-376. USENIX Association, 2017. URL: https://www.usenix.org/conference/nsdil7/
technical-sessions/presentation/fouladi.

Martin Grambow, Tobias Pfandzelter, Luk Burchard, Carsten Schubert, Max Xiaohang Zhao,
and David Bermbach. BeFaaS: An Application-Centric Benchmarking Framework for FaaS
Platforms. In IEEE International Conference on Cloud Engineering, IC2E 2021 , San Francisco,
CA, USA, October 4-8, 2021, pages 1-8. IEEE, 2021. doi:10.1109/IC2E52221.2021.00014.

Ryan Hancock, Sreeharsha Udayashankar, Ali José Mashtizadeh, and Samer Al-Kiswany.
OrcBench: A Representative Serverless Benchmark. In Claudio Agostino Ardagna, Nimanthi L.
Atukorala, Rajkumar Buyya, Carl K. Chang, Rong N. Chang, Ernesto Damiani, Gargi Banerjee
Dasgupta, Fabrizio Gagliardi, Christoph Hagleitner, Dejan S. Milojicic, Tuan M. Hoang Trong,
Robert Ward, Fatos Xhafa, and Jia Zhang, editors, IEEE 15th International Conference on
Cloud Computing, CLOUD 2022, Barcelona, Spain, July 10-16, 2022, pages 103-108. IEEE,
2022. doi:10.1109/CLOUD55607.2022.00028.

Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke Darlow, Jianfeng Wang,
Qiwen Deng, and Adam Barker. Serverless Cold Starts and Where to Find Them, 2024. URL:
https://arxiv.org/abs/2410.06145, arXiv:2410.06145.

Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke Nicholas Darlow,
Jianfeng Wang, and Adam Barker. How Does It Function?: Characterizing Long-term Trends
in Production Serverless Workloads. In Proceedings of the 2023 ACM Symposium on Cloud
Computing, SoCC 2023, Santa Cruz, CA, USA, 30 October 2023 - 1 November 2023, pages
443-458. ACM, 2023. doi:10.1145/3620678.3624783.

Vasileios Katevas, Georgios Fatouros, Dimosthenis Kyriazis, and George Kousiouris. Embedding
automated function performance benchmarking, profiling and resource usage categorization in
function as a service DevOps pipelines. Future Gener. Comput. Syst., 160:223-237, 2024. URL:
https://doi.org/10.1016/j.future.2024.05.051, doi:10.1016/J.FUTURE.2024.05.051.

Jeongchul Kim and Kyungyong Lee. FunctionBench: A Suite of Workloads for Serverless
Cloud Function Service. In Elisa Bertino, Carl K. Chang, Peter Chen, Ernesto Damiani,
Michael Goul, and Katsunori Oyama, editors, 12th IEEE International Conference on Cloud
Computing, CLOUD 2019, Milan, Italy, July 8-13, 2019, pages 502—-504. IEEE, 2019. doi:
10.1109/CLOUD.2019.00091.

Pascal Maissen, Pascal Felber, Peter G. Kropf, and Valerio Schiavoni. FaaSdom: a benchmark
suite for serverless computing. In Julien Gascon-Samson, Kaiwen Zhang, Khuzaima Daudjee,
and Bettina Kemme, editors, 14th ACM International Conference on Distributed and Event-
based Systems, DEBS 2020, Montreal, Quebec, Canada, July 13-17, 2020, pages 73—84. ACM,
2020. doi:10.1145/3401025.3401738.

Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale, Stéphane Pouget, Josiane
Kouam, Renaud Lachaize, Jinho Hwang, Tim Wood, Daniel Hagimont, Noél De Palma, Bernabé
Batchakui, and Alain Tchana. OFC: an opportunistic caching system for FaaS platforms. In
Antonio Barbalace, Pramod Bhatotia, Lorenzo Alvisi, and Cristian Cadar, editors, FuroSys
’21: Sizteenth European Conference on Computer Systems, Online Event, United Kingdom,
April 26-28, 2021, pages 228-244. ACM, 2021. doi:10.1145/3447786.3456239.

David Schall, Artemiy Margaritov, Dmitrii Ustiugov, Andreas Sandberg, and Boris Grot.
Lukewarm serverless functions: characterization and optimization. In Valentina Salapura,
Mohamed Zahran, Fred Chong, and Lingjia Tang, editors, ISCA ’22: The 49th Annual
International Symposium on Computer Architecture, New York, New York, USA, June 18 -
22, 2022, pages T57-770. ACM, 2022. doi:10.1145/3470496.3527390.

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://doi.org/10.1109/IC2E52221.2021.00014
https://doi.org/10.1109/CLOUD55607.2022.00028
https://arxiv.org/abs/2410.06145
https://arxiv.org/abs/2410.06145
https://doi.org/10.1145/3620678.3624783
https://doi.org/10.1016/j.future.2024.05.051
https://doi.org/10.1016/J.FUTURE.2024.05.051
https://doi.org/10.1109/CLOUD.2019.00091
https://doi.org/10.1109/CLOUD.2019.00091
https://doi.org/10.1145/3401025.3401738
https://doi.org/10.1145/3447786.3456239
https://doi.org/10.1145/3470496.3527390

M. Bacou

28 Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. Architectural Implications of
Function-as-a-Service Computing. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2019, Columbus, OH, USA, October 12-16, 2019,
pages 1063-1075. ACM, 2019. doi:10.1145/3352460.3358296.

29 Mohammad Shahrad, Rodrigo Fonseca, Iiiigo Goiri, Gohar Irfan Chaudhry, Paul Batum, Jason
Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo Bianchini. Server-
less in the Wild: Characterizing and Optimizing the Serverless Workload at a Large Cloud
Provider. In Ada Gavrilovska and Erez Zadok, editors, Proceedings of the 2020 USENIX Annual
Technical Conference, USENIX ATC 2020, July 15-17, 2020, pages 205-218. USENIX Associ-
ation, 2020. URL: https://www.usenix.org/conference/atc20/presentation/shahrad.

30 Roberto Starc, Tom Kuchler, Michael Giardino, and Ana Klimovic. Serverless? RISC more!
In Proceedings of the 2nd Workshop on SErverless Systems, Applications and MFEthodologies,
SESAME 2024, Athens, Greece, 22 April 2024, pages 15—24. ACM, 2024. doi:10.1145/
3642977 .3652095.

31 Dmitrii Ustiugov, Theodor Amariucai, and Boris Grot. Analyzing Tail Latency in Serverless
Clouds with STeLLAR. In IEEE International Symposium on Workload Characterization,
IISWC 2021, Storrs, CT, USA, November 7-9, 2021, pages 51-62. IEEE, 2021. doi:10.1109/
IISWC53511.2021.00016.

32 Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris Grot. Bench-
marking, analysis, and optimization of serverless function snapshots. In Tim Sherwood,
Emery D. Berger, and Christos Kozyrakis, editors, ASPLOS ’21: 26th ACM International Con-
ference on Architectural Support for Programming Languages and Operating Systems, Virtual
Event, USA, April 19-23, 2021, pages 559-572. ACM, 2021. doi:10.1145/3445814.3446714.

33 Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and Michael M. Swift. Peeking
behind the curtains of serverless platforms. In Haryadi S. Gunawi and Benjamin C. Reed,
editors, Proceedings of the 2018 USENIX Annual Technical Conference, USENIX ATC 2018,
Boston, MA, USA, July 11-18, 2018, pages 133-146. USENIX Association, 2018. URL:
https://www.usenix.org/conference/atcl18/presentation/wang-liang.

34 Tan H. Witten, Eibe Frank, and Mark A. Hall. Data mining: practical machine learning tools

and techniques, 3rd Edition. Morgan Kaufmann, Elsevier, 2011. URL: https://www.worldcat.

org/oclc/262433473.

35 Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu, Pingchao Yang,
Chenggang Qin, and Haibo Chen. Characterizing serverless platforms with ServerlessBench.
In Rodrigo Fonseca, Christina Delimitrou, and Beng Chin Ooi, editors, SoCC ’20: ACM
Symposium on Cloud Computing, Virtual FEvent, USA, October 19-21, 2020, pages 30—44.
ACM, 2020. doi:10.1145/3419111.3421280.

A Database format of FaaSLoad

FAASLOAD stores all its data to a PostgreSQL database, for standardized data management.

There is a central runs table that stores information directly related to an invocation at
the FaaS platform-level: its ID in the platform, its start and end time, etc. The second most
important table is resources, a TimescaleDB timeseries-optimized table for data collected
by the function monitor. This table references the runs table, and stores all the values of all
collected performance counters, resource usage, etc. for every run.

The table runs references a functions table that stores identifying data about the
functions invoked when injecting the workload. In addition, a parameters table stores
parameters of function invocations (specifically needed when generating a dataset, where
parameters are set randomly by FAASLOAD). Then, a table named results stored plain

results of function invocations, i.e., the values returned by the executions of the functions.

12:19

OPODIS 2024

https://doi.org/10.1145/3352460.3358296
https://www.usenix.org/conference/atc20/presentation/shahrad
https://doi.org/10.1145/3642977.3652095
https://doi.org/10.1145/3642977.3652095
https://doi.org/10.1109/IISWC53511.2021.00016
https://doi.org/10.1109/IISWC53511.2021.00016
https://doi.org/10.1145/3445814.3446714
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://www.worldcat.org/oclc/262433473
https://www.worldcat.org/oclc/262433473
https://doi.org/10.1145/3419111.3421280

12:20

FaaSLoad: Fine-grained Performance and Resource Measurement for FaaS

This can be used by customized functions to return internal information (see Section 5.3 for
an example of this). Both parameters and results reference the table runs.

Additionally, the table dockeroperations stores events related to function instance
management by the FaaS platform; e.g., creating a new instance, etc.

B Workload trace format of FaaSLoad

FAASLOAD’s trace format is very simple, yet comprehensive. An example is given in Listing 1.

Listing 1 Example of FAASLOAD injection trace. A header gives meta information, then injection
points are listed.

user001 dataset_gen/sharp_blur 1024
0.326 3.jpg sigma:56.256303360401
2.75 5 .jpg sigma:39.14279952944534
0.061 1.jpg sigma:72.80070853800676

The first line is special, and gives about the function its owner, its name, and its memory
allocation. The user name is important, since the same program could be executed under
the same function name but under two different users, to execute it under different memory
allocations (thus the memory amount in the header). It is also used to simulate different
user profiles with regards to memory, as described in Appendix C.

After this simple header comes workload injection points, i.e., instructions for function
invocations. Each line is a point, listing:

the time to wait before the invocation, relative to the previous one;
an optional input filename;
an optional list of other named parameters;

Then, an injection point can optionally specify an input filename and named parameters
that will be passed to the function. The special handling of an optional input filename comes
from FAASLOAD’s original use case: generating a dataset of invocations of functions over
varied inputs. While in practice this parameter is just passed to the invoker function like
other, named parameters,'? it receives special handling because FAASLOAD, when executed
to generate a dataset of invocations, must cover all provided inputs of the kind expected by
the function. This is interesting for FAASLOAD to consider as first class because many FaaS
functions follow a process of transforming input data.

As can be seen, the injection trace format is very simple. This is a feature intended to
allow writing any trace generator without added complexity on the trace format, and to
allow easily auditing such resulting traces.

C Synthetic workload generator

The easiest way to obtain injection traces for FAASLOAD is of course to synthesize them.
While the open trace format lets anyone write their own generator, FAASLOAD comes with
a trace builder that synthesizes traces from user specifications, written as YAML files. An
example of a user specification is given in Listing 2.

First, a user specification defines a memory profile. This memory profiles expresses how
well the user sets the memory limit to its functions:

2 The filename is passed to the invocation under the fixed named object.

M. Bacou

smart sets the memory allocation of its functions to exactly the required amount;
average sets the memory allocation to the smart value, multiplied by the added average
increase observed in Faa$S platform, which is 1.6 times [8];

maximum sets the memory allocation to a constant maximum allowed by the FaaS platform.

Listing 2 Example of user specification used by FAASLOAD’s synthetic workload generator.

users :
user001 :
memory—profile: average
nb—inputs:
image: 10
audio: 10
actions:
number: 3
matches:
— number: 2
match :
runtime: "nodejs"
annotations:
input__kind: image
distribution: poisson
rate: 0.3
— number: 1
activity—window :
from: 120
to: 180
match :
docker: "python"
annotations:
input__kind: audio
distribution: uniform
rate: 0.5
user002 :
memory—profile : maximum
nb—inputs:
image: 5
actions:
— name: 'faasload/sharp resize"

times: [2, 12, 22, 32, 42, 52]

Using this feature, one can easily generate traces with the same characteristics, but
observing the impact of memory overallocation on the FaaS platform.

Then, the user specification gives the number of available inputs for each kind that could
be requested by functions, to generate input filenames, as described in Appendix B.

Finally, the specification expresses which functions are invoked, at which times. This
expression is very flexible:

fixed selection of functions with exact IATs;

fixed selection of functions with random IATs following statistical distributions;

varying in selection of functions based on criteria (name, runtime, annotations, etc.) with
random inter-arrival times following statistical distributions.

With such specifications, one can execute FAASLOAD multiple times with different traces
generated from the same user specification, to check reproducibility of experiments.

To cover another use case, user specifications also allow to give activity windows of
functions. Functions will only be invoked during their respective activity window. This is
useful to experiment with the behavior of given functions when other functions suddenly
appear, and may contend for resources and interfere in performance levels.

12:21

OPODIS 2024

	1 Introduction
	2 Related work
	2.1 Studies and benchmarks on FaaS platforms
	2.2 Discovering the properties of FaaS programs

	3 Design and implementation of FaaSLoad
	3.1 Design directions
	3.2 Overview: the injection process of FaaSLoad
	3.3 Workload injector
	3.3.1 Injection monitor
	3.3.2 Invoker threads
	3.3.3 Platform connector

	3.4 Function monitor
	3.4.1 Architecture of the function monitor
	3.4.2 Monitoring functions

	3.5 FaaS semantics

	4 Workload traces
	4.1 Trace format
	4.2 Real workload injection
	4.2.1 Converting Azure workload traces for FaaSLoad
	4.2.2 Limits of the conversion process

	5 Evaluation
	5.1 Scalability of FaaSLoad
	5.1.1 Scalability of invoker threads
	5.1.2 Scalability of the workload injector
	5.1.3 Conclusion on the scalability of FaaSLoad

	5.2 Use case 1: building a dataset for machine learning
	5.3 Use case 2: studying the Java Virtual Machine for FaaS
	5.4 Use case 3: replaying a real workload trace

	6 Conclusion
	A Database format of FaaSLoad
	B Workload trace format of FaaSLoad
	C Synthetic workload generator

