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Abstract

The automatic extraction of character networks
from literary texts is generally carried out using
natural language processing (NLP) cascading
pipelines. While this approach is widespread,
no study exists on the impact of low-level NLP
tasks on their performance. In this article, we
conduct such a study on a literary dataset, fo-
cusing on the role of named entity recognition
(NER) and coreference resolution when extract-
ing co-occurrence networks. To highlight the
impact of these tasks’ performance, we start
with gold-standard annotations, progressively
add uniformly distributed errors, and observe
their impact in terms of character network qual-
ity. We demonstrate that NER performance
depends on the tested novel and strongly af-
fects character detection. We also show that
NER-detected mentions alone miss a lot of
character co-occurrences, and that coreference
resolution is needed to prevent this. Finally,
we present comparison points with 2 methods
based on large language models (LLMs), in-
cluding a fully end-to-end one, and show that
these models are outperformed by traditional
NLP pipelines in terms of recall.

1 Introduction

Character networks are graphs whose vertices rep-
resent characters, and edges represent the rela-
tionships between them. They can be seen as a
special case of knowledge graphs, where vertices
are restricted to being characters. Such networks
have multiple uses: visualize the relationships be-
tween characters in a novel, support literary analy-
sis (Rochat, 2015; Rochat and Triclot, 2017; Elson
et al., 2010), or solve downstream tasks such as
recommendation (Lee and Jung, 2019) or genre
classification (Hettinger et al., 2015). As indicated
by the survey of Labatut and Bost (2019), many
authors work on automatically extracting these net-
works (Sparavigna and Marazzato, 2015; Dekker
et al., 2019; Elson et al., 2010), following a generic

three-phase automatic extraction framework. First,
identify characters present in a text, using tech-
niques such as NER and alias resolution. Sec-
ond, detect interactions between characters. One
can consider multiple types of interactions (co-
occurrence, conversations, actions. . . ), hence this
process differs given the targeted type. Third, given
characters and their interactions, derive the relation-
ships between characters and extract a character
network.

Due to their statistical nature and the difficulty
of the tasks they entail, natural language processing
(NLP) cascading pipelines applied to character net-
work extraction are bound to make errors. While
such networks have been leveraged for many ap-
plications, the general question of how to better
extract them has been comparatively much less ex-
plored, and certainly not in a systemic way. Since
extraction is generally performed using an NLP
pipeline, the first step to answering this question
is to study the impact of each NLP task on the
quality of the final network, as understanding it
would allow the community to prioritize future re-
search efforts. Therefore, in this article, we pro-
pose to study that impact in depth, by artificially
adding errors in steps of the extraction pipeline
to observe their influence. We specifically focus
on NER and coreference resolution, with the lat-
ter remaining a challenging task. We perform our
study on Litbank (Bamman et al., 2019, 2020), a
standard English literary corpus. To support our ex-
periments, we implement extensions to the recent
modular character network extraction pipeline Re-
nard (Amalvy et al., 2024). In order to understand
whether cascading pipelines are still competitive
against LLM-based extraction systems and to guide
future research, we compare our pipeline against
such systems. To facilitate reproducibility, we re-
lease all our code and data under a free license1.

1https://github.com/CompNet/Splice

https://github.com/CompNet/Splice


Our contributions are as follows. First, we de-
fine new measures to evaluate the quality of ex-
tracted networks. Second, we extend the existing
Renard extraction pipeline, and evaluate it on a
character network dataset we adapt from Litbank.
Our measures and dataset are a first step towards
a more systematic benchmarking of network ex-
traction systems, something that is missing in the
literature. Third, we propose a model to simulate
errors for two tasks, NER and coreference reso-
lution, in order to understand their impact on a
character network extraction pipeline. Finally, we
compare our pipeline to end-to-end LLM models,
in order to understand how much cascading errors
are detrimental to a sequential pipeline.

We organize the rest of this article as follows. In
Section 2, we discuss related work by highlight-
ing existing character network extraction pipelines
and literature on NER and coreference resolution
error analysis. In Section 3, we detail our methods,
including the extended Renard character network
extraction pipeline we use. We describe our ex-
periments in Section 4, and discuss their results
in Section 5. Finally, we review our main contri-
butions in Section 6 and present the limits of our
work in Section 7.

2 Related Work

2.1 Character Network Extraction Pipelines

Character network extraction is related to knowl-
edge graph extraction, but with vertices restricted
to characters. Both share common tasks such as
entity recognition and linking, but the focus on nar-
ratives and characters implies specialized instances
with specific challenges.

BookNLP (Bamman et al., 2014) is a well-known
NLP pipeline specialized for novels, and is some-
times used in the literature when it comes to ex-
tracting character networks (Dekker et al., 2019;
Piper et al., 2017). Other authors go further and
propose pipelines specifically tailored to character
network extraction, such as CHAPLIN (Sparavi-
gna and Marazzato, 2015) or Charnetto (Métrailler,
2023). Recently, Amalvy et al. (2024) propose
Renard, a modular character network extraction
pipeline written in Python. In this article, we ex-
tend Renard to conduct a detailed study of each
extraction module.

2.2 Error Analysis

Most works interested in the effect of NLP errors
focus on specific tasks. For the NER task, Stanis-
lawek et al. (2019) find that different NER models
make different categories of errors, while Rueda
et al. (2024) highlight recurrent errors made by
models, such as the difficulty of detecting mentions
unseen in the training set. For the coreference task,
Martschat and Strube (2014) focus on recall errors,
while Chai and Strube (2023) perform an analysis
on multilingual coreference systems, and focus on
two-mentions entities that they find hard to recall.

To the best of our knowledge, only Dekker et al.
(2019) adopt a more global view and assess the ef-
fect of NER errors on character networks. However,
no study exists on the impact of the performance
of the main NLP steps required to extract a char-
acter network. Our goal in this article is to fill this
existing void in the literature by proposing a first
impact study.

3 Methods

3.1 Terminology

The terminology from the NER, coreference and
alias resolution literature diverge and are confusing
when used together. This is why, in this section,
we clarify the terms that we use in this article. We
use “form” to refer to a textual representation of a
character. A form can be a proper noun (“Lianna”),
a pronoun (“she”), a definite description (“the
princess”). . . Meanwhile, we use “mention” to re-
fer to the occurrence of a form in the text. A NER
system only extracts a subset of characters’ men-
tions: for example, it does not extract pronouns.
We refer to the form of a mention detected by a
NER model as an alias, as it strongly identifies a
character. Meanwhile, a coreference system typi-
cally detects all mentions, including pronouns and
other generic constructs. We therefore distinguish
two types of mentions: alias mentions and generic
mentions.

3.2 Extraction Pipeline

To extract character networks, we extend the Re-
nard extraction pipeline (Amalvy et al., 2024). We
design our own pipeline for the needs of this study
and contribute different modules. There are many
types of interactions that we could extract to pro-
duce character networks. As a first study on the
subject, we choose to focus on co-occurrence char-
acter networks: they are conceptually simple, and



are the most used type of networks in the litera-
ture (Labatut and Bost, 2019). We consider an in-
teraction between two characters when they appear
close to each other in the text, in a range we call
the co-occurrence window. Our pipeline is divided
into four main phases: NER, coreference resolution
(optional step), character unification, and finally co-
occurrence detection and network extraction.

We perform flat NER using the fine-tuned BERT
model (Devlin et al., 2019) included in Renard,
trained on the literary NER dataset introduced by
Dekker et al. (2019) and later improved by Amalvy
et al. (2023b). We only keep mentions of the PER
class.

For coreference resolution, we use the end-to-
end coreference model included in Renard based
on Lee et al. (2017) and Joshi et al. (2019). The
model predicts links between mentions, but also
performs mention detection: this is important when
extracting co-occurrence character networks, as
generic character mentions (such as pronouns) are
still counted as co-occurrences.

Character unification resembles alias resolution.
In the case of our extraction pipeline, we define
character unification as resolving each mention de-
tected by the NER and coreference steps to a sin-
gle character. This task could be described as a
document-level version of coreference resolution,
restricted to characters. To unify mentions, we base
ourselves on the work of Vala et al. (2015). We
construct a graph where each vertex is a character
alias as detected by NER, and we employ a set of
rules to connect or disconnect these vertices. While
rules can introduce errors, they are often used by
previous works (Vala et al., 2015; Ardanuy and
Sporleder, 2014), and thus analyzing their failure
modes is important. We use the following rules:

1. When two aliases have a first or last name
in common, we connect them (“Emma” and

“Emma Woodhouse”).

2. When two aliases are related by a hypocorism
gazetteer (“John” and “Johnny”), we connect
them.

3. When one of the two above rules holds for
two aliases when removing titles, we connect
them (“Mr. John” and “Johnny”).

4. When two aliases are coreferential, we con-
nect them. We consider two aliases to be coref-
erential when they appear together in one or

more coreference chains, and never appear
without the other in other chains.

5. When connected aliases have the same last
name but a different first name, we delete all
vertices in the shortest paths between them,
since they are probably different characters
from the same family (“John Smith” and

“John Klint”).

6. When two aliases have a different inferred
gender, we delete all the edges in the shortest
paths between them (“Mr. Smith” and “Miss
Smith”). We infer gender using the gendered
titles and pronouns in coreference chains.

After having applied all these rules, we merge
the graph-connected components. Using the alias
groups extracted with this algorithm, we assign
each mention detected by the NER or coreference
steps to a single character.

Finally, we apply the co-occurrence detection
and network extraction step of Renard. This step is
entirely deterministic and cannot cause any errors
errors by itself: we simply consider that two charac-
ter mentions in the defined co-occurrence window
form an interaction, which results in an edge be-
tween these characters. To take into account the
importance of each relationship, we weight edges
by the number of interactions between characters.

3.3 Perturbation Analysis
To assess the impact of NER and coreference reso-
lution errors on the extracted networks, we propose
to start from a pipeline with gold-standard NER
and coreference predictions, and to progressively
degrade the performance of these tasks while ob-
serving the impact on the quality of the extracted
networks. To degrade task performance, we add
uniformly distributed perturbations to the predic-
tions, corresponding to different types of errors.

3.3.1 NER Perturbations
As an example, we consider the following gold
predictions as a starting point, and consider two
types of perturbations.

P
E

R One-Eye O looked O at

P
E

R Goblin O .

Add Spurious Alias Mentions: We add false
positives to the NER predictions by uniformly sam-
pling generic spans (up to a certain span size) from
the text, to reduce Precision.

P
E

R One-Eye

P
E

R looked O at

P
E

R Goblin O .



Remove Correct Alias Mentions: We remove
true positives from the NER predictions by uni-
formly sampling from the predicted alias mentions,
to reduce Recall.

P
E

R One-Eye O looked O at O Goblin O .

3.3.2 Coreference Resolution Perturbations
As an example, we consider the following gold
prediction as a starting point, and consider four
types of perturbations.

1 One-Eye pranced over and took a poke at

2 Goblin , trying to break 2 his concentration.

Add Spurious Mentions: We add singletons
(mentions linked to no other mentions) to the pre-
dictions consisting of incorrect mentions, by uni-
formly sampling non-mention spans (up to a certain
span size).

1 One-Eye pranced over and took a 3 poke at

2 Goblin , trying to break 2 his concentration.

Remove Correct Mentions: We remove cor-
rectly predicted mentions from the predictions by
uniform sampling.

One-Eye pranced over and took a poke at
2 Goblin , trying to break 2 his concentration.

Add Spurious Links: We add incorrect corefer-
ence links between two mentions, wrongly merging
coreference chains together. We uniformly sample
the incorrect links in the set of all possible incorrect
links.

2 One-Eye pranced over and took a poke at

2 Goblin , trying to break 2 his concentration.

Remove Correct Links: We remove correct
links between predicted mentions, wrongly split-
ting coreference chains. We uniformly sample links
among all existing correct coreference links.

1 One-Eye pranced over and took a poke at

2 Goblin , trying to break 3 his concentration.

3.4 Network Quality Measures
Since we want to measure the impact of NLP errors
on the extracted network, we need a set of mea-
sures to assess the quality of this network when
compared to a reference network. We base our
measures on the work of Vala et al. (2015) on alias
resolution.

Let Gp = (Vp, Ep) be a predicted character net-
work, and Gg = (Vg, Eg) be the corresponding

gold network. Let each vertex of Vp and Vg rep-
resent the set of aliases {a1, a2, · · · , an} of the
underlying character. In order to know whether the
predicted network Gp correctly contains vertices
and edges similar to the gold network Gg, we first
need to match their characters, since a vertex in
Vp is not necessarily present in Vg and vice versa.
Thus, we start by computing a maximum bipartite
mapping fV from the set of predicted vertices Vp to
Vg ∪ {v∅}. This mapping associates any predicted
vertex u ∈ Vp to a gold vertex v ∈ Vg or to the null
vertex v∅, meaning u is not associated with any
character in Vg. Note that the null vertex v∅ repre-
sents the empty set of aliases. Symmetrically, we
construct a mapping gV from Vg to Vp ∪ {v∅}. We
leverage the alias sets represented by the vertices
to compute Vertex Precision and Vertex Recall2:

PreV = max
fV

∑
u∈Vp

1− |u−fV (u)|
|u|

|Vp|
(1)

RecV = max
gV

∑
v∈Vg

[gV (v) ∩ v ̸= v∅]

|Vg|
. (2)

We define Vertex F1 (F1V ) as the harmonic
mean between Vertex Precision and Vertex Recall.

For edges, we use mappings fV and gV to con-
struct mappings fE and gE , which map similarly
edge sets Ep and Eg:

fE({u, v}) =


{fV (u), fV (v)}, if fV (u) ̸= v∅

and fV (v) ̸= v∅

v∅, otherwise.

Based on fE and gE , we compute Edge Precision
and Edge Recall:

PreE = max
fE

∣∣{fE(e) : e ∈ Ep} ∩ Eg

∣∣
|Ep|

(3)

RecE = max
gE

∣∣Ep ∩ {gE(e) : e ∈ Eg}
∣∣

|Eg|
. (4)

We define Edge F1 (F1E) as the harmonic mean
of Edge Precision and Edge Recall.

We also introduce weighted variants of these net-
work measures (WPreE , WRecE and WF1E) in
order to take into account the weights of the net-
work edges, that correspond to the number of inter-
actions between connected characters. Before com-
puting the measures, we normalize the weights by

2We employ the Iverson bracket notation, where [P ] = 1
if proposition P is true, and 0 otherwise.



dividing by the maximal number of co-occurrences
in the network. We compute Precision and Recall
as follows:

WPreE = max
fE

∑
e∈Ep

1−
∣∣w(fE(e))− w(e)

∣∣
|Ep|

(5)

WRecE = max
gE

∑
e∈Eg

1−
∣∣w(e)− w(gE(e))

∣∣
|Eg|

, (6)

where w(e) is the function that computes the nor-
malized weight of edge e. w(e) is 0 when e = e∅.
Weighted measures evaluate the quality of the dis-
tribution of weights in the predicted network, and
are always less than or equal to their unweighted
counterparts.

4 Experiments

4.1 Literary Corpus

We perform all of our experiments on the NER
and coreference layers of the Litbank literary cor-
pus (Bamman et al., 2019, 2020). Since it is de-
signed for nested NER while the Renard NER step
performs flat NER, we flatten the Litbank annota-
tions using an algorithm we implement (see Ap-
pendix B for details). We use coreference chains of
PER mentions as the ground truth for the character
unification step, since coreference resolution on
characters is equivalent to character unification. As
the network extraction step cannot cause errors on
its own, we extract gold character networks using
these annotations only.

Litbank is composed of excerpts from 100 novels
of approximately 2,000 tokens each. Since these
excerpts can be short, we restrict our analysis to
the 30 novels involving at least 10 characters. This
prevents high deviation of network quality mea-
sures when a vertex or an edge is modified in the
prediction. We use the remaining 70 novel excerpts
to train coreference resolution models: we use 63
of these 70 novels (90%) as a training set, and the
remaining 7 as a development set.

4.2 Pipeline Performance

We apply our character network extraction pipeline
to the 30 excerpts we select for analysis. Since
multiple coreference resolution measures exist and
none of these are entirely satisfying or measure the
same thing, we report a large set of measures in-
cluding MUC (Vilain et al., 1995), B3 (Bagga and
Baldwin, 1998), CEAF (Luo, 2005), BLANC (Re-
casens and Hovy, 2011) and LEA (Moosavi and

Strube, 2016). We also report the performance of
a pipeline without the optional coreference resolu-
tion step, in order to assess the usefulness of the
task. We consider a co-occurrence window of 32
tokens.

4.3 LLM-based Approaches

Since character network extraction is usually per-
formed using cascading pipelines, errors may prop-
agate and degrade performance. Meanwhile, LLM-
based approaches are less modular and explain-
able, but are not subject to cascading errors by
design. Therefore, inspired by the recent advances
in LLMs, we survey their capability to be used as
character network extractors, and compare them to
our cascading Renard pipeline. We introduce two
different LLM extraction methods:

LLM-Coref We remark that the last network ex-
traction step, co-occurrence detection, cannot cause
errors on its own: we simply create an edge be-
tween two characters if some of their mentions are
in the same co-occurrence window. Therefore, in
the case of a co-occurrence network, we can define
the extraction problem as span extraction, where
each extracted span must be assigned to the cor-
rect character. This problem definition could also
be viewed as coreference resolution restricted to
characters only. To tackle the problem this way, we
prompt LLMs to mark character mentions in the
text with a unique character ID.

LLM-E2E Given an input text, we simply
prompt LLMs to produce the corresponding char-
acter network in a simplified version of the XML-
based Graphml format.

See Appendix A for the exact prompts. We use
few-shot prompting by providing examples of the
task to the model. For both methods, we make
an effort to parse the LLM output in order to fix
slightly incorrect output format. We survey two
proprietary models, GPT3.5 Turbo (Brown et al.,
2020)3 and GPT4o4, and a recent open weights
model, Llama3-8b-instruct (Touvron et al., 2023).

5 Results

5.1 Pipeline Performance

Table 1 shows the NER and coreference resolu-
tion performance of our extended Renard pipeline.

3GPT3.5 checkpoint: gpt-3.5-turbo-0125
4GPT4o checkpoint: gpt-4o-2024-05-13



NER performance is below the reported state-of-
the-art on datasets from other domains such as
CoNLL-2003 (Tjong Kim Sang and De Meulder,
2003) where the best systems obtain F1 scores
higher than 90. While part of this lack of perfor-
mance may be due to the way we transform the
nested Litbank dataset to a flat NER dataset, we
observe a high disparity of performance between
novels, with F1 ranging from 51.16 to 97.30. This
matches the observations from Dekker et al. (2019)
and Amalvy et al. (2023a), indicating challenges
that are specific to some novels. Meanwhile, the
performance of coreference resolution is lower than
what Bamman et al. (2020) reports on Litbank (for
example, we report 78.45 MUC while Bamman
et al. (2020) reports 84.3). This may be due to the
lower number of excerpts in our training set (63 vs.
80), which is required for our analysis.

Task Measure Mean Min Max
NER F1 79.58 51.16 97.30

Coref MUC 78.45 64.31 88.75
B3 54.87 41.53 70.40
CEAF 47.04 34.31 59.75
BLANC 60.82 40.64 79.82
LEA 28.84 19.44 43.95

Table 1: Performance of our pipeline on NER and coref-
erence resolution. We compute the Mean, Min and Max
values on the series formed by the measures of the 30
novel excerpts of our analysis set.

Table 2 shows the performance of our pipeline
on our test corpus of 30 excerpts, depending on
whether we add the optional coreference step or
not. Vertex and edge F1 are higher when omitting
coreference information, likely because the perfor-
mance of the coreference resolution algorithm is
not high enough, leading to the detection of spuri-
ous mentions, which misleads both the character
unification and co-occurrence detection steps. We
discuss the question of the utility of coreference res-
olution in more detail in Section 5.1.1. In general,
Edge Recall is quite low, meaning many character
interactions are missed.

Meanwhile, using coreference information
proves to be important to increase edge recall mea-
sures. Even though coreference resolution leads
to a compromised network structure overall, it al-
lows the pipeline to detect more character mentions,
leading to a better estimation of the relative strength
of their interactions.

Measure w/ coref w/o coref
F1V 57.64 70.39
F1E 40.19 44.93
WF1E 33.53 30.55

PreV 59.32 68.99
PreE 48.07 62.07
WPreE 38.40 39.91

RecV 57.77 74.00
RecE 39.37 37.81
WRecE 33.17 26.18

Table 2: performance of our pipeline on network extrac-
tion with or without the coreference resolution step.

5.1.1 Coreference Resolution Performance
Given the negative impact that coreference resolu-
tion can have, as seen in Table 2, a question that
naturally arises is whether this task is useful when
extracting character networks. Co-occurrence net-
works extracted with alias mentions might only
be a sufficiently good approximation of a network
extracted with all mentions. In that case, perform-
ing a coreference resolution to extract additional
mentions would not be critical.

Measure RecE WPreE WRecE
Value 54.39 63.20 35.66

Table 3: Network quality measures for gold networks
extracted by ignoring coreference mentions. Only af-
fected measures are presented.

To understand whether this is the case, we ex-
tract gold networks from Litbank with and with-
out coreference-extracted mentions, and compute
network quality measures by considering networks
with coreference mentions as the reference. Results
can be found in Table 3. While only some mea-
sures are affected (Edge Recall, Weighted Edge
Precision, and Weighted Edge Recall), ignoring
coreference mentions proves to severely impact
performance. This shows that coreference men-
tions are a crucial part of relationships extracted
using co-occurrence.

To try and understand the minimal performance
needed for coreference resolution to be useful, we
perform an experiment where we inject the gold
coreference information in the pipeline, and slowly
degrade performance. To do so, we combine all
the coreference perturbations we described in Sec-
tion 3.3.2, by uniformly sampling a degradation
and applying it. We repeat this process for a fixed
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Figure 1: Network extraction performance when apply-
ing the coreference perturbations from Section 3.3.2.

number of steps and observe the effects in terms
of coreference and network quality measures. The
results of this experiment can be found in Figure 1.

When applying perturbations, overall perfor-
mance for all measures starts to decrease until a
certain point, after which it starts reaching a plateau
(except for edge recall measures). This effect oc-
curs because after this point, coreference resolution
recall on alias mentions starts being so low that it
does not affect the character unification algorithm
anymore, and other rules based on character aliases
start to have more influence. Meanwhile, there is a
big discrepancy between vertex and edge measures:
while vertex measures can stay close to their orig-
inal values when coreference resolution is highly
degraded, this is not the case for edge measures.
This is because coreference resolution is crucial
when detecting co-occurrence, as it is the only way
to detect generic mentions.

5.1.2 NER Perturbation Analysis
Figure 2 shows the NER perturbation results.

Add Spurious Alias Mentions Unsurprisingly,
reducing NER Precision has a direct effect on Ver-
tex Precision, which plummets as more NER false
positives are added. Edge Precision also sharply
decreases as a result, while Vertex and Edge Recall
slowly decrease down to a plateau.

Remove Correct Alias Mentions All recall mea-
sures sharply decrease when removing correct alias
mentions. Precision measures become unstable
and finally undefined, as no vertices or edges are
predicted when NER Recall reaches 0.

Unsurprisingly, NER performance has a high im-
pact on network quality. Since NER performance
varies greatly depending on the novels (as seen
in Table 1), enhancing performance for challeng-
ing novels is an important concern that should be

addressed by future research.

5.1.3 Coreference Resolution Perturbation
Analysis

Figure 3 shows the coreference resolution pertur-
bations results.

Add Spurious Mentions Adding spurious sin-
gletons does not affect our character unification
algorithm, and therefore has no impact on the qual-
ity of the extracted network.

Remove Correct Mentions Removing correct
mentions mainly affects edge measures: charac-
ters are still recognized correctly, but some co-
occurrence interactions are lost due to missing char-
acter mentions, leading to fewer edges.

Add Spurious Links Adding wrong coreference
links sharply decreases all network extraction per-
formance measures: characters are harder to recog-
nize, and interactions are missing. This is driven
by rules 4 and 6 of our character unification step
(Section 3.2), that are both fed wrong information.
While it would be possible to not apply these rules,
rule 4 is the only one that allows linking two men-
tions with completely different forms.

Remove Correct Links Network edge measures
are affected the most by coreference links removal,
while vertex measures stay somewhat stable.

Not all coreference resolution errors prove to
be equal in terms of impact on network quality.
Adding spurious links is the most harmful error,
while adding spurious singletons does not affect our
character unification algorithm. Meanwhile, other
errors mainly impact edge extraction performance.
Therefore, if one’s concern is to extract characters
only, a conservative coreference algorithm with low
linking recall, but high linking precision might give
sufficient performance. However, when extracting
edges between characters, both high precision and
recall are necessary, in terms of mention detection
as well as linking.

5.2 LLM-based Approaches
Results of our LLM-based extraction methods
LLM-Coref and LLM-E2E can be found in Table 4.

LLM-Coref If we observe F1 scores, GPT4o
performs the best amongst the LLMs we sur-
vey, followed by Llama3-8b-instruct and GPT-3.5
Turbo. LLMs particularly struggle with recall, with
GPT3.5 Turbo and Llama3-8b-instruct missing a
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Figure 2: Network quality measures versus number of degradation steps for “add spurious alias mention” and
“remove correct alias mention” perturbations.
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Figure 3: Network quality measures versus the number of coreference resolution degradation steps.

lot of character occurrences. Qualitatively, both
of these models either miss a lot of mentions, or
start hallucinating a lot of mentions before con-
tinuing that way through the output, influenced
by their previous predictions. Llama3-8b-instruct
also has trouble respecting the output format, some-
times generating invalid output. GPT4o is much
more consistent, although it still misses many men-
tions. When compared against our extended Re-
nard pipeline, LLMs results are generally lower,
except for Edge Precision and for weighted edge
measures where GPT4o trades precision for recall.

LLM-E2E Results are generally higher than with
LLM-Coref, highlighting the importance of task for-
mulation. If we focus on F1 scores, we observe the
same ranking between LLMs, with GPT4o beating
Llama3-8b-instruct and GPT3.5 Turbo. Generally,
LLMs display high vertex and edge precision, even
surpassing our pipeline sometimes. However, their

recall still lags behind Renard.

6 Conclusion

In this article, we presented a study on the impact
of NLP tasks on character network extraction. We
show that NER performance is crucial to detecting
characters, but that it depends heavily on the consid-
ered novel: therefore, future research should focus
on improving the low NER performance on diffi-
cult novels. Additionally, we show that not tackling
the challenging coreference resolution task implies
missing co-occurrence relationships between char-
acters. This task is important to extract correct
co-occurrence edges, particularly when it comes to
edge weights. Since it remains difficult in general,
our extraction pipeline exhibits relatively low edge
extraction performance. We also show that not all
coreference errors have the same impact: adding
spurious coreference links between mentions has
the strongest negative impact of all the errors we



LLM-Coref LLM-E2E Renard
Measure Llama3 GPT-3.5T GPT4o Llama3 GPT-3.5T GPT4o
F1V 37.93 28.99 52.32 56.87 44.26 62.98 70.39
F1E 23.20 16.96 38.85 29.35 20.91 30.42 44.93
WF1E 15.17 11.39 32.72 20.17 14.33 24.35 30.55

PreV 42.86 52.50 68.78 67.96 61.04 77.96 68.99
PreE 57.85 65.78 62.62 59.01 64.39 65.76 62.07
WPreE 34.69 37.25 51.46 40.56 44.75 53.97 39.91

RecV 25.12 22.15 32.28 53.18 37.87 34.24 70.39
RecE 10.34 9.18 23.38 21.32 13.24 13.12 37.81
WRecE 6.86 6.34 19.77 14.86 9.14 10.44 26.18

Table 4: Comparison between the network extraction performance of LLM-based extraction methods and our
Renard pipeline. Llama3 stands for Llama3-8b-instruct, GPT-3.5T for GPT-3.5 Turbo.

surveyed. Developing systems able to make con-
servative predictions when it comes to coreference
linking might be a good research direction to create
better character network extraction systems. Un-
fortunately, developing coreference models at the
scale of a novel remains difficult due to the lack of
fully annotated ones for training and benchmark-
ing, which prompts the development of datasets
with long documents.

Even though errors propagate in cascading
pipelines, our pipeline generally outperformed
LLM-based approaches. However, the perfor-
mance of these approaches is encouraging given the
fact that we only evaluated the few-shot prompt-
ing setting. Fine-tuning LLMs on character net-
work extraction is therefore a promising direction
of research, even though pipelines remain more
interpretable.

7 Limitations

• While the character network extraction
pipeline we use is inspired by the generic
framework outlined by Labatut and Bost
(2019), we still had to make implementation
choices. Other pipelines may behave dif-
ferently regarding task errors, although we
hypothesize that similar architectures should
yield similar results.

• Our perturbation analysis methodology may
not reflect the distribution of errors from ex-
isting models. However, it allows considering
the different types of possible errors.

• For end-to-end extraction using LLMs, we
only survey the few-shot prompting setting
due to resource limitations. Fine-tuning a

model may yield better results. However, the
excerpts on which we perform analysis are
short (approximately 2,000 tokens) compared
to full-scale novels: the performance of LLMs
in that setting may not be as high as the results
we report in our study.
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A Large Language Models Prompt

We use the following prompt for our LLM-Coref
and LLM-E2E extraction methods respectively:

SYSTEM PROMPT You are an expert in litera-
ture and natural language processing.
USER PROMPT Given a text, you must ex-
tract characters and their mentions. Your an-
swer must be the original text, where charac-
ter mentions are tagged with the following for-
mat: [CHARACTER_ID]CHARACTER MEN-
TION[/CHARACTER_ID]. You must tag charac-
ter mentions only.

Here are some examples of this task:
Example 1:
Input: Elric was riding his horse . Alongside
Moonglum , the prince of ruins was looking for
his dark sword .
Output: [0] Elric [/0] was riding [0] his [/0] horse
. Alongside [1] Moonglum [/1] , the [0] prince of
ruins [/0] was looking for [0] his [/0] dark sword .

Example 2:
Input: Princess Liana felt sad , because Zarth Arn
was gone . The princess decided she should sleep
.
Output: [0] Princess Liana [/0] felt sad , because
[1] Zarth Arn [/1] was gone . [0] The princess
[/0] decided [0] she [/0] should sleep .

SYSTEM PROMPT You are an expert in litera-
ture and natural language processing.
USER PROMPT Given a text, you must extract
a co-occurrence character network where vertices
represent characters and edges represent their
relationships. Each edge must have a weight cor-
responding to the number of interactions between
two characters. Two characters without any in-
teractions do not share an edge. An interaction
between two characters occurs when two of their
mentions occur within a distance of 32 tokens.
Your answer must be in a simplified Graphml-like
format. Vertices must have an ’alias’ attribute
with the list of aliases of a character, separated by
semicolons.

Here are some examples of this task:
Example 1:
Input: Elric was riding his horse . Alongside
Moonglum , the prince of ruins was looking for
his dark sword .
Output:

<graph >
<node i d =" n0 "

a l i a s e s =" E l r i c ; p r i n c e o f r u i n s ">
</ node >
<node i d =" n1 " a l i a s e s ="Moonglum">
</ node >
<edge i d =" e0 " s o u r c e =" n0 "

t a r g e t =" n1 "
we ig h t ="2" >

</ edge >
</ graph >

Example 2:
Input: Princess Liana felt sad , because Zarth Arn
was gone . Liana decided she should sleep .
Output:

<graph >
<node i d =" n0 "

a l i a s e s =" P r i n c e s s L iana ; L iana ">
</ node >
<node i d =" n1 " a l i a s e s =" Z a r t h Arn">
</ node >
<edge i d =" e0 " s o u r c e =" n0 " t a r g e t =" n1 "

we ig h t ="2" >
</ node >
</ graph >

B Adapting Litbank to Flat NER

In the main body of this article, we perform our
experiments on the Litbank dataset (Bamman et al.,
2019). However, Litbank NER annotations are
nested, while the Renard NER step we employ
performs flat NER. Annotations guidelines are
also different between Litbank and the original
NER dataset on which the Renard NER step is
trained (Amalvy et al., 2023b). In particular, Lit-
bank annotates many generic mentions (such as

“an honourable man”) as alias mentions. We there-
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fore flatten Litbank annotations using an algorithm
we implement, while trying to respect the original
annotation guidelines as much as possible.

Litbank annotations consists of 4 layers of nest-
ing, where annotated alias mentions can overlap.
Our flattening algorithm works as follows: first, we
try to cut annotated mentions to a form that would
be accepted as an alias mention in the dataset of
Amalvy et al. (2023b). We do so by removing lead-
ing determiners (“the”) and cutting the content of
a mention after the first comma. Afterward, we
filter mentions that are still deemed generic, by
checking if their constituting tokens are capitalized
(except for some stopwords). If some alias men-
tions are still overlapping at this point, we select
the outermost ones.

To give an example, the annotated mention “the
Lord High Chancellor” would have been shortened
as “Lord High Chancellor”, and then accepted as
an alias mention since all of its tokens are capi-
talized (provided it does not overlap with a larger
mention). By contrast, the generic mention “an
honourable man” would have been discarded since
its tokens are not capitalized.
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