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Abstract

We investigate criteria for proving Church-Rosser modulo of second-order rewrite systems
without relying on normalization.

1 Introduction

Rewriting modulo is an alternative to standard rewriting in which one considers not only
rewriting rules l 7−→ r ∈ R but also undirected equations t ≈ u ∈ E , allowing to handle theories
defined by axioms that cannot be oriented in a well-behaved manner, such as commutativity. In
this setting, the Church-Rosser property must be adapted into Church-Rosser modulo, stating
that t (−→ ∪ ←− ∪ ≃)∗ u implies t −̃→∗ ◦ ≃ ◦ ∗←̃− u, where ≃ is the congruence generated
by E , −→ is the rewrite relation generated by R, and −̃→ is a relation that can be −→ [9], or
≃ ◦ −→, or something in between [10] depending on the considered variant of this definition.

Unfortunately, most criteria for Church-Rosser modulo rely on normalization [9, 10, 13, 6], pos-
ing a challenge in an ongoing line of study [2] to extend Dedukti [5], a rewriting-based framework
for defining type theories, with rewriting modulo. Indeed, confluence proofs for dependent type
theories are usually carried out on untyped terms, for which normalization does not hold due to
rules such as β-reduction. The situation is made worse by the fact that type theories rely not on
first- but second-order rewriting, for which criteria for Church-Rosser modulo are much rarer.

Example 1. Consider the following second-order rewrite system modulo, defining (a fragment
of) the conversion of a type theory with an addition satisfying commutativity and assocativity.
Function symbols are written in blue, and metavariables in typewriter font. We would like to
show this example (or a variant of it) to be Church-Rosser modulo.1

+(t, 0) ≈ t +(t,S(u)) ≈ S(+(t, u)) +(t, u) ≈ +(u, t) +(+(t, u), v) ≈ +(t,+(u, v))

@(λ(x.t{x}), u) 7−→ t{u} Nrec(0, p0, xy.pS{x, y}) 7−→ p0

Nrec(S(n), p0, xy.pS{x, y}) 7−→ pS{n,Nrec(n, p0, xy.pS{x, y})}

In this work, we investigate criteria for proving Church-Rosser modulo of second-order rewrite
systems without relying on normalization. We start by proposing a first criterion, which relies
on a notion of unblocked term. We then discuss a second criterion, which can be shown almost
directly from a well-known result. The proofs not given here can be found in a technical report [7].

2 Preliminaries

We work in the setting of (untyped) second-order rewriting.2 An arity is a natural number n
and a binding arity is a list of natural numbers (n1, . . . , nk). Given a set V of variables x, y, . . . ,

1Among other things, this is needed to establish the injectivity of Π-types: Π(A1, x.A2) ≡ Π(A′
1, x.A

′
2) should

imply Ai ≡ A′
i. This is then used to establish subject reduction of β-reduction.

2This can be seen as Hamana’s Second-order Computational Systems [8], or a simply-typed version of
Klop’s Combinatory Reduction Systems (CRSs) [12] with a single base type, or Nipkow’s Pattern Rewrite
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a setM of metavariables t, u, x, . . . equipped with arities, and a set F of (function) symbols
f, g, . . . equipped with binding arities, we define the terms by the following grammar, where we
write |x⃗| for the number k of variables in a list of variables x⃗ = x1 . . . xk. Here, the (simple) arity
arity(x) = k of x specifies that it takes k arguments, and the binding arity arity(f) = (n1, . . . , nk)
of f specifies that it takes k arguments and binds ni variables x⃗i in its i-th argument ti. Given
F ′ ⊆ F , we write T (F ′) for the set of terms containing only symbols in F ′.

t, u, v ::= | x x ∈ V
| x{t1, . . . , tk} x ∈M with arity(x) = k

| f(x⃗1.t1, . . . , x⃗k.tk) f ∈ F with arity(f) = (n1, . . . , nk) and |x⃗i| = ni

We write fv(t) for the set of free variables of t and mv(t) for its set of metavariables. We
often abbreviate t1, . . . , tk as t⃗, and x⃗1.t1, . . . , x⃗k.tk as t. A substitution σ is a set of pairs either
of the form t/x or x⃗.t/x where arity(x) = |x⃗|. We write t[σ] for the application of σ to t, the
interesting cases being x[σ] = t if t/x ∈ σ and x{t⃗}[σ] = u[⃗t[σ]/x⃗] if x⃗.u/x ∈ σ.

A term t is said to be a x⃗-pattern if fv(t) ⊆ x⃗ and all metavariables occurrences are of the
form x{x⃗, y⃗} where y⃗ are the variables bound between the root of the term and this occurrence
of x3. A pattern is then just a ε-pattern, where ε is the empty list.

A rewrite system R is a set of rewrite rules l 7−→ r, where l is a pattern headed by a symbol
and mv(r) ⊆ mv(l) and fv(r) = ∅ (we already have fv(l) = ∅ from the definition of pattern). An
equational system E is a set of equations t ≈ u, where t, u are both patterns.4 Given a rewrite sys-
temR, we write −→ for the rewrite relation generated byR, and given an equational system E we
write ≃ for the congruence on terms generated by E . We write FR ⊆ F for the symbols appearing
in some left-hand side of R, and FE ⊆ F for the symbols appearing in some equation of E .

A rewrite system modulo is a pair (R, E), and we write ≡ for the least equivalence relation
containing −→ and ≃. As previously mentioned, there are many different definitions of Church-
Rosser modulo in the literature, so here we will say that (R, E) is weak (resp. strong) Church-
Rosser modulo when t ≡ u implies t (≃ ◦ −→)∗ ◦ ≃ ◦ ∗(←− ◦ ≃) u (resp. t −→∗ ◦ ≃ ◦ ∗←− u).

A context C is a linear pattern on distinguished metavariables □1,□2, . . . called holes. Given
a context C with k holes and t = x⃗1.t1, . . . , x⃗k.tk with arity(□i) = |x⃗i| for all i, we write C[t]
for C[x⃗1.t1/□1, . . . , x⃗k.tk/□k].

Finally, we will also consider the definition of orthogonal rewriting =⇒ (also known as develope-
ments, or simultaneous reduction [3]), given by the following rules. Here we write t⃗1 =⇒ t⃗2 when
t⃗i = ti,1, . . . , ti,k and t1,j =⇒ t2,j , and t1 =⇒ t2 when ti = x⃗1.ti,1, . . . , x⃗k.ti,k and t1,j =⇒ t2,j ,
and σ1 =⇒ σ2 when dom(σ1) = dom(σ2) and t1 =⇒ t2 whenever ti/x ∈ σi or x⃗.ti/x ∈ σi.

l 7−→ r ∈ R
mv(l) = dom(σ)

σ =⇒ σ′

l[σ] =⇒ r[σ′]

t =⇒ t′

f(t) =⇒ f(t′)

t⃗ =⇒ t⃗′

x{t⃗} =⇒ x{t⃗′} x =⇒ x

3 The first criterion

In order to explain our criterion and the intuition behind it, it is instructive to start with the
following simple criterion for abstract rewriting. Recall that an abstract rewrite system modulo
is given by a set A equipped with a binary relation ≻ and an equivalence relation ∼.

Systems (PRSs) [13] over a single base type but with only function symbols of order at most two and variables
of order at most one. In particular, this allows us to use results developed for any of these formalisms.

3Compared with Miller’s original definition, we require patterns to be fully applied.
4Note that we allow equations such as +(n, 0) ≈ n, in which one of the sides is a metavariable.
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Definition 1 (Unblocking subset of A). Given an abstract rewrite system modulo, we say that
a subset U ⊆ A is unblocking for it if:

(A) For all a ∈ A there is some b ∈ U with a ∼ b.

(B) For all a, a′ ∈ A and b ∈ U with b ∼ a ≻ a′ we have b ≻ b′ ∼ a′ for some b′ ∈ A.

Condition (B) intuitively states that in elements b ∈ U redexes are maximally unblocked
with respect to ∼, so that if b ∼ a, then any redex that is available in a is also available in b.
(A) then imposes that for every ∼ equivalence class one can always find an element in U .

An interesting consequence of having an unblocking subset U is that we do not need to search
the whole ∼ equivalence class for redexes, but instead we can just appeal to (A) to obtain a
term in which all redexes are available. This motivates us to define the relation ▷U by a ▷U b iff
a ∼ c ≻ b for some c ∈ U . We then have the following easy result — in the statement, we think
of ≻ as orthogonal rewriting, which is why supposing the diamond property is reasonable.

Proposition 1. Suppose that ≻ satisfies the diamond property and that we have an unblocking
subset U ⊆ A. Then a (≻ ∪ ≺ ∪ ∼)∗ b implies a ▷∗U ◦ ∼ ◦ ∗

U◁ b.

The main insight of our criterion is then that, under suitable conditions (satisfied for instance
by Example 1), we can find an unblocking subset of terms. The intuition is that the only two
ways that a redex can be blocked in Example 1 is if (1) some collapsable term is inserted in the
middle of the redex (as in @(+(λ(x.t), 0), u), where we have +(x, 0) ≃ x), or (2) some symbol
in E matched by a rule left-hand side is not maximally exposed (as in Nrec(+(x, S(y)), p, xy.q),
where S could be exposed using +(x,S(y)) ≃ S(+(x, y))). This motivates the following definition:

Definition 2 (Unblocked terms). A context E is an E-fragment of t if E ∈ T (FE) and E[u] is
a subterm of t for some u. A term t is said to be unblocked if, for all E-fragments E of t:

(1) E ≃ □i implies E = □i.

(2) E ≃ f(t) with f ∈ FE ∩ FR implies E = f(t′) with t ≃ t′.

Let us now state the assumptions of our criterion:

(i) Equations t1 ≈ t2 ∈ E are linear, and we have mv(t1) = mv(t2).

(ii) Symbols in FE have a binding arity of the form (0, . . . , 0), the list being possibly empty.

(iii) For every context E ∈ T (FE), there is some unblocked E′ ∈ T (FE) with E ≃ E′.

(iv) R is left-linear and no left-hand side is headed by a symbol in FE ∩ FR.

(v) Orthogonal rewriting (=⇒) with R satisfies the diamond property.

The goal of the rest of this section is then to show the following theorem, where we write
−̃→ for the relation defined by t −̃→ t′ iff t ≃ u −→ t′ for some unblocked u.

Theorem 1. Suppose (i)-(v). Then t ≡ u implies t −̃→∗ ◦ ≃ ◦ ∗←̃− u for all t, u. In particular,
(R, E) is weak Church-Rosser modulo.

Before showing the proof of Theorem 1, let us see how it can be applied to Example 1.
Conditions (i), (ii) and (iv) can be directly verified, whereas (v) follows from the fact that R is
orthogonal [14, Theorem 4.8]. To show (iii), let us first note that each context E ∈ T (FE) can
be put in a normal-form. Indeed, writing ⟨⃗t⟩ for +(t1, . . .+(tk−1, tk) . . . ) or 0 when t⃗ is empty,
then for each context E ∈ T (FE) we have E ≃ Sk(⟨□1, . . . ,□n⟩) for some unique k when E has
n holes. We can easily see that this normal form is unblocked, showing (iii).
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Proof of Theorem 1

To prove Theorem 1, we set out to show that unblocked terms satisfy properties (A) and (B)
of Definition 1 for the abstract rewrite system modulo defined by =⇒ and ≃, which will be
achieved by Propositions 2 and 3 respectively, and then apply Proposition 1.

A central tool of our proof is the fact that every term t can be decomposed as t = E [⃗t] where
E is a context with E ∈ T (FE), and none of the terms in t⃗ is headed by a symbol in FE . We
call E [⃗t] the E-decomposition of t, which is unique modulo renaming of E. A main property of
E-decompositions is that E-conversions can be split along them, in the sense of the following
lemma. Let us write t1 ∼= t2 when we have ti = x or ti = x{v⃗i} and v⃗1 ≃ v⃗2 or ti = f(vi) and
v1 ≃ v2. Let us then write t⃗1 ∼= t⃗2 for its pointwise extension to the elements of t⃗i.

Lemma 1 (Splitting of an E-conversion). Suppose (i), (ii), and t1 ≃ t2 for some t1, t2. Writing
Ei[u⃗i] for the E-decomposition of ti, we then must have E1 ≃ E2 and u⃗1

∼= u⃗2.

Proof. By induction on t1 ≃ t2. For the case ti = ui[σ] with u1 ≈ u2 ∈ E we crucially rely on
the fact that equations are linear, which ensures that matching is completely local.

Lemma 2. Suppose (i), (ii) and that we have t1 ≃ t2 with t1 an unblocked term and t2 a term
not headed by a symbol in FE . Then we have t1 ∼= t2.

Proof. We consider the E-decompositions ti = Ei[u⃗i] and apply Lemma 1 to get E1 ≃ E2 and
u⃗1
∼= u⃗2. But because t2 is not of the form f(t) for some f ∈ FE , we must have E2 = □, and

because t1 is unblocked we get E1 = □, so we conclude u⃗i = ti and thus t1 ∼= t2.

We can now show that the set of unblocking terms satisfies property (A) of Definition 1.

Proposition 2. Suppose (i)-(iii). For each t, there is some unblocked term u with t ≃ u.

Proof. By induction on t. Case t = x is trivial. Cases t = x{t⃗} and t = f(t) with f ̸∈ FE follow
directly by the ih. For t headed by a symbol in E , consider its decomposition t = E [⃗t]. By ih we

have u⃗ unblocked with t⃗ ≃ u⃗, so by Lemma 2 we have t⃗ ∼= u⃗. Finally, by (iii) we get E
′ ∈ T (FE)

unblocked with E ≃ E
′
, and so E

′
[u⃗] is unblocked and E

′
[u⃗] ≃ t.

To show that the set of unblocking terms satisfies property (B) of Definition 1 we now only
need the following technical lemma, shown by induction on t1 and using Lemma 2.

Lemma 3. Suppose (i)-(iv), and t1[σ] ≃ t2 with t2 unblocked and t1 ∈ T (FR) a linear x⃗-pattern
and dom(σ) = mv(t1). Then we have t2 = t1[σ

′] for some σ′ ≃ σ.

In the following, let us write ρ(t =⇒ u) for the number of redexes contracted in t =⇒ u (even
if there might be many derivations of t =⇒ u, the relevant one can be inferred from the context).

Proposition 3. Suppose (i)-(v). If u is unblocked and u ≃ t =⇒ t′ then u =⇒ u′ ≃ t′ and
ρ(t =⇒ t′) = ρ(u =⇒ u′).

Proof. By induction on t =⇒ t′. Almost all cases are either trivial or follow directly by applying
Lemma 2 and the ih, and case l[σ] =⇒ r[σ′] also uses Lemma 3. The case f(t) =⇒ f(t′) is more
interesting, and follows using Lemma 2 when f ̸∈ FE , or using Lemma 1 when f ∈ FE .

Corollary 1. Suppose (i)-(v). If u is unblocked and u ≃ t −→ t′ then u −→ u′ ≃ t′.

We can now prove Theorem 1. Let us write t =̃⇒ u when t ≃ t′ =⇒ u with some t′ unblocked.
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Proof of Theorem 1. By Propositions 2 and 3, the set of unblocked terms is unblocking for =⇒
and ≃. So by Proposition 1, and the fact that ≡ equals (=⇒ ∪ ⇐= ∪ ≃)∗, we get that ≡ is
included in =̃⇒∗ ◦ ≃ ◦ ∗⇐̃=. To conclude it now suffices to replace the =̃⇒ by −̃→. To do
this, we first show that =̃⇒ is included in −̃→∗ ◦ ≃ using Corollary 1, and then we show that
=̃⇒∗ ◦ ≃ is included in −̃→∗ ◦ ≃ by induction on =̃⇒∗.

Before concluding this section, let us mention that Theorem 1 can probably be strengthen.
More precisely, we think the requirement that mv(t1) = mv(t2) in (i) can be dropped, and that
it might be possible to weaken (v) to only require R to be confluent. Assumption (ii) also does
not seem to be essential, and was made here to simplify proofs, because all our use cases satisfy
it. On the other hand, all linearity assumptions are essential in our proof.

4 The second criterion

We now discuss an alternative and much easier criterion, which follows almost directly from
a well-known result. In the following, let us write CP±(R1,R2) for the set of critical pairs
between rules of R1 and R2 (see for instance [13] for a definition), and CP(R) for CP±(R,R).
Moreover, given E for which both sides of all equations are headed by symbols and have the same
metavariables5, let us write E± for the rewrite system E ∪E−1, and note that we have ≃E=−→∗

E± .
Then, given a second-order rewrite system modulo (R∪ S, E), consider the assumptions:

(a) R∪ S is left-linear

(b) For all equations t ≈ u ∈ E , we have t, u linear and headed by symbols, and mv(t) = mv(u)

(c) R is confluent

(d) (S, E) is strong Church-Rosser modulo

(e) CP±(R,S) = ∅ and CP±(R, E±) = ∅

Theorem 2. Suppose (a)-(e). Then (R∪ S, E) is strong Church-Rosser modulo.

So to apply Theorem 2 we still have to prove strong Church-Rosser modulo of a smaller system.
The point is that in some cases of interest this smaller system can be strongly-normalizing,
enabling the use of criteria that rely on this property. Let us see an example of this.

Example 2. Consider a version of Example 1 in which equations +(t, 0) ≈ t and +(t,S(u)) ≈
S(+(t, u)) are removed from E , and in which we consider an additional rewrite system S given by

S := +(t, 0) 7−→ t, +(t,S(u)) 7−→ S(+(t, u)), +(0, t) 7−→ t, +(S(u), t) 7−→ S(+(t, u))

Then conditions (a), (b) and (e) can be directly verified, while (c) follows by orthogonality and
(d) follows by [13, Theorem 5.11]6, using the fact that −→S ◦ ≃ is strongly normalizing and
that CP±(E±,S) ∪ CP(S) ⊆−→!

S ◦ ≃E ◦ !
S←−, where −→! denotes reduction to a normal form.

Let us now move to the proof of Theorem 2. As previously mentioned, it can be shown
almost directly from a well-known result, more precisely the following:

Theorem 3 (Shown locally in the proof of Theorem 6.8 in [15]). If R and S are left-linear
Pattern Rewrite Systems (PRSs) with CP±(R,S) = ∅ then they commute.

5This extra condition on E is important for the definition to make sense. For instance, if E := {+(x, 0) ≈ x},
then E ∪ E−1 does not define a rewrite system, as left-hand sides of rewrite rules should be headed by symbols.

6Actually, [13, Theorem 5.11] is a criterion for confluence modulo, but by [3, Exercise 14.3.7] in this case this
is equivalent to strong Church-Rosser modulo, given that S is strongly normalizing.
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Proof of Theorem 2. Let us start with the following claim:

Claim 1. We have ≃E ◦ ∗
RS←− ◦ −→∗

S ◦ ≃E⊆−→∗
S ◦ ≃E ◦ ∗

RS←−.

Proof of Claim 1. First of all, because (S, E) is strong Church-Rosser modulo, it is easy to see
that it suffices to prove ∗

RS←− ◦ −→∗
S ◦ ≃E⊆−→∗

S ◦ ≃E ◦ ∗
RS←−. To do this, we now show

that t n
RS←− ◦ −→∗

S ◦ ≃E u implies t −→∗
S ◦ ≃E ◦ ∗

RS←− u by induction on n, the base case
being trivial. For the induction step, we have t RS←− t′ n

RS←− ◦ −→∗
S ◦ ≃E u, so by ih we

get t RS←− t′ −→∗
S ◦ ≃E ◦ ∗

RS←− u. We now do a case analysis on t RS←− t′. For the case
t R←− t′ this follows because R commutes with S and E± (by Theorem 3) and the fact that
≃=−→∗

E± . For the case t S←− t′ this follows because (S, E) is strong Church-Rosser modulo.

We now proceed with the proof of Theorem 2. We have ≡ equal to (−→RS ∪ RS←− ∪ ≃E)
∗,

so we prove the theorem by showing that t (−→RS ∪ RS←− ∪ ≃E)
n
u implies t −→∗

RS ◦ ≃E
◦ ∗

RS←− u by induction on n. The base case is trivial, and for the induction step we have
t (−→RS ∪ RS←− ∪ ≃E)

n
u′ (−→RS ∪ RS←− ∪ ≃E) u, and by ih we have t −→∗

RS ◦ ≃E
◦ ∗

RS←− u′. We conclude by a case analysis on u′ (−→RS ∪ RS←− ∪ ≃E) u. Case u′
RS←− u

is trivial. Cases u′ −→S u and u′ ≃E u follow by Claim 1, and case u′ −→R u follows because
R commutes with S and E± (by Theorem 3) and with itself (by confluence of R).

5 Discussion

In this work, we discussed two criteria for proving Church-Rosser modulo without normalization.
As previously mentioned, Theorem 2 can be shown almost directly from the fact that two

left-linear PRSs with no critical pairs between them commute, so it might not be original (maybe
it was already clear for others that it could be derived)7. However, until finding Theorems 1
and 2, it was unclear for us how to prove Church-Rosser modulo for second-order systems with
non-terminating rules, and we think that this problem should be more discussed in the literature.
With Theorem 2 in hand, showing this property can be possible by isolating a terminating
subsystem (S, E), proving it strong Church-Rosser modulo with the criteria available in the
literature (such as [13, Theorem 5.11]), and trying to verify the other hypotheses of Theorem 2 (as
illustrated in Example 2). Because of this, we consider important to document here the existence
of Theorem 2 and the strategy of how it can be applied, which will certainly be useful in the future
for showing Church-Rosser modulo in an upcoming version of Dedukti with rewriting modulo [2].

A natural question is then how the two criteria compare. First of all, both of them require
equations to be linear and rewrite rules to be left-linear, two important limitations, but which
seem reasonable: indeed, non-terminating higher-order rules (such as β-reduction) are known
to interact badly with non-left-linearity (see Klop’s countexample [11])8. Then, some of the
other hypotheses seem difficult to compare, and indeed each of our examples (Examples 1 and 2)
only works with one of the two criteria. However, looking closer at the examples, we remark an
interesting point: the unblocked terms in Example 1 turn out to be exactly the normal forms
for the system S in Example 2, so the move from Example 1 to Example 2 replaces the search
for an unblocked term by rewriting with S. The latter option seems more desirable, as it yields
the strong variant of Church-Rosser modulo, instead of just the weak. It is an open question for
us whether there are interesting examples that can be covered by Theorem 1, but which do not
admit a variant covered by Theorem 2, or if the second criterion is always more useful in practice.

7Let us mention that a similar result is given by Blanqui in [4, Theorem 15], yet it is neither stronger nor
weaker than ours (e.g., it only shows confluence modulo, which is weaker than strong Church-Rosser modulo).

8An alternative is to consider a setting with confinement to avoid interactions between the higher-order rules
and the equations, as done in [1]. Unfortunately, this would forbid interesting examples like Examples 1 and 2.
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A Missing definitions

t −→ u

l 7−→ r ∈ R dom(σ) = mv(l)

l[σ] −→ r[σ]

ti −→ t′i for some i

x{t1, . . . , ti, . . . , tk} −→ x{t1, . . . , t′i, . . . , tk}

ti −→ t′i for some i

f(x⃗1.t1, . . . , x⃗i.ti, . . . , x⃗k.tk) −→ f(x⃗1.t1, . . . , x⃗i.t
′
i, . . . , x⃗k.tk)

t ≃ u

t ≈ u ∈ E dom(σ) = mv(t) ∪mv(u)

t[σ] ≃ u[σ]

ti ≃ t′i for all i

f(x⃗1.t1, . . . , x⃗k.tk) ≃ f(x⃗1.t
′
1, . . . , x⃗k.t

′
k)

ti ≃ t′i for all i

x{t1, . . . , tk} ≃ x{t′1, . . . , t′k} x ≃ x

t ≃ u

u ≃ t

t ≃ u u ≃ v

t ≃ v

Figure 1: Definitions of −→ and ≃ for some given R and E

B Complete Proofs

Proposition 1. Suppose that ≻ satisfies the diamond property and that we have an unblocking
subset U ⊆ A. Then a (≻ ∪ ≺ ∪ ∼)∗ b implies a ▷∗U ◦ ∼ ◦ ∗

U◁ b.

Proof. First note that we have the following basic facts, that can be easily shown using (A)
and (B): if a ∼ ◦ ▷U b then a ▷U b, and if a ≻ b then a ▷U ◦ ∼ b. We will also need the
following claims.

Claim 2. If a U◁ ◦ ▷U b then a ▷U ◦ ∼ ◦ U◁ b.

Proof of Claim 2. We have a ≺ a′ ∼ b′ ≻ b with a′, b′ ∈ U . By (B) we have b′ ≻ b′′ ∼ a for
some b′′, and by the diamond property we have b′′ ≻ ◦ ≺ b. We thus have a ∼ b′′ ▷U ◦ ∼ ◦ U◁ b,
and hence a ▷U ◦ ∼ ◦ U◁ b.

Claim 3. If a U◁ ◦ ▷∗U b then a ▷∗U ◦ ∼ ◦ U◁ b.

Proof of Claim 3. We have a U◁ ◦ ▷nU b for some n ∈ N, so let us show the result by induction
on n, the case n = 0 being trivial. For the induction step, we have a U◁ ◦ ▷U ◦ ▷nU b, so by
Claim 2 we get a ▷U ◦ ∼ ◦ U◁ ◦ ▷nU b. By the ih we then get a ▷U ◦ ∼ ◦ ▷∗U ◦ ∼ ◦ U◁ b, allowing
us to conclude a ▷∗U ◦ ∼ ◦ U◁ b.
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Now let us move to the proof of the theorem. We have a (≻ ∪ ≺ ∪ ∼)n b for some n, so
let us show the result by induction on n, the base case being trivial. For the induction step,
we have a (≻ ∪ ≺ ∪ ∼)n c (≻ ∪ ≺ ∪ ∼) b, and by i.h. we have a ▷∗U a′ ∼ c′ ∗

U◁ c for some a′, c′.
We now proceed by case analysis on c (≻ ∪ ≺ ∪ ∼) b. Cases c ∼ b and c ≺ b are trivial, and
the case c ≻ b follows by noting a ▷∗U a′ ∼ c′ ∗

U◁ ◦ ▷U ◦ ∼ b and then applying Claim 3 to get
a ▷∗U a′ ∼ c′ ▷U ◦ ∼ ◦ ∗

U◁ ◦ ∼ b, which implies the result.

Lemma 1 (Splitting of an E-conversion). Suppose (i), (ii), and t1 ≃ t2 for some t1, t2. Writing
Ei[u⃗i] for the E-decomposition of ti, we then must have E1 ≃ E2 and u⃗1

∼= u⃗2.

Proof. By induction on t1 ≃ t2. The cases when t1 ≃ t2 follows by an application of reflexivity,
symmetry or transitivity are either trivial of follow directly by the ih.

• Case ti = ei[σ] for some e1 ≈ e2 ∈ E . Then because each ei is fully contained in Ei, we
have E1 ≃ E2 and u⃗1 = u⃗2. Note that this crucially relies on the fact that equations in E
are linear, so that matching is completely local and does not depend on subterms.

• Case t1 = x{v⃗1} ≃ x{v⃗2} = t2 with v⃗1 ≃ v⃗2. Then we have Ei = □, so the result follows.

• Case t1 = f(v1) ≃ f(v2) = t2 with v1 ≃ v2. If f ̸∈ FE then we have Ei = □ so the result
follows trivially. For the case f ∈ FE , because of (ii) we know that f binds no variables,

so we have vi = v1i , . . . , v
k
i . Let us now consider the E-decompositions vji = E

j

i [u⃗i,j ]. By

applying the ih to each vj1 ≃ vj2 we get E
j

1 ≃ E
j

2 and u⃗1,j
∼= u⃗2,j . Writing ti = Ei[u⃗i] for

the decomposition of ti, we now conclude by noting that we must have Ei = f(E
1

i , . . . , E
k

i )
and u⃗i = u⃗i,1, . . . , u⃗1,k.

Lemma 3. Suppose (i)-(iv), and t1[σ] ≃ t2 with t2 unblocked and t1 ∈ T (FR) a linear x⃗-pattern
and dom(σ) = mv(t1). Then we have t2 = t1[σ

′] for some σ′ ≃ σ.

Proof. By induction on t1.

• Case t1 = x. We have σ = ∅ and by Lemma 2 we get t2 = x, so we can take σ′ = ∅.

• Case t1 = x{x⃗}. Then we have σ = x⃗.u/x for some u. Defining σ′ := x⃗.t2/x we then get
t1[σ

′] = t2 and σ ≃ σ′.

• Case t1 = f(v1). First note that we must have t2 = f(v2) for some v2 ≃ v1[σ]. Indeed,
we have either f ̸∈ FE , in which case this claim follows by Lemma 2, or f ∈ FE , in
which case the claim directly follows from the fact that t2 is unblocked. Now write vi =
x⃗1.vi,1, . . . , x⃗k.vi,k, and note that because t1 is linear we must have mv(v1,j)∩mv(v1,j′) = ∅
for j ̸= j′. Let us then consider the decomposition σ = σ1 ∪ · · · ∪ σk given by the
decomposition mv(t1) = mv(v1,1)∪· · ·∪mv(v1,k). By applying the ih to each v1,j [σj ] ≃ v2,j
we get some σ′

j satisfying σj ≃ σ′
j and v2,j = v1,j [σ

′
j ]. Defining σ′ := σ′

1 ∪ · · · ∪ σ′
k, we

conclude t2 = t1[σ
′] and σ ≃ σ′.

Proposition 3. Suppose (i)-(v). If u is unblocked and u ≃ t =⇒ t′ then u =⇒ u′ ≃ t′ and
ρ(t =⇒ t′) = ρ(u =⇒ u′).

Proof. By induction on t =⇒ t′. All cases are either trivial or follow directly by applying
Lemma 2 and then the ih, except for the following two:

• Case t = l[σ] and t′ = r[σ′] with σ =⇒ σ′. By Lemma 3 we have u = l[θ] with θ ≃ σ. By the
ih we have θ =⇒ θ′ ≃ σ′ and ρ(σ =⇒ σ′) = ρ(θ =⇒ θ′). Hence we get u = l[θ] =⇒ r[θ′] ≃
r[σ′] = t′ and ρ(l[σ] =⇒ r[σ′]) = 1 + ρ(σ =⇒ σ′) = 1 + ρ(θ =⇒ θ′) = ρ(l[θ′] =⇒ r[θ′]).
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• Case t = f(t) =⇒ f(t′) = t′. If f ̸∈ FE then the result follows directly by applying Lemma 2
and then the ih. So let us now suppose f ∈ FE , and consider the decompositions t = Et [⃗t]
and u = Eu[u⃗]. By Lemma 1 we have Et ≃ Eu and t⃗ ≃ u⃗. Now note that, because no
symbol in E appears in the head of a rewrite rule, then Et [⃗t] =⇒ t′ implies t′ = Et [⃗t

′] with
t⃗ =⇒ t⃗′. Moreover, because t is headed by a symbol in E , it follows that the proof of t⃗ =⇒ t⃗′

is smaller than the one of t =⇒ t′ we started with. Therefore, by the ih we get u⃗ =⇒ u⃗′ ≃ t⃗′

and ρ(⃗t =⇒ t⃗′) = ρ(u⃗ =⇒ u⃗′). We conclude u = Eu[u⃗] =⇒ Eu[u⃗
′] ≃ Et [⃗t

′] = t′ and
ρ(t =⇒ t′) = ρ(⃗t =⇒ t⃗′) = ρ(u⃗ =⇒ u⃗′) = ρ(u =⇒ u′).

Corollary 1. Suppose (i)-(v). If u is unblocked and u ≃ t −→ t′ then u −→ u′ ≃ t′.

Proof. We have u ≃ t =⇒ t′, so Proposition 3 gives u =⇒ u′ ≃ t′ for some u′. But because
ρ(u =⇒ u′) = ρ(t =⇒ t′) = 1, then we have u −→ u′.

Theorem 1. Suppose (i)-(v). Then t ≡ u implies t −̃→∗ ◦ ≃ ◦ ∗←̃− u for all t, u. In particular,
(R, E) is weak Church-Rosser modulo.

Proof. By Propositions 2 and 3, the set of unblocked terms is unblocking for =⇒ and ≃. So
by Proposition 1, and the fact that ≡ equals (=⇒ ∪ ⇐= ∪ ≃)∗, we get that ≡ is included in
=̃⇒∗ ◦ ≃ ◦ ∗⇐̃=. To conclude it now suffices to replace the =̃⇒ by −̃→. To do this, we will
need the following claims.

Claim 4. If t =̃⇒ u then t −̃→∗ ◦ ≃ u.

Proof. Because =⇒⊆−→∗, we have t ≃ ◦ −→n u for some n ∈ N, so let us show the result by
induction on n, the base case being trivial. For the induction step, we write t ≃ ◦ −→n u′ −→ u,
and by ih we have t −̃→∗ t′ ≃ u′ −→ u for some t′. By Proposition 2 we have some t′′ unblocked
with t′′ ≃ u′, so by Corollary 1 we get t′′ −→ ◦ ≃ u. We thus have t′ −̃→ ◦ ≃ u, so we conclude
t −̃→∗ ◦ ≃ u.

Claim 5. If t =̃⇒∗ ◦ ≃ u then t −̃→∗ ◦ ≃ u.

Proof. We have t =̃⇒n ◦ ≃ u for some n, so we show the result by induction on n, the base
case being trivial. For the induction step, we write t =̃⇒ ◦ =̃⇒n ◦ ≃ u, and by ih we have
t =̃⇒ ◦ −̃→∗ ◦ ≃ u. By Claim 4 we then get t −̃→∗ ◦ ≃ ◦ −̃→∗ ◦ ≃ u and thus t −̃→∗ ◦ ≃ u

By applying Claim 5 two times, we then obtain that =̃⇒∗ ◦ ≃ ◦ ∗⇐̃= is included in
−̃→∗ ◦ ≃ ◦ ∗←̃−, concluding the proof.
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