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ABSTRACT

Carbonaceous aerosols (CA), composed of black carbon (BC) and organic matter (OM), significantly impact the
climate. Light absorption properties of CA, particularly of BC and brown carbon (BrC), are crucial due to their
contribution to global and regional warming. We present the absorption properties of BC (bapssc) and BrC (baps,
prc) inferred using Aethalometer data from 44 European sites covering different environments (traffic (TR),
urban (UB), suburban (SUB), regional background (RB) and mountain (M)). Absorption coefficients showed a
clear relationship with station setting decreasing as follows: TR > UB > SUB > RB > M, with exceptions. The
contribution of baps prc to total absorption (baps), i.e. %Absg.c, was lower at traffic sites (11-20 %), exceeding 30
% at some SUB and RB sites. Low AAE values were observed at TR sites, due to the dominance of internal
combustion emissions, and at some remote RB/M sites, likely due to the lack of proximity to BrC sources,
insufficient secondary processes generating BrC or the effect of photobleaching during transport. Higher baps and
AAE were observed in Central/Eastern Europe compared to Western/Northern Europe, due to higher coal and
biomass burning emissions in the east. Seasonal analysis showed increased baps, babssc, babs,Brc in winter, with
stronger %Absg;c, leading to higher AAE. Diel cycles of baps sc peaked during morning and evening rush hours,
whereas baps prc, %Absg.c, AAE, and AAEg,c peaked at night when emissions from household activities accu-
mulated. Decade-long trends analyses demonstrated a decrease in baps, due to reduction of BC emissions, while
babs,erc and AAE increased, suggesting a shift in CA composition, with a relative increase in BrC over BC. This
study provides a unique dataset to assess the BrC effects on climate and confirms that BrC can contribute

significantly to UV-VIS radiation presenting highly variable absorption properties in Europe.

1. Introduction

Carbonaceous aerosols (CA), composed of organic matter(OM) and
black carbon (BC), play a significant role in the climate system. CA
particles can modify the radiative budget through direct absorption and
scattering of solar radiation, through semi-direct effects by modifying
the thermodynamic state of the surrounding atmosphere, and indirectly
by altering the cloud formation processes. The latest Intergovernmental
Panel on Climate Change report (IPCC, 2021) considers CA particles to
be key short-lived climate pollutants and presents climate scenarios
where mitigating their emissions, in particular of BC, can result in both
climate and health co-benefits (e.g., Harmsen et al., 2020).

Black carbon, emitted as a product of the incomplete combustion of
fossil fuels and biofuels, is the most effective aerosol warming agent
given its ability to efficiently absorb radiation from the ultraviolet (UV)
to the infrared (IR) part of the spectrum (Bond and Bergstrom, 2006;
Bond et al., 2013; Lin et al., 2023). Until recently, BC was considered to
be the second largest warming agent after CO5 (e.g. IPCC, 2013; Samset
et al. 2014; Samset et al. 2018) but the latest estimates suggest that the
warming effect of BC emissions could be lower than originally thought
(IPCC, 2021; Harmsen et al., 2020 and references herein), mostly due to
the simultaneous interactions of warming BC and co-emitted cooling
agents such as OM with the solar radiation. Organic particulate matter,
in fact, constitutes a large fraction of the atmospheric aerosol mass
(20-90 %; Jimenez et al., 2009) and is estimated to exert a net cooling

effect on a global level (e.g., IPCC, 2021). However, there is an
increasing number of observations demonstrating the light-absorbing
properties of a significant fraction of OM, usually referred to as brown
carbon (BrC; e.g. Kirchstetter et al., 2004; Saleh et al., 2018, 2020;
Samset et al., 2018; Sumlin et al., 2018, Kumar et al., 2023 among
others).

BrC particulate matter (BrC PM) is a complex collection of light-
absorbing organic molecules that can be soluble in solvents (such as
water, methanol, and acetone) or insoluble (e.g. Corbin et al., 2018 and
references therein) and that can efficiently absorb light in the ultraviolet
(UV) and shorter visible wavelengths (Kirchstetter et al, 2004; Samset
et al., 2018; Laskin et al., 2015; Moise et al., 2015; Saleh et al., 2018,
2020). BrC PM has attracted much attention due to its potential impacts
on the Earth’s radiative budget (Feng et al., 2013; Chakrabarty et al.,
2016), the atmospheric chemical processes it undergoes (Liu et al.,
2016; Wong et al., 2017), and its potential effect on human health (Yan
et al., 2018). However, the lack of a complete description of BrC light
absorption properties impairs the accurate estimation of its effects on
climate warming. Fossil fuels, biofuels and biomass burning have been
identified as the most important sources of primary and secondary BrC
at a global scale (Zhang et al., 2020; Qin et al., 2018; Yan et al., 2017;
Feng et al., 2013; Chen et al., 2020). In particular, biomass burning
emissions have been confirmed as one of the most important sources of
BrC (Washenfelder et al., 2015; Zhang et al., 2020). Moreover, recent
studies have shown the light-absorbing properties of other BrC sources
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of anthropogenic origin such as vehicular emissions (Qin et al., 2018; Hu
et al., 2017; Moschos et al., 2018; Zhang et al., 2020; Ho et al., 2023),
human-engineered materials (Hopstock et al., 2023), marine diesel en-
gine operated on heavy fuel oil (e.g. Corbin et al., 2018; Yang et al.,
2024), and coal combustion (e.g. Ni et al., 2021), among others. The
emissions from the aforementioned sources can produce secondary BrC
either through production of absorbing organics or coating of BC
(Kalbermatter et al., 2022), i.e. secondary organic aerosols (SOA) with
varying absorptive properties (e.g. Kumar et al., 2018). Moreover, after
emission or formation, BrC PM can undergo physico-chemical processes
such as a reduction of BrC light absorption primarily related to photo-
chemical processes called photobleaching (e.g. Fang et al., 2023) or may
lead to substantial reduction of NO2 photolysis and drop in O3 con-
centrations (Laskin et al., 2015). Although OM has been historically
considered as essentially non-absorbing particulate matter, there has
been a shift over the past 10 years to include their absorptive properties
in climate models (e.g. Feng et al., 2013, Saleh et al., 2020). Indeed,
some studies have found BrC responsible for 20-50 % of the total aerosol
light-absorption in the UV (e.g. Shamjad et al., 2016; Wang et al., 2016;
Lietal., 2022), and that the inclusion of strongly absorbing BrC in global
climate models causes a shift of the direct radiative forcing of OM at the
top of the atmosphere from a net cooling to a warming effect (Feng et al.,
2013; Wang et al., 2013). Notably, model estimations have shown that
the atmospheric heating of BrC from wildfires in the tropical mid and
upper troposphere is larger than that of BC (Zhang et al., 2020). How-
ever, due to the complex processes forming and modifying BrC PM, their
large spatial and temporal variability, and the lack of an exhaustive
characterization of their optical properties at ambient conditions, the
contribution of BrC on climate is still under-represented in current
models (Brown et al., 2018, Zhang et al., 2020; Sand et al., 2021).
Moreover, the dearth of long-term observations of BrC optical properties
also limits the possibility to efficiently constrain the modeled properties
of BrC PM (e.g., Yan et al., 2018).

In the last decade several studies have reported the BrC contribution
to absorption in different cities in Europe, with special interest on winter
conditions and on the contribution from wood burning and heating
systems. For example, the results reported in Ferrero et al. (2018, 2021)
for Northern Italy, Moschos et al. (2021) for Switzerland, Zhang et al.
(2020) and Velazquez-Garcia et al., (2023) for France, Liakakou et al.
(2020) and Kaskaoutis et al. (2024) for Greece and Lopez-Caravaca et al.
(2024) for Spain showed that the BrC contribution to total aerosol ab-
sorption at 370 nm ranged between around 20 % and 40 %. Contribu-
tions as high as 60-70 % were observed in winter in Slovenia (Cuesta-
Mosquera et al., 2024) and in areas with old wooden houses and
outdated heating systems as reported by Pauraite et al. (2023) for
Lithuania. Overall, these studies have shown the high spatial and sea-
sonal variability of BrC contribution to total absorption across Europe,
related to differences in BrC sources, atmospheric conditions, station
background (i.e. urban vs. regional), geographical location (i.e. open
plains vs. enclosed valleys) and altitude.

Besides the high variability of the BrC contribution to absorption
across Europe, BrC PM represents a subset of organic particles species
that also exhibit very different wavelength dependent absorption
properties. This wavelength dependency is represented through the
Absorption Angstrom Exponent (AAE), a key parameter for assessing the
radiative forcing and climate effects of atmospheric aerosol particles.
The AAE allows the absorption measured at a given wavelength to be
reported at any other wavelength within the spectral range where the
AAE was determined. Moreover, the AAE is an intensive aerosol particle
optical property, i.e., it describes relative spectral contribution of par-
ticles to absorption independently of the total particle concentration.
The imaginary refractive index of BrC progressively increases from the
visible toward the UV, therefore, causing the AAE of BrC PM (AAEg.c
from now on) to be higher than that of BC, which has approximately
constant imaginary refractive index. In addition, the absorbing proper-
ties of BrC are quite variable which translates to considerable variability
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of AAEg;¢ (e.g. Lack and Langridge, 2013; Kumar et al., 2023). Ambient
measurements have confirmed the high variability of AAEg,¢ and values
ranging between around 3 and 9 were reported in literature (e.g. Sri-
nivas and Sarin, 2013; Massabo et al., 2015; Ferrero et al., 2018; Cuesta-
Mosquera et al., 2024). Moreover, a wide range of AAE values for BrC
PM generated in chamber experiments was provided by Saleh et al.
(2013, 2020). Saleh et al. (2013, 2020) reported the Angstrom exponent
of the imaginary refractive index k (called w) which is related to AAEg,¢
by a simple relationship in the small particle limit of AAEg,c= ® + 1. The
® presented by Saleh et al. (2013, 2020) ranged from values higher than
7 for secondary organic aerosols from aromatic VOCs to values around
2-3 for BrC from high-temperature biomass combustion. Besides
chamber experiments, and in order to better constrain the AAEg,¢ values
that can be used in climate models, a robust observation-based estima-
tion of AAEg,¢ for ambient BrC PM available at many sites and over
extended periods is required. Moreover, long term estimation of BC and
BrC contribution to the multi-wavelength total absorption is needed to
validate climate model outputs.

In this study, we used a robust experimental framework based on in-
situ surface multi-wavelength absorption measurements at 44 sites in
Europe to provide a unique dataset of multi-wavelength BC and BrC
absorption coefficients, AAE of CA and AAEg,c. Aethalometer data were
used to separate BC and BrC contributions to total absorption at different
wavelengths from UV to the visible (370—660 nm). At sites providing
more than 8 years of data, the decadal trends for all aforementioned
variables were also studied. For these stations, meta-analysis was per-
formed to compare and combine the results of multiple independent
studies. Unlike previous studies, which focused on singular stations or
groups of stations in a single country for relatively short periods of time,
our study is the first to unify across Europe the analysis of the contri-
bution of BrC to the total absorption. This study introduces a common
methodology across European stations utilizing the same measurement
periods and protocol, thus enabling a proper analysis of the spatial and
temporal variability of BC and BrC absorption properties. Moreover, this
study presents for the first time a systematic analysis of the trends for
Europe for CA absorption properties. The Aethalometer measurements
used in this work were collected from different research infrastructures
and/or projects, namely: RI-URBANS project (European H2020-Green
Deal; https://riurbans.eu/; Savadkoohi et al., 2023), FOCI project
(HORIZON-CL5-2021-D1-01; https://www.project-foci.eu/wp/), and
ACTRIS (https://www.actris.eu/). The RI-URBANS and ACTRIS
Aethalometer data are available in the EBAS database (https://ebas.
nilu.no/). The results presented here are of special relevance to the
FOCI project (Non-COs forcers and their climate, weather, air quality
and health impacts), which aims at reducing the knowledge gaps con-
cerning the climate impact of many non-CO,, radiative forcers including
that of BrC PM, by examining and evaluating climate-relevant processes
and feedbacks of anthropogenic primary and secondary radiative forc-
ing species.

2. Methodology
2.1. Measurement sites

Multi-wavelength absorption data were collected at 44 measurement
stations across Europe where the Aethalometer AE33 model (Aerosol
Magee Scientific) was mostly deployed (39 out of 44 sites), whereas at 5
sites the older AE31 model was used. The different sites have been
classified based on the information provided by the data providers as
traffic (TR, 6 sites), urban (UB, 16 sites), suburban (SUB, 7 sites),
regional (RB, 10 sites) and mountain (M, 5 sites) types. The station
classification was used to study possible differences in BC and BrC op-
tical properties as a function of station characteristics. A detailed
description of each site, including acronym, location, Aethalometer
model, measurement periods and data source is reported in Table 1.
Fig. S1 shows the data coverage of each site. The data coverage (cf.
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Measurement site specifications: site, acronym, data source, latitude, longitude, altitude, measurement period, Aethalometer model, station setting. Data collection
source: (*) RI-URBANS Project; (**) FOCI Project; (***) ACTRIS. (x): BUC measurement site was moved in 2020 two km away (44.34°N 26.01°E; 77 m a.s.l.). TR:
traffic, UB: urban background, SUB: suburban, RB: regional background; M: mountain.

Site Acronym Lat. Lon. Alt. Period Aethalometer model Station setting
Lille (FR) ATOLL (*) 50.61°N 3.14°E 230 2017-2019 AE33 SUB
Birmingham (UK) BAQS (*) 52.45°N 1.92°W 140 2019-2022 AE33 UB
Barcelona (ES) BCN (%) 41.38°N 2.11°E 64 2016-2020 AE33 UB
Bern (CH) BER (*) 46.95°N 7.44°E 536 2018-2021 AE33 TR
Birkenes (NO) BIR (**) 58.39°N 8.25°E 219 2018-2019 AE33 RB
Bucharest (RO) BUC (*) 44.35°N 26.03°E 93 2014-2022 AE33 SUB
Carnsore Point (IE) CASP (**) 52.17°N 6.36°W 9 2016-2017 AE33 RB
Demokritos (GR) DEM (*) 37.99°N 23.82°E 270 2017-2020 AE33 SUB
Dublin (IE) DUB (**) 53.31°N 6.22°W 20 2016-2017 AE33 UB
Helmos (GR) HAC (**%) 37.98°N 22.19°E 2340 2016-2019 AE31 M
Helsinki (FI) HEL (**) 60.20°N 24.97°E 26 2016-2023 AE33 TR
Helsinki (Hakkila; FI) HEL_H (*) 60.29°N 25.11°E 31 2018 AE33 SUB
Helsinki (Pirkkola; FI) HEL_P (*) 60.23°N 24.92°E 20 2019 AE33 SUB
Helsinki (Rekola; FI) HEL R (*) 60.33°N 25.07°E 27 2017 AE33 SUB
Hohenpeissenberg (DE) HOH (**) 47.80°N 11.01°E 985 2017-2019 AE33 RB
Hyytiala (FI) HYY (**) 61.85°N 24.29°E 181 2018-2022 AE33 RB
Ispra (IT) IPR (***) 45.81°N 8.63°E 209 2007-2021 AE31 RB
Jungfraujoch (CH) JEJ (%) 46.54°N 7.98°E 3578 2017-2019 AE33 M
Kosetice (CZ) KOS (**) 49.58°N 15.08°E 534 2016-2018 AE31 RB
2019
Krakow (PL) KRA (**) 50.07°N 19.92°E 383 2018-2019 AE33 UB
Ljubljana (SI) LJB (*) 46.06°N 14.50°E 295 2019-2024 AE33 UB
Madrid (ES) MAD (*) 40.45°N 3.72°W 669 2013-2023 AE33 UB
Marseille (FR) MAR (*) 43.30°N 5.39°E 71 2017-2019 AE33 UB
Milano (Marche; IT) MLN_M (*) 45.49°N 9.19°E 120 2019-2021 AE33 TR
Milano (Pascal; IT) MLN_P (¥) 45.47°N 9.23°E 120 2018-2019 AE33 UB
Milano (Senato; IT) MLN_S (*) 45.47°N 9.23°E 120 2019-2021 AE33 TR
Montsec (ES) MSA 42.05°N 0.72°E 1570 2014-2019 AE33 M
Montseny (ES) MSY ) 41.78°N 2.36°E 720 2015-2020 AE33 RB
Athens-NOA (GR) NOA (*) 37.97°N 23.72°E 105 2017-2020 AE33 UB
Observatoire Pérenne de I’Environnement (FR) OPE (***) 48.56°N 5.50°E 392 2012-2021 AE31 RB
Paris 13eme (FR) PA13 (%) 48.82°N 2.35°E 57 2016-2019 AE33 UB
Pallas (FI) PAL (***) 67.97°N 24.11°E 565 2016-2021 AE31 RB
Paris (Boulevard Haussmann; FR) PARB (¥) 48.87°N 2.32°E 42 2016-2019 AE33 TR
Payerne (CH) PAY ) 46.81°N 6.94°E 489 2016-2021 AE33 RB
Puy de Dome (FR) PUY (**) 45.77°N 2.97°E 1465 2015-2016 AE33 M
Rigi (CH) RIG (***) 47.06°N 8.46°E 1031 2014-2021 AE33 M
Rome (IT) ROM (*) 41.93°N 12.50°E 60 2020-2022 AE33 UB
SIRTA (FR) SIR (%) 48.70°N 2.15°E 162 2012-2021 AE33 SUB
Stockholm (Hornsgatan) (SE) STH_H (*) 59.31°N 18.04°E 20 2014-2023 AE33 TR
Stockholm (Torkel; SE) STH_T (*) 59.31°N 18.05°E 45 2014-2023 AE33 UB
Tartu (EE) TAR (**) 58.37°N 26.73°E 70 2016-2017 AE33 UB
Granada (ES) UGR (*) 37.18°N 3.58°W 680 2014-2023 AE33 UB
Elche (ES) UMH (*) 38.27°N 0.68°W 86 2021-2023 AE33 UB
Zurich (CH) ZUR (**) 47.36°N 8.53°E 409 2012-2021 AE33 UB

Table 1 and Fig. S1) showcases periods spanning from over a year for
short measurement campaigns (e.g. HEL_H, HEL P, HEL R) to around
10-15 years at stations part of aerosol monitoring networks (e.g. JFJ,
IPR, ZUR, MSY). To compare the results from all sites we used hourly
averaged data over a common period from 2017 to 2019. For the sites
with low data coverage during 2017-2019 (BAQS, BER, CASP, DUB,
LJB, MLN_M, MLN_S), we extended the period by one year. For sites
without data within the considered period (ROM, PUY, UMH) the whole
provided dataset was used (cf. Table 1).

2.2. Optical measurements

Aethalometer models AE31 and the AE33 (Drinovec et al., 2015)
were used to measure aerosol particles light attenuation (barn(4)) at
seven wavelengths: 370, 470, 520, 590, 660, 880 and 950 nm (cf.
Table 1). In the Aethalometer, in the absence of strong dust events, the
change in the attenuation with time is assumed to be caused by the in-
crease in CA mass deposited on the filter. However, it was demonstrated
that the correlation between the attenuation and the aerosol load on the
filter is not linear at high attenuations (Gundel et al., 1984). Over time,
the particles accumulated on the filter “shadow” each other, reducing
the optical path length, saturating the signal and therefore the

measurement of light transmission. This phenomenon is known as the
loading effect and causes an underestimation of the true attenuation
which requires a loading effect off-line correction in the case of the AE31
(e.g. Weingartner et al., 2003; Virkkula et al., 2007; Collaud Coen et al.,
2010; Virkkula, 2021). The AE33 model corrects online for this artifact
thanks to the dual-spot technology (Drinovec et al., 2015).

2.3. Data treatment

The Aethalometer data used in this study required different pro-
cessing methods depending on the Aethalometer type and the data
source. Quality-assured/quality-controlled (QA/QC) and loading effect
corrected Level 2 AE31 absorption data at seven wavelengths were
directly downloaded from the EBAS database (PAL, OPE, IPR, HAC). For
KOS, AE31 corrected absorption data were provided by data providers.
The schemes that were mostly used for loading effect correction of AE31
data were those described in Weingartner et al. (2003) and Virkkula
et al. (2007). As shown by Wu et al. (2024), differences in the baps(4)
annual mean between AE33 and AE31 corrected with the algorithms
from Weingartner et al. (2003) and Virkkula et al. (2007) are small
across the seven wavelengths (0.95 < R2 < 1 and close-to-unity slopes
between 0.87 and 1.04). The AE33 data collected in the framework of
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the RI-URBANS project consisted mostly of the seven hourly-averaged
eBC concentrations that were converted into harmonized absorption
coefficients (baps (A)) (in Mm 1) following the procedure presented in
Miiller and Fiebig 2018 and Savadkoohi et al. (2023) and briefly
described in Supplementary material. In the case of the AE33 data
collected within the FOCI project, these consisted of raw eBC concen-
trations with a 1 min resolution that underwent the same data pro-
cessing procedure as for RI-URBANS AE33 data and then averaged over
one hour.

Finally, the AAE that describes the spectral variation of the absorp-
tion coefficients, was calculated through a linear fit of the absorption
measurements over the seven wavelengths (from 370 nm to 950 nm) in
the logarithmic space.

2.3.1. BC and BrC contribution to absorption

The segregation of the BC and BrC contributions to the absorption
coefficient using Aethalometer measurements followed the procedure
detailed in previous studies (e.g. Kirchstetter et al., 2004; Massabo et al.,
2015; Liakakou et al., 2020; Zhang et al., 2020; Yus-Diez, et al., 2022)
and relies on the main assumption that BrC PM do not absorb in the near-
IR spectral range (880 and 950 nm). The contribution of BC particles to
absorption between 370 nm and 660 nm can then be determined
following Eq. (1):

880 4P
babspc(4) = baps(880nm) (T) (@)

where AAEp( is the AAE of the BC particles and represents the main
source of uncertainty in what we call the AAE method. Indeed, many
studies assumed an AAE of 1.0 for BC particles (e.g. Tian et al., 2023;
Liakakou et al., 2020; Cuesta-Mosquera et al., 2024; Velazquez-Garcia
et al., 2024). However, AAEp can be significantly different from 1 in
the atmosphere (e.g. Bond et al., 2013; Lu et al., 2015; Costabile et al.,
2017) as it depends on morphology, size distribution, sources and
mixing state of BC particles. Here we estimated the AAEpc at each site as
the 1st percentile of the calculated AAE. Since, the contribution of BrC to
absorption increases the AAE, the 1st percentile represents conditions
where the absorption can be assumed to be dominated by BC particles.
In order to reduce the noise, the 1st percentile at each site was deter-
mined from AAE values obtained from fits with R? > 0.99 (Tobler et al.,
2021). Fig. S2 shows the AAE frequency distributions and AAEpc esti-
mations using the R>filtered AAE (calculated from 370 to 950) at the 44
sites. It should be noted that this is the first time that the 1st percentile of
the AAE frequency distribution has been systematically used across
multiple measurement stations to estimate the AAEgc. The AAEpc cal-
culations were performed using data collected from 2018 onwards,
when the recommended M8060 filter tape was introduced.

At sites where the AE33 was deployed, the 1st percentile provided
AAEp: values from 0.88 to 1.12, with 85 % of the values lying in the
0.9-1.1 range which has been associated to BC from fossil fuel com-
bustion (e.g. Bond et al., 2006; Zotter et al., 2017; Blanco-Allegre et al.,
2020). Exceptions were DUB, CASP, JFJ, HYY and STH_H where the 1st
percentile provided AAEpc values that were considered too low to
properly represent the AAE of BC particles. The reasons for these low 1st
percentiles are unknown. At the JFJ and HYY remote sites low percen-
tiles could be related to the low signal-to-noise ratio of Aethalometer
signals, especially in the near-IR, thus increasing the noise of the
calculated AAE and consequently affecting the calculation of the 1st
percentile. However, calculating the 1st percentile using only bgaps (M)
higher than 0.1 Mm ™! did not contribute to increasing the 1st percentile.
CASP and DUB are sites where strong contribution to PM from marine
aerosols has been observed (Chen et al., 2022), that could have
considerably increased the SSA of the particles collected on the filter
tape. An excessive SSA could affect baps (M) and thus also the calculated
AAE (Yus-Diéz et al., 2022). STH_H is a traffic site heavily influenced by
traffic emissions (e.g. Savadkoohi et al., 2023), where the presence of
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fresh and small BC particles could be expected whereas the low calcu-
lated AAEgc (0.83) suggested the predominance of bigger BC particles
(e.g. Wang et al., 2016). Moreover, at the UB site in the same city
(STH_T) a 1st percentile of 1.02 was obtained. For all these sites with
extremely low 1st percentile values an AAEgc of 1 was used in Eq. (1). In
addition, the AE31 instruments provided systematically low percentiles
compared to AE33 ranging from 0.55 to 0.71 with the exception of IPR
where 0.85 was calculated. In these cases, a value of 1 was also used in
Eq. (1).

The method applied here for the determination of the contribution to
total absorption from BrC PM is prone to high uncertainties especially at
sites where the measured absorption was low. Kalbermatter et al. (2022)
reported measurement uncertainties of the AE33 including the cross-
sensitivity to scattering (Yus-Diez et al., 2021) to be around 20 %
which was consistent with the 25 % value from the WMO/GAW (2016).
Moreover, we estimated, similarly to Zhang et al. (2020), an uncertainty
of around 10 % in the estimation of bpps sc(A) for a +/-10 % variation
from the used AAEg¢ values. Based on these uncertainties estimation, the
overall uncertainty of the calculated absolute values of bppsp,c(A) re-
ported here was considered to be not lower than around 20-25 %.

Once the AAEg was determined, the contribution of BrC to the total
absorption between 370 nm and 660 nm was estimated by subtracting
the absorption due to BC to the measured total absorption (Eq. (2).

baps Brc(A) = baps(A) — baps pc(A) 2

Then, the AAE of BrC (AAEg,¢) was similarly calculated as the linear
fit in the log-log space (bapssrc vs. wavelength), but between 370 and
660 nm, since BrC presents no absorption in the near-IR part of the
spectrum. To interpret its variability we also calculated AAEp,c between
ranges 370-520, 370-590, and 590-660 nm.

2.3.2. Effect of dust absorption

Dust particles can also absorb radiation and contribute to the
Aethalometer signal in the UV/near-IR spectrum (880 and 950 nm in
this case). They are brownish/orange and feature a similar wavelength
dependence of absorption than BrC. Moreover, due to their high SSA,
dust particles can increase the apparent absorption provided by the
Aethalometer by increasing the apparent multiple-scattering parameter
C (Yus-Diez et al., 2021). These phenomena hamper the application of
the AAE method and the determination of baps g-c(370) during Saharan
dust events (SDE) which regularly affect Southern European sites
(Alastuey et al. (2016)). Due to the low absorption efficiency of dust
compared to BC and BrC, a non-negligible contribution of dust to ab-
sorption is only expected if large amounts of dust are transported from
North African dust source areas to the European surface, especially at
remote sites where the mass concentration of BC and BrC is on average
low. For example, Pandolfi et al. (2014b) and Bukowiecki et al. (2016)
reported that long-range transport of dust occurs rather frequently at the
MSA and JFJ mountain sites with a non-negligible effect on aerosol
properties during extreme events. Conversely, at traffic, UB and even RB
sites at Central-Northern Europe the effect of dust on absorption is
usually neglected compared to that of BC and BrC PM. In this study, we
used the information available at some Mediterranean (BCN, MSY, MSA,
UGR, DEM) and remote (JFJ and HAC) sites to detect SDE and filter out
the dust days. For the Spanish sites of BCN and MSY, the methodology
used to identify the Saharan dust days has been described in detail (e.g.
Querol et al., 2019) and was performed using different dust concentra-
tion and transport model outputs and meteorological information. This
methodology has been officially accepted by the European Commission
for reporting on natural contributions to ambient PM levels over Europe
and was applied here (EC, 2011). For the Greek stations of DEM and
HACG, for JFJ (Switzerland) and for UGR and MSA (Spain) the Angstrom
exponent of the single scattering albedo SSA (SSAAE) was calculated
from aerosol particles scattering and absorption data (EBAS for scat-
tering; https://www.ebas.nilu.no; last access 15/07,/2024) and used to
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filter out dust days. The SSA is the ratio between the scattering and the
extinction coefficients and the wavelength dependence of the SSA can be
characterized with its exponent which depends on the absorption (AAE)
and scattering (SAE) Angstrom exponents: SSAAE = (1-SSA)-(SAE-AAF)
(Moosmiiller and Chakrabarty, 2011). SSAAE provides information
about the type of sampled aerosols and it has been proposed as a good
indicator for the presence of Saharan dust in the atmosphere (Collaud
Coen et al., 2004; Ealo et al., 2016), in fact, the presence of Saharan dust
particles causes a reduction of the SAE and an increase of AAE, resulting
in negative SSAAE values during these events. Collaud Coen et al. (2004)
reported for the JFJ measurement site that the SSAAE was able to detect
100 % of Saharan dust outbreaks compared with 80 % and 40 % of
events detected using SAE and AAE respectively.

2.3.3. Trend analysis

We performed a trend analysis at sites where a minimum of 8 years of
data was available. This was the case for 12 monitoring sites. We
analyzed the trends of total absorption, BC and BrC absorption at 370
nm, the relative contribution of BrC to total absorption, the AAE of CA
and the AAE of BrC. The monitoring sites included in this analysis are:
HEL (2016-2023), STH-H (2015-2023), UGR (2014-2023), ZUR
(2012-2023), MAD (2013-2023), STH-T (2015-2023), BUC
(2014-2022), SIR (2012-2021), IPR (2007-2021), MSY (2015-2023),
OPE (2012-2021), and RIG (2014-2021).

Trend analyses were performed using the methodology proposed by
Collaud Coen et al. (2020). This approach involves applying the Man-
n-Kendall non-parametric method with Sen’s slope estimator (Gilbert,
1987; Kendall, M., 1975; Mann, H. B., 1945; Sirois, 1998). To consider
the effect of autocorrelation and time granularity, the algorithm in-
corporates three prewhitening methods that guaranteed the robustness
of the identified trends (Collaud Coen et al., 2020). To compute the
trends, the 3PW R package (Bigi and Vogt, 2021) was used. Details on
the implementation the 3PW method can be found in the study by
Collaud Coen et al. (2020) and in the mannkendall/R package
(https://mannkendall.github.io/, last access 6 August 2024).

To evaluate both the overall trends and those specific to the different
site classifications (traffic, urban, suburban, regional, and mountain) we
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performed several meta-analyses to account for the heterogeneity
observed among the sites (Balduzzi et al., 2019). Individual slopes,
representing the percentage change per year along with their 95 %
confidence intervals, were analyzed using random-effects meta-analysis
(Zeng and Lin, 2015). Mean effects were calculated both separately for
each site type as well as globally, to offer a comprehensive overview.
The meta-analyses were performed using the “meta” R package version
7.0-0 (Schwarzer et al., 2015).

3. Results
3.1. Absorption at 370 nm: Regional and site type differences

Figs. 1 and 2 provide an overview of baps(370) at the 44 stations
across Europe. Here we focus on baps(370) where the contribution of CA
particles to absorption was the highest. Overall, northern countries
showed on average lower absorption compared to central/southern
countries, as also recently reported for BC concentrations in Europe by
Savadkoohi et al. (2023). Moreover, on average, higher absorption was
observed in Central and Eastern Europe compared to Western Europe.
Fig. 1 highlights that the spatial coverage of measurement stations was
higher in the Western and Central countries compared to Eastern
countries, a limitation that may affect the comprehensive assessment of
the spatiotemporal variability of absorption across Europe. Fig. 2 shows
that the most important parameter affecting the measured baps(370) was
the station setting, causing a clear gradient with values increasing from
mountain to urban and traffic sites. The observed high site-by-site
variability within each station category can be mostly associated with
site location, CA sources strength and meteorological patterns, as well as
secondary aerosols production.

At mountain sites, the station altitude influenced the measured ab-
sorption values. For example, median baps(370) values ranged from 8.89
Mm~! at PUY measurement site (1465 m a.s.l.) down to 0.24 Mm~! at
JEJ, the high altitude (3578 m a.s.l.) site. However, the distance from
important CA sources and the topographic features of the mountainous
regions likely played the most important role in determining the level of
measured bpps(370). For example, Collaud Coen et al. (2018) have
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shown that the MSA site, located approximately at the same altitude as
PUY (cf. Table 1), is less affected than PUY by the pollution within the
atmospheric boundary layer (ABL) and, consequently, the bsp(370) at
MSA was much lower compared to PUY (cf. Fig. 2). Correspondingly, the
very low baps(370) measured at JFJ and HAC agreed with the very low
influence of ABL at these two sites as shown in Collaud Coen et al.
(2018). For regional stations, a high variability of baps(370) related
mostly to the location of the measurement sites was observed. At PAL, a
remote regional site, the median bay(370) was 0.25 Mm ™! whereas it
lies between 10.66 and 11.99 Mm ! at IPR, KOS and PAY. IPR is located
in the Po Valley, one of the most polluted regions in Europe, charac-
terized by extremely low winds and frequent atmospheric stagnation
episodes in winter favoring the accumulation of pollutants (e.g. Gilar-
doni et al., 2020; Savadkoohi et al., 2023). Similarly, meteorology in
winter also plays an important role in the accumulation of pollutants at
the PAY site located on the Swiss plateau with a high average population
density. Recently, Chen et al. (2022) have shown that the submicron
particulate matter mass concentration (PM;) at the regional KOS site
was comparable and even higher compared to European urban sites.
Moreover, the accumulation in winter of CA from combustion sources as
traffic and biomass burning contributed to explain the relatively high
absorption measured at KOS (Chen et al., 2022). At these three RB sites,
the measured absorption was higher compared to the SUB sites with the
exception of BUC. The baps(370) measured at IPR, KOS and PAY was also
higher compared to some UB and TR sites reflecting the importance of
regional pollution and meteorology, which influence the transport of
pollutants and production of secondary aerosols. With regards to BUC,
this site showed significantly higher bs,(370) than other suburban
stations, primarily due to its higher BC concentrations compared to

N

similar sites in other regions (Savadkoohi et al., 2023). The site-by-site
variability of baps(370) at UB and TR sites was also very high. In gen-
eral, the observed variations at UB sites ranged from very low baps(370)
around 1.59-2.85 Mm ' at DUB and STH.T to high values of
24.32-31.85 Mm ™! at KRA, MLN_P and UGR. A similar trend was also
reported for BC concentrations by Savadkoohi et al. (2023).

KRA is considered to be a pollution hotspot in Europe (e.g. Samek
et al., 2019; Tobler et al., 2021; Casotto et al., 2023) where the high
consumption of coal and wood for energy production and residential
heating together with specific meteorological and topography features
contributed to make KRA the site with the highest bss(370) among the
44 sites included in this work. The data for KRA in this study covered the
period January 2018 — April 2019, prior to the September 2019 ban on
using solid fuels (coal and wood) in boilers, stoves or fireplaces. It should
also be noted that the OM concentrations measured in KRA during the
same period reported here were also the highest among the European
measuring sites included in Chen et al. (2022). UGR also exhibited high
baps(370), 24.32 Mm_l, likely due to its location in a depression at the
foot of Sierra Nevada mountains with frequent thermal inversion during
the cold months, causing biomass burning and traffic emissions to
accumulate (Lyamani et al., 2011; Titos et al., 2017). The UB MLN_P site
also recorded high baps(370) values (27.12 Mm’l), similar to the two
traffic sites in Milan (MLN_M: 31.01 Mm ™! and MLN_S: 19.67 Mm™1).
Milan, located in Po Valley, is a high-density polluted area, similar to
Paris (PAR_B: 24.58 Mm’l), one of the largest cities in Europe. These
urban sites feature higher absorption values compared to stations like in
HEL (11.42 Mm ™) and STH_H (7.99 Mm’l), which are located in less
populated areas with lower emissions and with meteorological patterns
that favor the dispersion of local pollutants (Savadkoohi et al., 2023).
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3.2. Contribution of BC and BrC to absorption at 370 nm

Fig. 3 illustrates the variability among the measurement sites for
baps pc(370) and baps prc(370) (Fig. 3a and 3b, respectively), as well as
the relative contribution of BrC to total absorption (Fig. 3c). As afore-
mentioned, we focus on the absorption at 370 nm where the relative
contribution of BrC is the highest compared to other wavelengths.
Fig. S3 presents the relative contribution of BC and BrC to total ab-
sorption from 370 to 660 nm.

Overall, both by, gc(370) and baps prc(370) showed a similar gradient
as observed for bsps(370), with values increasing from mountain to
urban/traffic sites and with high variability at each measurement site. A
strong site-by-site variability within each station setting was also
observed. This similarity in the baps pc(370) and baps prc(370) trends is
related to the fact that the main BC sources also emit primary organic
aerosols (POA), which can have a large range of absorption efficiencies
depending on both the fuel used and the combustion conditions. In
addition to biomass burning, fossil fuel, biofuel and coal combustion
have also been identified as significant sources of both primary and
secondary BrC PM (Yang et al., 2024; Corbin et al., 2018; Ni et al., 2021,
among others). Recent field and laboratory studies have highlighted the
light-absorbing properties of internal combustion engine BrC sources
such as vehicular emissions (e.g. Kaskaoutis et al., 2021; Chen et al.,
2020; Saleh et al., 2014; Zhang et al., 2020; Qin et al., 2018; Kasthur-
iarachchi et al., 2020; Saleh et al., 2020). For instance, Saleh et al.
(2018) performed controlled-combustion experiments using benzene
and toluene as fuels and observed that, depending on the combustion
conditions, the color of the resulting BrC components ranged from light
to dark. Along with some contribution from solid fuel combustion, this
could explain the non-negligible by 5rc(370) observed at traffic sites (cf.
Fig. 3b, c).

The relative contribution of baps grc(370) to baps(370) (%Absg,c; for
the 2017-2019 period; cf. Fig. 3c) was, as expected, on average lower at
traffic sites (median values around 11-21 %). However, a clear
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difference between UB, SUB, RB and M sites was not observed for %
Abspg,c, suggesting that, apart from traffic sites, the station setting was
not the main parameter determining the relative contribution of BrC to
absorption. Overall, the mean %Absp,c did not show a clear spatial
gradient with occurrence of low and high values observed in each
country (Fig. S4). However, on average, the occurrence of low %Absg,c
was observed mostly in Western/Central Europe whereas in Eastern
countries the average %Absp,c was higher, likely reflecting a stronger
contribution of primary and secondary BrC sources, such as biomass
burning and coal combustion (e.g. Chen et al., 2022). These differences
were however not statistically significant, likely due to the lower spatial
data coverage in the East compared to western/central Europe. These
similar contributions (except at sites directly impacted by traffic) can be
attributed to two causes: primary BrC due to homogeneous distribution
of sources; or dominant contribution of secondary BrC, which is more
homogeneously distributed in the boundary layer (Zhang et al., 2015, Su
et al., 2018; Li et al., 2021). It should be noted however that the spatial
coverage of available data in each country could have affected the
presented analysis. The %Absg,¢ values reported here were consistent
with those reported in the literature for some of the sites included in this
work where an AAEp; of 1 was mostly used. On the other hand, Zhang
et al. (2020) have reported an uncertainty of approximately 11 % in the
estimation of the by, pc(370) contribution to bap(370) when using
different AAE values ranging from 0.9 and 1.1. For example, for NOA
Kaskaoutis et al. (2021) reported a mean baps rc(370) contribution to
baps(370) of 44 % during winter 2016-2017 very close to the mean value
calculated in this work of 40 % for the same period. For the same NOA
site, Liakakou et al. (2020) presented a mean contribution of
baps 8rc(370) of around 24 % for a longer period (2015-2019) that
closely matched our estimation of 21 % (2017-2019). For the ATOLL,
SIRTA and MAR French sites, baps grc(370) contributions of 22, 42 and
18 %, respectively, were reported by Velazquez-Garcia et al. (2023) and
Zhang et al. (2020), close to the estimations reported here of 20, 40 and
18 %, respectively, for the same sites and periods. The contribution of
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babs Brc(370) to baps(370) of 31 % reported here for UMH Spanish site in
winter was also very close to the estimation of 34 % reported by Lopez-
Caravaca et al. (2024). The similitude in the values reported here and in
the literature showcases the validity of the method, the representative-
ness of the period used in this study, and the feasibility of comparing the
presented results among the sites used here.

3.3. AAE and AAEg,¢ variability

Fig. 4 shows the AAE valuescalculated from the absorption mea-
surements between 370 and 950 nm and the AAEg,¢ calculated from the
estimated BrC absorption between 370 and 660 nm. At all sites the
AAEg,c was considerably higher than AAE as a consequence of the
stronger wavelength dependence of absorption by BrC than by BC,
which together add up to total absorption by CA.

As shown in Fig. 4, the lowest AAE values were observed at the traffic
sites (TR) for the whole subgroup and, even if highly heterogeneous, the
AAE variability was more pronounced compared to the site-to-site
variability observed for %Absg;¢ (cf. Fig. 3c) showing however similar
behavior, with high/low AAE associated with high/low %Absg,c. Lower
median AAE values around 1.1 were observed at MLN_M, PAR_B and
STH_H traffic sites, at HYY and PAL regional sites, and at the high alti-
tude JFJ mountain site. Consequently, apart from traffic sites, the lowest
median AAE values were also observed at the more remote RB and M
sites. This could be due to the lack of proximity from primary BrC
sources as well as the effect of photobleaching and whitening of BrC
during transport toward these remote sites (Fleming et al.,2020; Li et al.,
2023; Fang et al., 2023). At the other RB sites and low altitude mountain
sites the median AAE was on average higher reflecting a higher influence
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of BrC sources. High median AAE values (>1.3) were observed at some
urban sites (KRA, LBJ and TAR), SUB sites (BUC, SIRTA and HEL_R), RB
sites (PAY, KOS, HOH and IPR) and at the RIG low mountain site.
Independently of the station location, Western Europe showed AAE
values mostly below 1.3 whereas in the east it increased to values higher
than 1.3 (Fig. S4) likely due to the higher relative contribution to BrC
due to a more extensive use of coal and biomass burning (e.g. Chen et al.,
2022). The same regional pattern was not observed for the AAEg,c. In
fact, this parameter seemed to be rather independent on both regional
location (Fig. S4) and station background (cf. Fig. 4b). Notable excep-
tions were the RB sites, with the exception of PAY, and the cleanest sites
(JFJ, HAC and PAL) where the median AAEg, values were on average
lower compared to the median calculated using all the sites (cf. Fig. 4b).

Based on the information available here, it is not straightforward to
understand the observed variability of AAEg,¢ since this parameter de-
pends on the physico-chemical properties of BrC PM and on the trans-
formation processes, including browning and photobleaching, of BrC
during transport.

Previous studies based mostly on smog chamber experiments, (e.g.
Lambe et al., 2013; Saleh et al. 2013, 2014; Kumar et al., 2018) have
shown that SOA particles, especially those produced in aged biomass
burning emissions, can be more absorptive in the UV and short visible
range (370-590 nm) than in the long visible (660 nm) and exhibit
stronger wavelength dependence than POA. Thus, these studies have
shown that the AAEg,¢ of the less absorbing SOA is higher compared to
the AAEg;¢ of the more absorbing POA. Consequently, a relative increase
of SOA from biomass burning in OM particles could cause an increase of
the observed AAEgp.c. In order to interpret the variability of AAEg, re-
ported in Fig. 4b we compared the AAEg, calculated from 370 to 660
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nm with the AAEg,¢ calculated from 370 to 590 nm. The results of this
analysis are reported in Fig. S5. Fig. S5a shows that for the majority of
the sites the AAEg,¢ (370-660 nm) was higher compared to the AAEg,¢
(370-590 nm). The higher AAEg,¢ (370-660 nm) was due to a strong
relative decrease of the absorption by BrC PM in the long visible (660
nm) compared to the UV/short-visible (370-590 nm), as illustrated in
Fig. S5b for the example of BER. The observed general decrease of BrC
absorption at 660 nm was also demonstrated by the fact that the dif-
ference considering all the sites between AAEg.c (370-590 nm) and
AAEg;c (370-520 nm) was small and around 0.13 =+ 0.22. This relative
decrease of Absg,¢ from the long visible onwards compared to the UV/
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short-visible range has been observed in other studies for samples con-
taining a substantial contribution of organic species and point out that
the AAEg,¢ depends on the range of wavelengths selected for its calcu-
lation (Harrison et al., 2013; Utry et al., 2014; Cuesta-Mosquera 2021,
2024).

3.4. Seasonal variability

Fig. 5 shows the normalized annual cycles calculated with feature
scaling for the 2017-2019 period of baps(370), bapspc(370),
b aps Brc(370), baps prc relative contribution to baps(370), AAE and AAEgc.

.
-

1.0
0.8

_—
Q
~—

baps(370nm)

1.0

(b)

- 05

bAbs. 55(370nm)

(c)

baps, grc(370nm)

(d)

% AbSg.c

-
|
-
-
||
||
[ |

SIR
HEL_P

wn
C
oo}

Fig. 5. Normalized annual cycles of total absorption at 370 nm (a; baps(370)), BC contribution to total absorption (b; bapspc(370)), BrC contribution to total ab-
sorption (c; baps grc(370)), relative contribution of BrC to total absorption (d; %Absg,c), AAE of CA from 370 to 950 nm (e), and AAE of BrC from 370 to 660 (f). Color
code 0-1 indicates progressive increase from lowest value (blue) to highest value (red).
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The absolute values for each variable are reported in Table S1. Fig. 5
shows that apart from AAEg,c, both the relative and absolute values of
the presented variables increased in winter at all low-middle altitude
sites and decreased on average in summer. The observed increases in
winter could be attributed to both the seasonal variability of CA emis-
sion sources and meteorological conditions. In fact, winter periods are
characterized by higher emissions due to heating and by lower atmo-
spheric boundary layer heights, lower wind speeds and enhanced at-
mospheric stability which contribute to the greater accumulation of
pollutants. Conversely, in summer the atmospheric conditions favor the
dispersion of pollutants due to higher atmospheric boundary layer
heights and higher wind speed. Notable exceptions were the mountain
sites where the higher dispersion in summer associated with thermally
driven winds allowed the transport of pollutants toward these elevated
sites thus increasing both the baps(370) and the baps 5c(370) during the
warm season (e.g. Putaud et al., 2004, 2010; Pandolfi et al., 2014a;
2018; Viana et al., 2016; Collaud Coen et al., 2018; Zhang et al., 2020;
Yttri et al., 2021). At these elevated sites the relative increase in summer
of baps prc(370) was less pronounced compared to by, pc(370) with the
exception of the very elevated JFJ mountain site. A similar summer
trend for baps(370) and bapspc(370) was also observed at the MSY
regional site (720 m a.s.l.) located in an elevated regional area (e.g.
Pandolfi et al., 2014b).

The lack of a clear relative increase of by, prc(370) in summer at the
elevated sites can be mostly associated with the reduction of BrC emis-
sions from sources such as biomass burning during the warm season (e.g.
Cordell et al., 2016; Putaud et al., 2018; Casquero-Vera et al., 2021),
lower emissions of precursors available for coating of BC (e.g. Yuan
et al., 2020) and photobleaching associated with enhanced solar irra-
diation in summer (e.g. Dong et al., 2024; Paraskevopoulou et al., 2022).
For baps(370) and baps pc(370) relative increases in summer were also
observed at northern traffic sites (HEL and STH_H). Similar increases in
summer at these Nordic sites were reported for eBC concentrations by
Savadkoohi et al. (2023) and attributed to the fact that these two sites
are located in street canyons, thus making the local traffic the dominant
source of CA throughout the year. Similarly to Fig. 5b and 5c, Barreira
et al. (2021) reported for HEL an increase of the traffic contribution to
eBC concentrations and a decrease of biomass burning contribution to
eBC in summer partly explained by poorer dispersion and lower venti-
lation factor especially during August. Seasonal variations at the STH_H
site can also be affected by the abatement of traffic since traffic exhaust
has been found the most important source in the city of Stockholm
(Segersson et al., 2017).

The relative contribution of bapsc(370) to baps(370) (%Abspc in
Fig. 5d) increased at all sites in winter indicating that the relative in-
crease in winter of BrC absorption was higher compared to the absorp-
tion due to BC particles. This was mostly related to the increase of BrC
emissions and emissions of their precursors during the cold months from
specific sources such as residential wood burning (e.g. Zhang et al.,
2020; Zalzal et al., 2024). As shown in Fig. 5d and Table S1, in winter the
relative contribution of bppspc(370) to baps(370) frequently reached
values up to more than 40 % demonstrating the high potential of BrC PM
to contribute to the measured baps(370). Moreover, this strong relative
increase during the cold period was independent of the station back-
ground. The exception was PAL, a remote RB site, where the %Absg,c
was relatively higher in summer. At PAL the very low seasonal vari-
ability on the bap gr¢(370) (0.1-0.2 Mm ™ ; cf. Table S1) suggested that
the %Absg,c depended exclusively on the seasonal variability of the
bapspc(370) (0.2-1.1 Mm™Y; cof Table S1) with higher (lower)
babs Bc(370) contribution to baps(370) causing a decrease (increases) of
the relative contribution of baps grc(370) to baps(370). Consistently with
the relative contribution of bapspc(370) to baps(370), the AAE also
showed a clear increase in winter at all sites with the exception of PAL
where higher AAE values were observed in summer. Finally, no clear
seasonal pattern was observed for the AAEp., indicating that the
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wavelength dependence of BrC absorption was not related to the
seasons.

3.5. Diel variability

Fig. 6 shows the normalized, with feature scaling, diel cycles calcu-
lated for the period 2017-2019 for the different variables considered in
this work. The mean absolute hourly values for each variable are re-
ported in Table S2. Overall, the baps 5c(370) (cf. Fig. 6b) followed the
typical bimodal diel pattern influenced by anthropogenic activities with
maxima during the morning (traffic rush hour between 06:00-09:00)
and evening hours (17:00-21:00, traffic rush hour and cooking and
heating activities), and a decrease during midday mostly due to atmo-
spheric dilution and, to a lesser extent, the reduction of BC emissions.
Exceptions were the mountain sites where both byp(370) and
baps c(370) increased at noon under higher mixing layers and stronger
thermal wind systems favoring the dilution and transport of pollutants
from the lower-lying source regions toward these elevated sites during
the warmest hours of the day.

Overall, bapspc(370) showed different diel cycles compared to
baps c(370), lacking the morning rush-hour peak, with higher
baps 5rc(370) observed at night mostly related to BrC emissions from
domestic activities such as heating (e.g. Zhang et al., 2020). Conversely,
baps 5rc(370) was lower in the morning due to the decrease of these
household activities. The baps grc(370) at the traffic sites followed more
closely the diel cycles of baps 5c(370) likely because of the lack of a strong
contribution to BrC from household activities and the fact that vehicles
can also contribute to BrC PM through emissions and/or coating of BC
secondary organic material. Consistently, both the relative contribution
of baps Brc(370) t0 baps(370) (%Absgc on Fig. 6d) and the AAE (Fig. 6e)
showed similar diel cycles with increases at night.

In contrast to the annual cycles, a rather clear AAEg,¢ diel cycle was
observed with lower values during the day and higher values at night
and early morning. This could indicate the formation of specific brown
SOA (particles or coatings on existing primary particles) at night with
stronger wavelength dependence in the UV/short visible. For example,
previous studies have reported that a possible pathway of BrC formation
at night is the nitrate radical (NOg)-initiated oxidation of specific com-
pounds in the presence of NO, and NOy, and have identified wood
burning and traffic as the most important sources of BrC SOA particles
(e.g. Wang et al., 2019; Frka et al., 2022). A second possibility is
condensation of secondary organic material on existing primary parti-
cles, especially BC (Kalbermatter et al., 2022). It should be considered
that the possible photobleaching of BrC particles during the day could
also have affected the reported diel cycles (Fleming et al.,2020; Li et al.,
2023).

3.6. Trend analysis of CA absorption properties

For trend analysis, we used data from a subset of 12 measuring sites
that provided at least 8 consecutive years of data using the same
Aethalometer model and the trends were considered as statistically
significant (s.s.) only for p-values lower than 0.01. This choice was
supported because a p-value < 0.01 has been found to be more robust
than the commonly used p-value threshold of 0.05 (Vidgen and Yasseri,
2016).

The meta analysis including all sites presented in Fig. 7 shows that
overall bups(370) decreased by 1.57 %/year driven by a decrease of
bapspc(370) (2.01 %/year), whereas bapspc(370), %Absp,c and AAE
overall increased by 0.43 %/year, 1.91 %/year, 0.64 %/year, respec-
tively. The meta analysis provided s.s. trends for baps(370), baps 5c(370),
AAE and %Absg,c, indicating homogeneity of the trends for these vari-
ables in Europe, whereas overall the trends were not s.s. for baps grc(370)
and AAEg,¢ indicating more heterogeneity of the trend results. Among
all the station backgrounds reported in Fig. 7, traffic sites were those
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Fig. 7. Results of the trend analysis and subsequent meta-analysis for baps(370) (a), baps sc(370) and baps gc(370) (b and c, respectively), relative contribution of
baps Brc(370) to baps(370) (d), AAE of CA from 370 to 950 nm (e), and AAE of BrC from 370 to 660 (f). Trends are calculated using the Mann-Kendall non-parametric
method. * indicates statistically significant trends (p < 0.01). Results of the meta-analysis are presented globally for each variable and for the different site categories
(TR, UB, SUB, RB and M). The dashed vertical line represents the global meta-analysis. Random effects model: mean effect calculated for each site typology and for all

sites together.

characterized by the strongest magnitude of decreasing trends for
baps(370) (—4.4 to —5.5 %/year) and bapspc(370) (—4.9 to —5.7
%/year), thus confirming the effective reduction of BC emissions from
traffic sources. These trends demonstrated the efficient reduction of BC
mass concentrations from traffic sources in Europe suggesting a positive
impact of the implementation of EURO 5/V and 6/VI vehicle standards
(e.g. Kutzner et al., 2018; Sun et al., 2021; Savadkoohi et al., 2023;
Garcia-Marles et al., 2024) and a less effective reduction of emissions
from BrC sources, likely mostly from domestic biomass burning (e.g.
Yttri et al., 2021; Savadkoohi et al., 2023). For example, Savadkoohi
et al. (2023) have reported statistically significant decreasing trends for
BC from traffic sources in Europe whereas BC from domestic sources
remained constant or even increased slightly in some European cities. At
UB, SUB and RB sites, the magnitude of the s.s. decreasing trends for
baps(370) (—1.3 to —3.0 %/year) and baps pc(370) (—1.5 to —3.3 %/year)
were lower suggesting the presence of regional contributions of BC to
absorption. These regional sources of BC, mostly biomass burning, also
contributed to explain the observed s.s. increasing trends of AAE and %
AbSBrc.

The observed increase of AAE calculated from 370 to 950 nm
confirmed a progressive change in the chemical composition of CA
particles driven by a relative increase/decrease of BrC/BC content in CA
with time. Recently, Yttri et al. (2021) reported large decreases in EC
and a relatively smaller decline in levoglucosan at the BIR measurement
site in northern Europe, suggesting that the OC and EC from traffic and
industry were decreasing, whereas the abatement of OC and EC from
biomass burning was less successful. Similarly, in ‘t Veld et al. (2021)
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reported for both BCN and MSY (NE Spain) the absence of a trend for OM
driven by secondary organic aerosols formation, whereas EC showed s.s.
decreasing trends at both sites. The s.s. decreasing trends observed here
for baps 5c(370) agreed also with the results from the recent study by Aas
et al. (2024) reporting decreasing trends for elemental carbon (EC) mass
concentrations in Europe during 2010-2019. These EC decreasing
trends were mostly associated with reduced vehicular emissions, as also
reported for the decreasing trends of BC in Europe by Savadkoohi et al.
(2023). Aas et al. (2024) also reported decreasing trends for OC mass
concentrations even in smaller magnitude and significance compared to
EC. Indeed, the OC decreasing trends reported by Aas et al. (2024) were
s.s. only at 2 out of 15 sites included in their work and the highest
magnitude and statistically significance of the OC trends were observed
in winter consistent with the reduction of primary organic aerosols from
EC sources. It is not straightforward to correlate the b gr¢(370) trends
reported here with the OC trends reported in Aas et al. (2024) as the
different time granularity, data coverage and measuring periods can
affect the trend analysis especially over short periods. The baps g-c(370)
showed s.s. increasing trends at 5 out of 10 non-traffic sites and, as
aforementioned, the overall increasing trend in Europe for baps grc(370)
was non s.s. due to the heterogeneity of the trends among the 12 sites.
The trend results for baps grc(370) at non-traffic sites suggested multiple
origins of BC and BrC (mostly traffic and biomass burning) and reflected
the slower and less significant decreasing trends observed for OC in
Europe compared to EC. Among the sites used here for bapsprc(370)
trend analysis, four sites (IPR, MSY, OPE and RIG) were also included in
the trend study from Aas et al. (2024) for OC. Aas et al. (2024) reported
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s.s. OC decreasing trend (2010-2019) only for IPR where baps grc(370)
showed s.s. increasing trend as in RIG. Thus, the s.s increasing trends of
baps src(370) observed here at some sites (5 out of 10 non-traffic sites)
could suggest a shift toward organic matter particles with higher mass-
specific absorption efficiency. This shift could be at least in part related
to the observed increase of ammonia (NH3) concentrations in Europe
reported by Aas et al. (2024). In fact, chamber experiments have shown
the increase of the absorption efficiency of a wide range of biogenic and
anthropogenic secondary organic aerosols formed under high NH3
emissions (e.g. Updyke et al., 2012).

Interestingly, the baps 5-c(370) showed s.s. decreasing trends only at
the two traffic sites included in this analysis (HEL and STH_H) thus
suggesting traffic emissions as the main source of both BC and BrC at
these sites. Despite the observed decrease of bapspc(370) and
baps Brc(370) at the traffic stations, both %Absg,c and AAE increased.
Beside the increase of the relative proportion of regional aerosols due to
the decrease of BC emissions from local traffic, the observed %Absg.c
and AAE increase suggested a more effective decrease of BC compared to
BrC in CA particles from vehicles.

As already mentioned, the change of CA chemical composition with
time observed in Europe had an important impact in the AAE, an
intensive optical parameter that strongly depends on the chemical
composition of particles. The effect of CA compositional changes on CA
optical properties has been for example reported for the MSY site by Yus-
Diez et al. (2022). Yus-Diez et al. (2022) showed that the absorption
enhancement of BC particles increased at MSY station over the
2011-2020 period during spring and summer, when the OC/EC ratio,
driven by secondary organic aerosol formation, increased along with the
oxidation state of CA particles. Differently from the AAE, the AAEg,c
showed s.s. decreasing trends at 5 sites out of 12 and s.s. increasing
trends at 4 sites without a clear relationship with station background. As
mentioned above, it is not straightforward to understand the AAEg.c
variability without detailed OM chemical analysis and knowledge on the
BC mixing state. Based, for example, on Saleh et al. (2013, 2014) and
Kumar et al. (2018), a decreasing/increasing trend of AAEg,c could
suggest a progressive shift toward OM particles with more/less
absorbing efficiency (i.e. higher/lower imaginary refractive index).
Summarizing, the trend analyses reported here reflected the general
change in CA composition and emission over time in Europe demon-
strating a strong reduction of the absorption due to BC particles from
traffic and a relative increase in the contribution of OM particles to total
absorption.

4. Conclusions

This study provides a phenomenological analysis of total absorption
at 370 nm (baps(370)), BC and BrC contributions to absorption
(baps 8c(370) and baps c(370)), absorption Angstrom exponent (AAE) of
both carbonaceous aerosol (CA) and brown carbon (BrC) particles
(AAEg,c) using Aethalometer data collected at 44 European sites.

A considerable variation of the absorption coefficients among the
measurement sites was observed. This variation was influenced mostly
by station background and showed a clear increase from mountain to
urban and traffic sites. Mountain site absorption was influenced by
altitude, topographical factors and atmospheric boundary layer influ-
ence. High site-by-site variability was exhibited at regional, urban and
traffic stations related to location, proximity to CA emission sources,
local meteorology, and variability in CA sources. Some hotspots (e.g.
Krakow, Milan, Ispra and Paris) displayed particularly high absorption
levels due to high local pollution and atmospheric conditions.

Similarly to baps(370), both baps pc(370) and baps pc(370) increased
from mountain to urban and traffic sites with notable site-by-site vari-
ability, attributed to POA particles, fuel type used, combustion condi-
tions, and the influence of SOA. Apart from traffic sites, with lower
relative contribution of BrC PM to baps(370) (%Absp,c median 11-20 %),
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the station setting was not the main parameter determining the reported
%Absg,c, being the intensity of POA emissions and SOA formation the
likely main factors driving the variability of %Absg,c and AAE. At all
sites the AAEg,c was considerably higher than AAE as a consequence of
the stronger wavelength dependence of BrC PM, strengthening the
argument that the SOA contribution to absorption is an important factor
determining the wavelength dependence of BrC absorption. Further
analyses are needed to better understand the variability of AAEg,c which
was influenced by the physico-chemical properties and transformation
processes of BrC PM, particularly by their absorption characteristics in
different spectral ranges.

All the variables reported here, with the exception of AAEg,c, showed
relative maxima in winter suggesting higher CA emissions from house-
hold activities and accumulation favored by predominant stagnant
conditions and lower planetary boundary heights during the cold
months. Conversely, relative minima were observed in summer due to
higher wind speeds and atmospheric dispersion and to a reduction of
BrC emissions. The diel cycles of baps(370) and bapssc(370) showed
bimodal peaks during morning and evening rush hours, with a midday
decrease due to atmospheric dispersion and reduced emissions, except at
mountain sites where both increased at noon, facilitated by higher
mixing layers. In contrast, bapsrc(370), %Absgc and AAE peaked at
night likely due increased domestic activities and nighttime formation of
brown SOA. Traffic sites showed synchronized bapspc(370) and
babs Brc(370) pattern, confirming vehicle emissions as a source of BrC
PM. Notably, AAEg,c showed diel cycles with lower values during the
day and higher values at night and early morning, suggesting nighttime
accumulation or formation of BrC PM with enhanced absorption effi-
ciency in UV compared to the visible spectrum as could be expected for
brown SOA.

Finally, this study conducted trend analysis at 12 monitoring sites,
with at least 8 years of data availability, showing s.s. decreasing trends
in baps(370) primarily driven by declining baps sc(370). The observed s.s.
increasing trends of %Absg;c, confirmed recent evidence that the OC and
BC concentrations from traffic and industry were efficiently decreasing
in Europe, whereas the abatement of OC and BC from biomass burning
has been slightly less successful. Indeed, only the traffic sites showed s.s.
decreasing trends in both baps rc(370) and baps sc(370), suggesting, as
aforementioned, traffic emissions as the main source of both BC and BrC
at traffic sites. As a consequence, the trend analyses revealed a pro-
gressive change in CA chemical composition with s.s. increasing trends
in AAE driven by a relative increase/decrease of BrC/BC content in CA
particles. The fact that %Absg,¢ generally increased across sites, suggests
open challenges in reducing BrC emissions effectively.

This study, based on pan-european data confirms the effective
reduction of BC emissions from vehicles thanks to the implementation of
EURO 5/V and 6/VI vehicle standards and a less effective reduction of
BC and BrC emissions from sources as household activities. The results
presented in this work also align with the new European Air Quality
Directive adopted on 14th October 2024 that establishes that black
carbon, together with other emerging pollutants such as ultrafine par-
ticles, should be measured at monitoring supersites at both rural and
urban background locations in order to support scientific understanding
of its effects on human health and the environment. Furthermore, the
observed general increasing trends of the contribution of BrC PM to
absorption reported here support recent assessments (e.g. Zauli-Sajani
et al., 2024) that indicate that the residential sector should be a key
target of air quality policies and that promoting biomass as a carbon-
-neutral energy source could have a detrimental effect on both air
quality and climate.
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