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Jalluta, Frédéric Lagoutièrec and Claire Valentina*5

a Universite Claude Bernard Lyon 1, CNRS UMR 5007, LAGEPP, 43 Boulevard du 116

Novembre 1918, Bâtiment CPE, Villeurbanne, France7

b INRAE REVERSAAL, 5 rue de La Doua, Villeurbanne, France8

c Universite Claude Bernard Lyon 1, CNRS UMR 5208, ICJ, 43 Boulevard du 11 Novembre9

1918, Villeurbanne, France10

ARTICLE HISTORY11

Compiled October 12, 202412

ABSTRACT13

The separation of solid particles from the liquid phase is the final operation in an ac-14

tivated sludge wastewater treatment plant. This paper introduces a one-dimensional,15

knowledge-based dynamic model incorporating both mass and momentum balances,16

designed for use in the development of a closed-loop controller. The objective of such17

a future controller would be to regulate both energy consumption and the quality of18

water discharged from the clarifier. This model is simulated using an explicit Euler19

time discretization, along with a spatial discretization based on the finite volume20

method. The fluxes are approximated using the Rusanov scheme, a method partic-21

ularly suited for handling nonlinear hyperbolic systems that exhibit discontinuities22

or shock waves.23

Simulation results are compared with experimental data, obtained from mea-24

suring the sludge blanket (the upper interface of the solid particle zone) during a25

transient-state experiment in an urban wastewater treatment plant. Additionally,26

two predictive scenarios are provided to demonstrate the potential of this model as27
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a decision support tool in wastewater treatment processes.28
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Sludge continuous-flow settling process; one-dimensional model; 2x2 hyperbolic30
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experimental data; Predictions.32

1. Introduction33

A thorough understanding of organic urban sludge settling in wastewater treatment34

plants is essential for two main reasons: (a) to ensure that the clarified water discharged35

into the environment meets required quality and environmental standards, and (b) to36

guide decisions on appropriate closed-loop control strategies that can reduce operating37

costs (e.g., energy) or improve effluent quality. During the settling process, the solid38

particles in the sludge gradually settle within the suspension, resulting in the formation39

of three distinct zones: the upper clarification zone, which contains only liquid; the40

intermediate zone, where solid particles settle freely with minimal interaction; and the41

compression zone at the bottom, where solid particles form a concentrated porous bed.42

In this compression zone, the mass concentration of solid particles exceeds a critical43

threshold, beyond which interaction forces between particles become significant.44

These three zones are separated by two mobile interfaces: the sludge blanket,45

which marks the boundary between the clarification and intermediate zones, and46

another interface defined by the critical concentration threshold, which separates the47

intermediate and compression zones [1–3]. If the clarifier’s downstream pump flow48

rate is too low relative to the upstream sludge flow rate, solid particles may escape49

from the system at the top, leaving only the two lower zones. In such cases, which are50

undesirable, the clarification zone disappears entirely.51

52

The literature on settling one-dimensional dynamic modeling (excluding biologi-53

cal reactions) primarily addresses two cases: the batch settler, which is used to study54

sludge settling properties, and the continuous settler (secondary clarifier) employed55

in urban wastewater treatment plants. Two types of models are commonly proposed:56
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highly detailed two-dimensional (2-D) or three-dimensional (3-D) computational fluid57

dynamics (CFD) models, often used for design purposes (see, for example, [4–6]), and58

simplified one-dimensional (1-D) models. Since our objective is to develop a model59

incorporating both mass and momentum balances for designing a closed-loop controller60

to regulate both energy consumption and water quality at the top of the clarifier, the61

highly detailed approach is not suitable. Instead, a 1-D model is recommended. In the62

future, such a 1-D model could also be applied to develop a digital twin, serving as a63

real-time management tool.64

The measurements conducted at a short distance from the center of the clarifier65

during the experiment described in Section 4 align with the design of a 1-D model. These66

measurements include the depth of the sludge blanket and concentration measurements67

at various heights over time. In these vertical settlers, the solid phase moves at a variable68

velocity within the liquid phase. Consequently, regardless of the 1-D model considered,69

it must incorporate either a dynamic momentum balance or a constitutive equation to70

account for velocity variations in both space and time. The literature describes four71

families of 1-D models:72

1. Models based on a dynamic solid particle mass balance coupled with a constitu-73

tive equation that defines the solid particle velocity, referred to as the batch or74

hindered settling velocity [1, 7–12]. G. J. Kynch [13] initiated this approach which75

was further improved by M.K. Stenstrom [14], Z. Z. Vitasovic [15], I. Takács [11],76

R. Bürger [1] and S. Diehl [8], without being exhaustive. The double-exponential77

Takács settling velocity function is frequently used [11]. The state-of-the-art model78

in this family for wastewater treatment plants (WWTP) is the Bürger-Diehl79

model, which includes capabilities for handling both compression and dispersion80

effects [1];81

2. Models based on a dynamic solid particle mass balance and a static momentum82

balance, that defines the flux density function as a constitutive equation [3, 17];83

3. Models based on both a dynamic solid particle mass balance and a dynamic mo-84

mentum balance [2, 18–20]. This approach is more recent due to its two dynamic85

balances, which are more difficult to process numerically;86

4. Models based on both the dynamic solid particle mass and momentum balances,87
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along with the sludge blanket location as an additional variable, where the vari-88

ation of the blanket location is governed by a dynamic equation derived from a89

mass balance [21, 22]. This approach results in a coupled implicit PDE system90

augmented by an ODE and is currently applied only to batch settling scenarios91

with zero inlet and outlet flows.92

An interesting review of family 1 and 2 clarifier 1-D dynamic models can be found in93

[23]. In the first family, the models require at least five parameters that need to be94

calibrated, in the constitutive equations of the Kynch batch flux density function, the95

compression function and the dispersion functions [1]. In the second family, the models96

require five parameters that need to be calibrated; in the constitutive equations of flux97

density function, in the effective solid stress and the critical concentration [3, 17]. The98

model presented in this paper, which belongs to family 3, requires the calibration of99

five parameters. This analysis is not exhaustive. Its interest is to provide an indication100

of the number of parameters that need to be calibrated in the constitutive equations101

of the various models in the different families. However, any constitutive equation,102

validated heuristically through experiments, can be used regardless of the number of103

parameters involved. The review [23] presents tables with various constitutive equations,104

in particular those related to Kynch batch flux density functions.105

These four families of 1-D models are general and encompass a wide range of set-106

tling processes, including primary and secondary settling in urban, mining, and coastal107

zone contexts. Each model requires context-specific adaptation of parameter values.108

The advantage of family 1 and 2 models is that they yield scalar partial differential109

equation (PDE) models. In a different approach, family 3 models benefit from a direct110

derivation from two conservation balances, providing an explicit representation of the111

four forces acting on solid particles: pressure, effective inter-particle stress, gravity, and112

drag force. However, family 3 models result in a system of weakly hyperbolic nonlinear113

PDEs, making their numerical simulation more complex and requiring greater com-114

putational resources. Family 4 models consist of coupled implicit PDE systems added115

with an ODE, and their numerical simulation is as complex as that of family 3 models.116

In [21], a two-PDEs system derived from both the solid particle mass and momentum117

balances, along with an ODE representing the variation in the location of the sludge118
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blanket mobile interface is used (family 4 model). Simulating this model using a cen-119

tred finite difference numerical scheme produces a sludge blanket descent dynamic that120

aligns well with the measurements. However, this numerical scheme only captures the121

change in the average concentration beneath the sludge blanket, as it cannot account122

for spatial discontinuities or shock waves in certain state variables, such as solid particle123

volume fraction. Consequently, it is unable to predict the temporal changes in sludge124

concentration at the bottom or the lowest interface location between the intermediate125

zone and the compression zone.126

This paper is structured as follows: section 2 presents a one-dimensional functional127

description of the secondary clarifier and a one-dimensional dynamic model belonging128

to family 3, which describes the behaviour of sludge based on both dynamic mass129

and momentum balances. This model is a 2x2 hyperbolic PDEs system with nonlinear130

source terms, associated with constraints specific to two-phase suspensions with non-131

constant velocity, as well as constitutive equations and boundary conditions. It is simpler132

than the family 3 model presented in [2], which focuses on sedimentation in a river133

estuary. Section 3 introduces a numerical scheme specifically designed for this nonlinear134

hyperbolic system, which can exhibit discontinuities or shock waves. In section 4, an135

experimental dynamic event is described, and the simulated results obtained using our136

model are compared with experimental data collected from an urban water treatment137

plant. Sections 5 and 6 present two predictive simulations of relevant fictitious scenarios138

during an ongoing storm: one involving a second pump failure and the other with a139

recirculation flow rate calculated to maintain a constant quantity of particles in the140

secondary clarifier. Finally, section 7 presents the conclusions and future perspectives141

for this work.142

2. A mechanistic 1-D 2x2 dynamic model143

2.1. Clarifier and settling description144

Fig. 1 illustrates a 1-D schematic representation of the clarifier (settling tank). If the145

flow rate of the clarifier’s downstream pump is appropriately calibrated in relation to146

the upstream sludge feed flow rate, clarified water that meets environmental standards147
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can be released from the top. The contents of the open-air settler can be divided into148

three aforementioned zones, separated by two interfaces that move in space and time.149

The levels of these two interfaces are indicative only in this one-dimensional schematic150

representation and depend on the specific scenarios. They align with the simulations151

and measurements taken during the dynamic event, in which the sludge blanket rises152

above the feed level at certain moments. Depending on the scenario, the two interfaces153

may be situated very close to each other.154

• The upper interface represents the sludge blanket, located at depth zv(t). This155

interface separates the clarification zone (which contains no solid particles) from156

the intermediate zone. The sludge blanket is measured using an ultrasound Royce157

device, positioned on the rotating deck above, which detects the depth at which158

there is a high gradient of solid particle concentration.159

• The lower interface is defined by the intermediate/compression threshold, located160

at depth zc(t). At this depth, the behaviour changes as the solid particle concen-161

tration Cs(z, t) exceeds the threshold Cc, above which interparticle stress becomes162

significant. Below zc(t), the liquid phase flows through the porous network, [27].163

Figure 1.: One-dimensional schematic view of a sludge clarifier including relevant nota-
tions about flow rates, concentrations and depths.

The clarifier is connected to the wastewater treatment process at three locations: one164
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inlet and two outlets:165

• one inlet where activated sludge flows into the clarifier by gravity from the up-166

stream biological aeration tank at the volumetric flow rate of Qf (t) and a solid167

particle concentration of Cf (t). This activated sludge contains a high quantity of168

microorganisms, while primary sludge does not. Practically, the activated sludge169

feed enters through a skirt positioned at a depth of approximately z = zf . This170

skirt helps orient the particles’ motion in the vertical direction. In our model, the171

inlet velocity is assumed to be vertical only. The momentum and mass flows as-172

sociated with the inlet are incorporated as source terms in the balance equations173

(1) to (4),174

• one top outlet where clarified water exits at z = 0, with a volumetric flow rate of175

Qe(t) and a solid particle concentration of Ce(t),176

• one bottom outlet where compressed sludge is discharged at z = zb, with a vol-177

umetric flow rate of Qu(t) and a solid particle concentration of Cu(t). A fraction178

of the compressed sludge is recirculated to the aeration tank at a volumetric flow179

rate Qur(t), while another fraction is withdrawn from the clarifier at a volumet-180

ric flow rate Que(t), such that the total flow rate Qu(t) satisfies the relationship181

Qu(t) = Qur(t) + Que(t).182

If the flow rate of the downstream pump is too low compared to the upstream sludge183

feed flow rate, solid particles may exit the system through the top along with the mix-184

ture. Consequently, the content of the open-air settler is divided only into two zones: the185

intermediate zone and the compression zone, with the clarification zone effectively dis-186

appearing. Although this scenario is undesirable, the model of this uncontrolled system187

must account for this situation to accurately reflect the physical phenomena involved188

and to ensure proper integration with a closed-loop boundary controller in future ap-189

plications.190

2.2. 1-D general dynamic mass and momentum balances191

The objective of this model, based on both mass and momentum balances, is to calculate192

the temporal changes in the solid particle concentration profile within the clarifier,193
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as well as the outlet concentrations, Ce(t) and Cu(t), given the activated sludge feed194

flow rate and concentration, Qf (t) and Cf (t), along with the compressed sludge outlet195

flow rate, Qu(t). Additionally, the sludge blanket level, zv(t), is a measured variable196

and corresponds to the spatial position of the maximum gradient in the solid particles197

concentration, Cs(z, t).198

This dynamic model, which describes the behaviour of the sludge suspension in the199

clarifier, is based on two dynamic mass and momentum balances that can be formulated200

for the two phases under the following commonly used simplifying assumptions [23]:201

1. The liquid and solid phases completely fill the constant volume of the clarifier.202

2. There is no biological activity during the settling operation and the suspension is203

fully flocculated prior to sedimentation, [17].204

3. The solid particles are of uniform size and shape, [3, 8, 9].205

4. Particle concentration is uniform at a given depth, [8, 9].206

5. Vessel wall friction is negligible.207

6. The solid particles are small relative to the containing vessel and have the same208

density, [3].209

7. The solid particle and fluid mass densities, ρs (kg/m3) and ρl (kg/m3), are210

constant, with no mass transfer occurring between the solid and liquid phases,211

[2, 3, 8, 9].212

8. The open-air clarifier has a constant cross-sectional area.213

As the liquid and solid phase densities ρl and ρs are constant, the most natural state214

variables are the particle (liquid) volume fraction, εs(z, t) (εl(z, t)), along with the215

particle (liquid) flux, fs(z, t) = εs(z, t)vs(z, t) (fl(z, t) = εl(z, t)vl(z, t)), where vs(z, t)216

and vl(z, t) represent the Eulerian average velocities of the solid and liquid phases,217

respectively. The depth from the top of the clarifier is denoted by z, and the time is218

represented by t. Consequently, the solid particle mass concentration is expressed as219

Cs(z, t) = ρsεs(z, t)(kg/m3).220

221

Remark: for the sake of clarity, the notations in the following equations have222

been simplified by omitting (z, t) when the variables are considered for all z and all223
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t. Additionally, the following subscript notation is used for the partial derivatives:224

∂f
∂t = ∂tf and ∂f

∂z = ∂zf .225

226

The sludge feed inlet is represented by an interval centered on zf with a width of227

∆zf . (It allows the representation of different types of skirts that drive the flow of sludge228

downwards). This area is located between zf2 = zf + ∆zf /2 and zf1 = zf − ∆zf /2.229

The gate (Top-Hat) function, Π(z, zf , ∆zf ), appears in the source terms related to the230

sludge feed in the balance equations. This gate function is equal to 1 between zf1 and231

zf2 and 0 elsewhere. For simplicity, it is denoted as Πf (z).232

233

The dynamic mass balances for the solid phase and the liquid phase are formulated234

as follows:235

236

Solid phase mass balance:237

∂t(ρsεs) + ∂z(ρsfs) = f1s(Qf , Cf )Πf (z) (1)

Liquid phase mass balance:238

∂t(ρlεl) + ∂z(ρlfl) = f1l(Qf , Cf )Πf (z) (2)

where the discontinuous source terms, f1sΠf and f1lΠf , represent the activated sludge239

feed inlet in the solid and liquid mass balance equations, respectively. Both source240

terms depend on Qf , the total volumetric flow rate of the feed, and on Cf , the mass241

concentration of solid particles at the feed inlet, and A, the section of the cylindrical242

clarifier. Detailed definitions of the discontinuous source terms in the final PDE system243

are provided in Section 2.5.244

Similarly, the dynamic momentum balance equations can be formulated for both the245

solid phase and the liquid phase, as referenced in [2, 28, 29]:246

247
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Solid phase momentum balance:248

∂t(ρsfs) = −∂z(ρsfsvs) + εsρsg − εs∂zP − ∂zσe(εs) + r(εs)(vl − vs)

+f2s(Qf , Cf )Πf (z) (3)

where:249

εsρsg volumetric gravitational force (body force)

∂zP (z, t) gradient of the pore pressure (hydrodynamic pressure)

∂zσe(εs) gradient of the interparticle stress between the solid particles, [17].

r(εs)(vl − vs) Stokes-like drag force i.e., liquid/solid dynamic interaction force repre-

senting viscous friction between the two phases. Here, r(εs) is the resis-

tance coefficient.

250

251

Liquid phase momentum balance:252

∂t(ρlfl) = −∂z(ρlflvl) + εlρlg − εl∂zP − r(εs)(vl − vs)

+f2l(Qf , Cf )Πf (z) (4)

where f2sΠf and f2lΠf are, respectively, the discontinuous source terms that rep-253

resent the inflow of fluid and solid particles of the activated sludge at the feed inlet,254

characterized by a specific velocity. This momentum inflow at the feed level must be255

incorporated into the momentum balance, similar to how the mass input at the feed256

level is considered in the mass balance. These two terms depend on Qf , Cf and A.257

258

The next two sections present the specific constraints inherent to a two-phase sus-259

pension with non-constant velocity, as well as the constitutive relations for σe(εs) and260

r(εs).261
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2.3. Specific constraints for two-phase suspensions262

Since the sludge is a two-phase (liquid and solid) suspension, the sum of the solid particle263

volume fraction and the liquid volume fraction is given by:264

εl + εs = 1 (5)

Therefore, the liquid volume fraction, εl(z, t), can be easily calculated knowing εs.265

266

As solid particles and fluid are considered incompressible, the total volume flux267

of the suspension (or mixture average volume velocity), denoted vm(z, t), can be268

calculated as the sum of the volume fluxes of the two phases. This relationship is269

expressed by the following equation:270

vm = εlvl + εsvs (6)

Moreover, by applying equation (5), the sum of the two mass balances, (1) for the271

solid phase and (2) for the liquid phase, each divided by their respective phase densities,272

results in:273

∂zvm =
[ f1s

ρs
+ f1l

ρl

]
Πf (z) (7)

This implies that the vm divergence is zero throughout the clarifier except in the feed274

zone. The inlet flow is assumed to be uniformly distributed along the vertical feed zone275

between zf1 and zf2, with a constant volumetric flow per unit length. Due to global276

volume balance, the mean volume velocity vm takes on specific values in different zones277

of the clarifier: it is equal to −Qe(t)/A for depths z < zf1 and Qu(t)/A for depths278
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z > zf2. Within the feed zone, vm varies linearly, as expressed in equation (8):279

vm(z, t) =
−Qe/A if z < zf1

1
A∆zf

[(Qe + Qu)z − zf1Qu − zf2Qe] if zf1 ≤ z ≤ zf2

Qu/A if z > zf2

(8)

Thus, by using (5) and (6), the liquid phase velocity vl can be expressed as a function280

of the solid volume fraction εs, the solid phase velocity vs and the mixture average281

velocity vm:282

vl = vm − εsvs

(1 − εs)
(9)

Note that this equation is well-defined since liquid occupies the interstices between solid283

particles throughout the clarifier, ensuring that εs ̸= 1.284

2.4. Constitutive equations285

Some quantities, like the interparticle stress, σe, and some parameters, such as the286

drag force resistance coefficient, r, are functions of the solid particle volume fraction εs.287

These quantities are characterized by constitutive expressions, generally derived from288

experimental data. These expressions are empirical and depend on the specific properties289

of the sludge. Various constitutive equations have been proposed in the literature for290

different contexts, such as urban wastewater, mining effluents, estuarine, and coastal291

zones. A comprehensive overview of these approaches can be found in [23].292

The following constitutive equations provided by [3] for σe(εs) and by [2] for r(εs)293

are particularly well-suited for modeling the characteristics of urban sludge:294

σe(εs, α) = α(εs)σ0
εns

s − εns
c

εns
c

(10)

r(εs) = ρlg

K(εs)
with K(εs) = Ak

ε
2/(3−nr)
s

(11)
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where σ0, ns, Ak and nr are constant parameters that characterize the sludge, with295

permeability K (see Table 1 for the values used in simulations). The parameter α(εs)296

is a piecewise constant parameter defined as follows:297

α(εs) =

 0 for εs ≤ εc

1 for εs > εc

(12)

where εc is the critical solid volume fraction intermediate/compression threshold. The298

function α(εs) equals zero in the intermediate zone, where the particles are relatively299

distant from one another due to low concentration, and equals one in the compression300

zone, where interparticle stress becomes significant as particles are in closer proximity.301

Thus, the constitutive equation for σe(εs, α) varies according to the zones within the302

clarifier. The formulation of σe(εs, α) is selected to be a continuous function at εs = εc.303

304

2.5. 1-D sludge continuous settling 2 × 2 dynamic model305

With all these considerations taken into account, the four dynamic balance equations306

presented in section 2.2 can be expressed only in terms of the solid particle volume307

fraction, εs, and the solid particle volume flux, fs. This is achieved after applying all308

the simplifications implied by assumptions 1. to 8. and utilizing the algebraic equations309

specific to this two-phase suspension established in section 2.3.310

Moreover, a simplified expression of the pore pressure gradient can be considered for311

this system because the settling is very slow and the suspension is at a low concentration.312

This leads to a pressure profile that is identical to the static gradient due to Archimedes’313

buoyancy force, expressed as ∂zP = ρlg, and remains consistent throughout the duration314

of the operation, [22]. It constitutes an additional 9th assumption:315

9. ∀z ∈ [0, zb] , ∂zP = ρlg.316

Then, the solid particle volume fraction εs and flux fs variations can be expressed in317
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conservative form by manipulating equations (1), (3) and (9), [20], as follows:318

∂tεs + ∂zfs = f1s(Qf , Cf )
ρs

Πf (z) (13)

319

∂tfs + ∂z

(
f2

s

εs
+ σe(εs)

ρs

)
= εsg(1 − ρl

ρs
) + r(εs)(εsvm − fs)

ρsεs(1 − εs)

+f2s(Qf , Cf )
ρs

Πf (z) (14)

where:320

f1s(Qf , Cf ) = Cf (t)Qf (t)
A∆zf

(15)

321

f2s(Qf , Cf ) =
Cf (t)Q2

f (t)
A2∆zf

(16)

Remark: Most papers in the literature define a model using the state variables (εs, vs)322

[2, 18, 19, 21, 22]. However, for mathematical developments and numerical considera-323

tions, the variables (εs, fs) seem to us to be more appropriate.324

325

The matrix form of the 2 × 2 PDE model of the urban sludge settling is as follows:326

∂tx + ∂zFs(x) = S1(x) + S2 (17)

where x represents the state variable vector:327

x =

εs

fs


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Fs(x) represents the flux vector:328

Fs(x) =

 fs

f2
s

εs
+ σe(εs)

ρs

 (18)

329

and S1(x) and S2 are the source terms:330

S1(x) =

 0

εsg(1 − ρl

ρs
) + r(εs)(εsvm−fs)

ρsεs(1−εs)



S2 =

 f1s(Qf ,Cf)
ρs

Πf (z)
f2s(Qf ,Cf )

ρs
Πf (z)



2.6. Boundary conditions331

To determine the appropriate boundary conditions, we express the left-hand side of the332

nonlinear hyperbolic system (17) in quasi-linear form using the Jacobian matrix J(x):333

∂tx + ∂xFs(x)∂zx = ∂tx + J(x)∂zx

where334

J(x) =



 0 1
−f2

s

ε2
s

2fs

εs

 for 0 < εs ≤ εc 0 1
−f2

s

ε2
s

+ σ0ns

ρsεns
c

εns−1
s

2fs

εs

 for εs > εc

(19)
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The spectrum of the Jacobian matrices J(x), denoted Sp(J(x)), provides the eigen-335

values, λJ :336

Sp(J(x)) =



{
fs

εs
, fs

εs

}
for 0 < εs ≤ εc

{
fs

εs
−
√

σ0ns

ρsεns
c

εns−1
s , fs

εs
+
√

σ0ns

ρsεns
c

εns−1
s

}
for εs > εc

(20)

The eigenvalue analysis reveals that the system’s spatial characteristics shift at337

the threshold εc. When 0 < εs ≤ εc, the Jacobian matrix has a double positive real338

eigenvalue, indicating that the upper zone of the system is weakly hyperbolic. In339

this zone, particles move downward under applied forces without obstruction from340

particles further downstream. Conversely, if εs > εc, the matrix exhibits two distinct341

real eigenvalues, characterizing the lower zone as strictly hyperbolic. Consequently, the342

complete system remains weakly hyperbolic overall.343

Additionally, since the dimensionless ratio fs

εs

√
σ0ns

ρsε
ns
c

εns−1
s

is less than 1 in the compres-344

sion zone (where εs > εc), the two eigenvalues have opposite signs. This implies a345

downstream-driven regime in this zone, meaning that particle movement is constrained346

by the particles ahead due to the interparticle stress σe.347

To specify the boundary conditions, we first recall that during clarifier operation, the348

upstream activated sludge feed volumetric flow rate, Qf (t), and concentration, Cf (t),349

are known and measured. Additionally, the withdrawal (either recirculated or removed)350

volumetric flow rate at the bottom, Qu(t) is controlled by the selected pump rate on351

the downstream pipe. Consequently, the top overflow rate, Qe(t), is also known, as it352

follows from the constant sludge volume in the clarifier that Qf (t) = Qu(t) + Qe(t).353

Using these known quantities, we can deduce the boundary conditions necessary to354

close this system of weakly hyperbolic first-order PDEs, based on the continuity of the355

two fluxes.356

357

The continuity of the mass flux of solid particles at the top of the clarifier is expressed358
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as:359

Afs(0, t) = −εe
s(t)Qe(t) (21)

where εe
s(t) denotes the solid particle volume fraction at the very beginning of the top360

overflow outlet.361

362

The continuity of the solid particle momentum flux at the top of the clarifier is363

expressed as:364

A

(
f2

s (0, t)
εs(0, t) + σe(εs(0, t))

ρs

)
= εe

s(t)Qe(t)2

Ae
if εs(0, t) > 0 (22)

where Ae is the surface area of the top overflow.365

The continuity of the mass flux of solid particles at the bottom of the clarifier is expressed366

as:367

Afs(zb, t) = εu
s (t)Qu(t) (23)

where εu
s (t) is the solid particle volume fraction at the very beginning of the bottom368

output pipe.369

370

And the continuity of the solid particle momentum flux at the bottom of the371

clarifier is expressed as:372

A

(
f2

s (zb, t)
εs(zb, t) + σe(εs(zb, t))

ρs

)
= εu

s (t)Qu(t)2

Au
if εs(zb, t) > 0 (24)

where Au is the cross-sectional area of the downstream clarifier pipe.373

374

The state-space representation of continuous sludge settling in a clarifier is thus for-375

mulated by the nonlinear hyperbolic system given in (17) added with the constitutive376

equations for σe(εs, α), r(εs) and α(εs) as defined in (10), (11) and (12), respectively.377
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The algebraic relation for vm is provided in (8), and the influence of the sludge feed is378

specified in (15) and (16). The boundary conditions are established in (21), (22), (23)379

and (24).380

Given any initial condition within the physical domain, and applying the boundary con-381

ditions stated in (21), (22), (23) and (24), the system has a unique solution that remains382

within this domain. Consequently, this nonlinear infinite-dimensional state-space model383

is well-posed.384

The simulation uses a numerical scheme specifically designed for such nonlinear hyper-385

bolic systems, which are known to exhibit discontinuities or shock waves.386

3. Numerical scheme387

The review [23] offers an insightful discussion on numerical schemes developed for388

nonlinear hyperbolic PDEs, nonlinear parabolic PDEs, and mixed hyperbolic-parabolic389

PDEs. The numerical scheme applied to the 2 × 2 nonlinear hyperbolic system in390

this paper necessarily differs due to the presence of two coupled PDEs and additional391

source terms. The simulations were conducted using explicit Euler time-discretization392

along with an efficient numerical scheme specifically designed for hyperbolic and393

weakly hyperbolic nonlinear PDE systems. This involved a finite volume method394

spatial-discretization of Godunov type using the Rusanov approximation for the fluxes395

[24], [26]. Based on the integral form of the balance laws, this approach is particularly396

effective for simulating fluid mechanics, as well as heat and mass transfer processes.397

One of its key advantages is its ability to locally preserve balance laws with respect to398

the fluxes [26].399

400

The state space vector is spatially discretized on a uniform mesh consisting of Nz401

volumes, each with thickness ∆z and a constant cross-sectional area, A. Each volume i402

lies between an upstream boundary, indexed i− 1
2 , and a downstream frontier boundary,403

indexed i + 1
2 .404
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Equation (17) can be expressed in integral form as follows:405

∫ i+1/2

i−1/2

dx(z, t)
dt

dz = Fi− 1
2
(t) − Fi+ 1

2
(t) +

∫ i+1/2

i−1/2
(S1(x) + S2) dz (25)

where Fi± 1
2
(t) = Fs(x(z, t))|z=(i±1/2)∆z406

407

Considering that the state variables are uniform within each mesh and are represented

by, x̄i(t), such that:

x̄i(t) = 1
∆z

∫ i+1/2

i−1/2
x(z, t)dz

equation (25) can be approximated by:408

dx̄i(t)
dt

= 1
∆z

(
Fi− 1

2
(t) − Fi+ 1

2
(t)
)

+ S1(x̄i) + S2 (26)

where we assume that S1(x̄i) provides a good approximation for 1
∆z

∫ i+1/2
i−1/2 S1(x)dz.409

410

Let F n
i± 1

2
denote an approximation of the fluxes Fi± 1

2
(t) as a function of x̄n

i at time411

tn.412

The equation (26) can therefore be expressed as follows:413

x̄n+1
i − x̄n

i

∆t
= 1

∆z

(
F n

i− 1
2
(x̄n

i ) − F n
i+ 1

2
(x̄n

i )
)

+ S1(x̄n
i ) + S2 (27)

For hyperbolic systems, special attention is required when selecting these approx-414

imations [25], [26]. Here, the Rusanov approximation is chosen because it effectively415

captures shock waves in the model:416

F n
i− 1

2
(x̄n

i ) = 1
2
(
F n

s (x̄n
i−1) + F n

s (x̄n
i )
)

−
wn

i− 1
2

2
(
x̄n

i − x̄n
i−1

)
(28)

where wn
i− 1

2
represents the propagation velocity of the fastest wave immediately417

around the interface i − 1
2 at tn. To ensure the stability of this method, the mesh418
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size must satisfy the Courant-Friedrichs-Lewy (CFL) condition, namely, |wn
s

∆t
∆z | < 1.419

This propagation velocity, wn
s , corresponds to the velocity of the fastest wave in the420

hyperbolic system at tn and is calculated from (20) [25].421

422

Remark: The Rusanov numerical scheme is also effective for weakly hyperbolic423

systems, such as (17), and will yield a continuously smooth solution in cases involving424

a rarefaction wave [26].425

426

The model and numerical scheme developed in the previous sections will be applied427

in section 4 to simulate an experimental dynamic event for validation purposes, and in428

section 5 to simulate two hypothetical scenarios, worst-case and closed-loop, to assess if429

the predicted clarifier behaviour is sufficiently consistent for use as a decision support430

tool.431

4. Simulation of a dynamic event at SYSTEPUR plant432

A dynamic event was experimentally applied to a full-scale clarifier located at the433

SYSTEPUR wastewater treatment plant in Vienne, France [31]. This urban treat-434

ment facility features two biological aeration tanks operating in parallel and two435

secondary clarifiers also running in parallel. Each secondary clarifier is equipped with436

two ON/OFF pumps for sludge recirculation and two ON/OFF pumps for sludge437

extraction. In accordance with the control strategy, one or two recirculation pumps438

are always in operation, while zero, one, or two extraction pumps may also be active.439

Additionally, there is a third recirculation pump available solely for emergencies. Our440

experimental study focused on investigating the dynamic evolution of the separation441

between liquid and sludge particles within the clarifier.442

443

The inlet flow was artificially increased by approximately twofold by redirecting444

the outlets of the two biological aeration tanks to a single clarifier for a duration of445

about 8 hours (from t=1:40 to t=9:45). This led to a sudden rise in the flow rate of446

activated sludge Qf at the inlet to the secondary clarifier. Continuous monitoring was447
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conducted for flow rates Qf (t), Qur(t) and Que(t), the depth of the sludge blanket448

zv(t), as well as the particle concentrations Cf (t) and Cur(t). The sludge blanket level449

was measured using an ultrasound Royce device mounted on the rotating deck above.450

In this section, the simulated results generated by our model are compared with the451

experimental data specifically collected to validate the 1-D model.
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Figure 2.: Measured activated sludge feed flow rate and average value, Qf (t), recircula-
tion flow rate, Qur(t) and extraction flow rate, Que(t).

452

During this experimental study, the sludge recirculation flow rate was set at453

Qur = 180 m3/h until 9:45, utilizing one recirculation pump. Following this time, the454

recirculation flow rate increased to Qur = 360 m3/h, with two recirculation pumps in455

operation. Throughout the entire duration of the experiment, the sludge extraction456

flow rate Que(t) remained zero. Figure 2 presents the experimental time profile of Qf (t)457

along with the average measurements for Qf (t) and the other flow rate values.458

459

A uniform 200-node spatial mesh, along with the parameter values listed in Ta-460

ble 1, which were selected to align with the measurements, was employed to conduct461

the simulations. The Chauchat model [2] is part of the same family of models (family462
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3) as the one presented in this paper, while the Garrido et al. model [3] incorporates a463

static momentum balance and thus also requires constitutive equations for the forces464

involved. The corresponding parameter values were determined using the least squares465

method for a batch sludge settling experiment, and a trial-and-error approach was466

utilized to fine-tune them for the continuous sludge settling scenario. The flow rate467

Qf (t) and the solid particle concentration Cf (t) of the activated sludge at the inlet468

of the clarifier used in the simulations are averaged values (as represented by the red469

curve in Fig. 2 and the corresponding value in Table 1).470

Some parameter values in Table 1 pertain to the characteristics of the clarifier or

A 1175 m2 clarifier section
Ak 9.81 10−4 m/s ∗C
Cc 4.18 kg/m3 ∗E
Cf 2.83 kg/m3 averaged feed concentration
∆t 1 s numerical time discretization
∆z 10 cm numerical spatial discretization
∆zf 10 cm feed zone height
εc 4.1 10−3 ∗E
nr 2 ∗C
ns 11 ∗G
ρs 1030 kg/m3 ∗E
ρl 1000 kg/m3 liquid density
σ0 0.5 kg/ms2 ∗G
zb 2.8 m clarifier height
zf 1.8 m central location of the feed zone

*G: determined by fitting the measurements to the constitutive equations from [3]
*C: determined by fitting the measurements to the constitutive equations from [2]

*E: determined by fitting the measurements to our model

Table 1.: Model parameter values.

471

to the numerical discretization. The other parameter values are derived from the472

measurements and ranges suggested in [2] and [3], which have been adapted from473

mineral to organic sludge. Notably, the density of mineral particulate systems is474

approximately twice that of organic sludge, which significantly alters the settling475

dynamics due to the differences in the forces exerted on the solid particles.476

477

Fig. 3 presents the simulated and measured values for the sludge blanket level,478

which are in close agreement. This figure indicates that, immediately after the dynamic479

event was applied at the inlet of the clarifier at t=1:40, the sludge blanket level,480
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zv(t), increases to a depth of 0.48 m by 9:40. At this point, the activation of a second481

recirculation pump leads to a decrease in the sludge blanket level until the end of the482

measurement period. This observation suggests that the model effectively captures the483

key settling phenomena occurring within the clarifier.
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Figure 3.: Comparison of simulated and measured sludge blanket levels, zv(t), in the
dynamic event scenario.

484

It is noteworthy that the measurement of the sludge blanket exhibits minimal noise485

during upward movement; however, it becomes more noisy when moving downwards.486

This phenomenon occurs because sludge particles do not all descend at the same487

velocity or in the same manner, and the sensor detects the highest particles. The488

simulation using the one-dimensional model represents average behaviour.489

490

Five simulated solid particle concentration spatial profiles (from t1 to t5) of the491

dynamic event are presented in Fig. 4.a. For each of these spatial profiles, the particle492

concentration at the top of the clarifier, Cs(0, t), approaches zero. The spatial profiles493

show a sharp increase at the depth of the sludge blanket, followed by a more gradual494

rise as the critical concentration threshold, Cc (indicated by the red dashed line), is495
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surpassed. Similar to the experimental observations, a change in behaviour is observed496

below the lower interface when the compression threshold is exceeded, due to the497

presence of interparticle stress. This results in a higher concentration of solid particles in498

the lower compression zone. The sludge blanket level corresponds to the spatial position499

of the maximum concentration gradient of the solid particles. It also corresponds to500

the location of the shock wave (discontinuity). It should be mentioned that there is501

no intermediate zone present in this continuous settling process. Five simulated solid
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Figure 4.: Simulated state variables vertical spatial profiles at 5 timepoints. (Blue curves:
the sludge blanket rises, cyan curves: the sludge blanket descends.)

502

particle flux spatial profiles (from t1 to t5) of the dynamic event are shown in Fig. 4.b.503

The particle flux at the bottom of the clarifier, fs(zb, t), is approximately 2.9 10−6 m/s.504

The sludge blanket level corresponds to the spatial position of the maximum flux peak,505

which reaches around 9 10−5 m/s, approximately 30 times the flux at the bottom,506

fs(zb, t). This indicates the location of the shock wave for the solid particle flux variable.507

508

Currently, the runtime for a simulation on a workstation equipped with Intel Xeon509

processor at 3.8 GHz is 11 min. While this duration may seem lengthy, it can be510

attributed to the inherently slow nature of the settling phenomenon. Additionally, the511

numerical scheme must effectively capture the variations in the position of the sludge512

blanket, which represents a concentration discontinuity.513

514

The model presented in section 2. and validated with measurements in section 4.2.515
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is now available for predicting clarifier behaviour in various scenarios.516

5. Predictive simulation assuming ongoing storm and second pump failure517

In this section, we simulate two scenarios: first, the effects of a prolonged storm, and518

second, the consequences of the second pump failing at 9:45 (worst-case scenario).519

The aim of these simulations is to evaluate whether the proposed model, along with520

its boundary conditions, can predict consistent clarifier behaviour. In a real-world521

scenario, if the second pump were to fail, the operator would start an emergency pump522

to ensure the proper recirculation flow upon receiving an alarm. Thus, this scenario523

represents a hypothetical situation.524

525

Flow rates are illustrated in in Fig. 5.a, where (Qf (t) remains constant at 660 m3/s526

instead of experiencing a drop, and Qur(t) stays at 180 m3/s). The predicted evolution527

of the sludge blanket level over time is presented in Fig. 5.b. Five predicted solid528

particle concentration spatial profiles (from t1 to t5) are shown in Fig. 6.a, while529

the predicted concentration at the top of the clarifier is illustrated in Fig. 6.b. It is530

noteworthy that solid particles would begin to be discharged through the overflow531

starting at 12:15, with a concentration of 1.94 kg/m3, three hours after the failure532

began. Thus, the proposed model with its boundary conditions effectively represents533

the potential for particles to exit the top of the clarifier when faced with inadequate534

management strategies.535

536

6. Predictive simulation assuming ongoing storm with recirculation flow537

rate calculated to maintain particles quantity in the clarifier538

In this second predictive scenario, assuming an ongoing storm (with the flow rate Qf (t)539

consistent with section 5), we aim to investigate the effects of adjusting the recirculation540

flow rate, Qur, to be dependent on the concentrations at the top and bottom of the541

clarifier, as well as on the feed concentration and flow rate. The relationship is defined542
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Figure 5.: Flow rates and sludge blanket level prediction in case of ongoing storm and
2nd pump failure at 9:45 (worst-case scenario).
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Figure 6.: Predicted solid particle concentration Cs in case of ongoing storm and 2nd
pump failure at 9:45 (worst-case scenario).

as follows: Qn+1
ur = min

(
(Cf − ρsε̄

n
s1)Qf

ρs(ε̄n
sN

− ε̄n
s1) , Qurmax

)
where index 1 refers to the top of543

the clarifier and index N to the bottom. This formulation aims to stabilize the sludge544

blanket at a specific depth. Implementing this requires a variable-flow pump in good545

working condition (without failures) and appropriate concentration and flow sensors,546

such as total suspended solids (TSS) optical probes or soft TSS sensors.547

548

The flow rates Qf and Que, representing the scenario, along with the calculated flow549

rate, Qur, are illustrated in Fig. 7.b. It can be observed that two pumps are operating,550

yielding a total flow rate of approximately 410 m3/s. The predicted evolution of the551

sludge blanket level over time is presented in Fig. 7.a. We can observe that the sludge552

26



0 2 4 6 8 10 12 14 16

Time (h)

0

0.5

1

1.5

2

2.5

z
v
 (

m
)

Closed loop predicted z
v

(a) Sludge blanket level, zv(t)

0 2 4 6 8 10 12 14 16

Time (h)

0

100

200

300

400

500

600

700

800

F
lo

w
 r

a
te

s
 (

m
3
/h

)

Q
f

Calculated Q
ur

Q
ue

(b) Qf (t), Qur(t) and Que(t) flow rates

Figure 7.: Sludge blanket level prediction and calculated Qur flow rate assuming ongoing
storm and recirculation flow rate calculated from top and bottom particles volume
fractions and feed concentration and flow rate.

blanket level is gradually moving down instead of remaining constant. This behaviour553

is attributed to a slightly altered distribution of solid particles in the lower part of the554

clarifier beneath the sludge blanket.555

7. Conclusions and perspectives556

To the best of our knowledge, the mechanistic one-dimensional dynamic model of urban557

sludge settling in a continuous secondary clarifier presented in this paper, along with the558

numerical scheme, is the only model-numerical scheme combination in family 3 specifi-559

cally designed for urban sludge. Its originality and advantages lie in the fact that both560

mass and momentum balances are dynamic, explicitly accounting for the four forces561

acting on the solid particles: pressure, effective inter-particle stress, gravity and drag562

force. The numerical scheme used for the simulation is designed to address the specific563

requirements of 2 × 2 hyperbolic and weakly hyperbolic nonlinear PDEs systems with564

source terms. It uses a finite volume method for spatial-discretization combined with the565

Rusanov approximation of the fluxes [26]. This scheme calculates all necessary variables566

for making operational decisions regarding the clarifier, including the evolution of the567

solid particle concentration profile over time as well as the outlet concentrations Ce(t)568

and Cu(t) and sludge blanket position zv(t), given the activated sludge feed flow rate569

and concentration Qf (t) and Cf (t), as well as the compressed sludge outlet flow rate570
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Qu(t).571

This numerical scheme effectively captures the two mobile interfaces that develop be-572

tween the three zones during the sludge settling process. To ensure its stability, it is573

essential to calculate the propagation velocity of the fastest wave in the system, as this574

value is used to define the time steps in accordance with the Courant-Friedrichs-Lewy575

(CFL) condition. It should be noted that simulating the 2x2 hyperbolic system, includ-576

ing nonlinear source terms, is more challenging and requires greater computational effort577

than the simulation of models from families 1 and 2, which is a disadvantage. Future578

comparative studies could be conducted to quantify the differences in predictions when579

considering the three families of models for continuous sludge settling.580

This paper also presents comparisons with experimental data collected from an urban581

water treatment plant during a dynamic event, showing that the simulations capture the582

main settling phenomena within the clarifier. Additionally, this paper presents predic-583

tions for two relevant scenarios that differ from the validation scenario and are realistic.584

The 1-D model proposed here will be used in future works for the design of a closed-loop585

controller focused on regulating energy consumption and water quality at the top of the586

clarifier, ultimately contributing to real-time computer-aided management.587

Additionally, a decision support tool based on family 3 models will be more effective588

if it incorporates periodic parameter estimation to adapt to the variability of sludge589

(primary, secondary, from mines, cities, etc.) and atmospheric conditions. It should590

also be noted that estimating the parameters of the presented dynamic model to align591

with the measurements provides an indirect method for determining the intermedi-592

ate/compression threshold, Cc.593
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Notations594

Index i stands for liquid phase (l) or solid phase (particles) (s).595

α(εs) piecewise constant intermediate/compression zone flag

A cylindric clarifier section (m2)

Ae(t) overflow surface (m2)

Au outlet pipe section (m2)

Ci(z, t) solid (liquid) phase mass concentration (kg/m3) Ci(z, t) = ρiεi(z, t)

Cf (t) mass concentration of solids at the activated sludge feed (kg/m3)

εi(z, t) solid (liquid) phase volume fraction

εc solid volume fraction intermediate/compression zone threshold

fs(z, t) system average volumetric flux (m/s)

P (z, t) excess pore pressure (Pa)

Qf (t) volumetric flow rate of the activated sludge feed (m3/s)

Qe(t) volumetric flow rate of the clarified water released at the top of the

clarifier (m3/s)

Qu(t) volumetric flow rate of the compressed sludge which is pumped from

the bottom of the clarifier (m3/s)

r(εs) resistance coefficient of the drag force proposed by Darcy and Ger-

sevanov in a two-phase model (kg.m−3.s−1)

ρi solid (liquid) phase density (kg/m3)

σe(εs) effective solid stress function (Pa)

vi(z, t) solid (liquid) phase average velocity (m/s)

vm(z, t) volume average velocity (total volume flux of the suspension) (m/s)

zb cylindric clarifier height (m)

zc(t) intermediate/compression interface location (m)

zf average location of the activated sludge feed zone (m)

zv(t) sludge blanket location (m)

596
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