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Summary

� Harnessing the plant microbiome through plant genetics is of increasing interest to those

seeking to improve plant nutrition and health. While genome-wide association studies

(GWAS) have been conducted to identify plant genes driving the plant microbiome, more

multidisciplinary studies are required to assess the relationships among plant genetics, plant

microbiome and plant fitness.
� Using a metabarcoding approach, we characterized the rhizosphere bacterial communities

of a core collection of 155 Medicago truncatula genotypes along with the plant phenotype

and investigated the plant genetic effects through GWAS.
� The different genotypes within the M. truncatula core collection showed contrasting growth

and nutritional strategies but few loci were associated with these ecophysiological traits. To go

further, we described its associated rhizosphere bacterial communities, dominated by Proteobac-

teria, Actinobacteria and Bacteroidetes, and defined a core rhizosphere bacterial community.

Next, the occurrences of bacterial candidates predicting plant ecophysiological traits of interest

were identified using random forest analyses. Some of them were heritable and plant loci were

identified, pinpointing genes related to response to hormone stimulus, systemic acquired resis-

tance, response to stress, nutrient starvation or transport, and root development.
� Together, these results suggest that plant genetics can affect plant growth and nutritional

strategies by harnessing keystone bacteria in a well-connected interaction network.

Introduction

While conventional intensive agricultural practices allowed yields
to drastically increase to feed a growing population, this relied
mainly on plant breeding and a large use of inputs (e.g. fertilizers
and pesticides). However, inputs have negatively impacted the
environment, biodiversity and human health. Now agricultural
production faces the challenge of supplying an increasing world
population without hampering ecosystems (Tilman et al., 2002).
Within the agroecological transition, one objective is to reduce
the use of inputs and increase biological diversity and biological
regulation without hampering crop production, the nature-based
solution (FAO, 2014).

In this context, there is a growing interest in maximizing eco-
systemic services through the promotion of beneficial biological
interactions, such as plant–microbiome interactions (Singh
et al., 2020). The plant microbiome has been shown to improve
plant nutrition and health (Lugtenberg & Kamilova, 2009; Bul-
garelli et al., 2013; Pieterse et al., 2014). However, plant micro-
biome is driven by soil type, agricultural practices, environmental
conditions, and biotic interactions (Philippot et al., 2013). Plant–
microbiome interactions are thereby complex as a plant can also

drive its associated microbiome, especially through plant genetics
and molecular mechanisms. For example, it has been shown that
plant species, plant genotype (Van Overbeek & Van Elsas, 2008;
Micallef et al., 2009), plant compartment (Brown et al., 2020;
Trivedi et al., 2020), plant developmental stage (Mougel
et al., 2006; Edwards et al., 2018) and root exudates (Zhalnina
et al., 2018) affect the plant microbiome. Therefore, increasing
our knowledge is needed to identify the genetic bases and molecu-
lar mechanisms involved in the microbiome recruitment to be able
to harness plant microbiome through plant genetics.

For that, two types of approaches have been developed (Bergel-
son et al., 2021): targeted approaches using mutants and trans-
genic lines in specific functions; and untargeted approaches using
segregating or natural population and quantitative genetics (Hor-
ton et al., 2014; Escudero-Martinez et al., 2022). Thereby,
genome-wide association studies (GWAS) have been used to
identify new loci and genes impacting the microbiome (especially
bacterial and fungal communities) in different model or culti-
vated plant species (i.e. Arabidospis thaliana, maize, rice, sor-
ghum, foxtail millet and switchgrass) and for different plant
compartments, such as leaves, roots and more recently the rhizo-
sphere (Horton et al., 2014; Wallace et al., 2018;
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Bergelson et al., 2019; Roman-Reyna et al., 2020; Deng
et al., 2021; Brachi et al., 2022; Meier et al., 2022; Sutherland
et al., 2022; VanWallendael et al., 2022; Wang et al., 2022;
Andreo-Jimenez et al., 2023; Su et al., 2024). These studies
showed heritability especially for beta-diversity components, spe-
cific OTUs/ASVs (operational taxonomic unit/amplicon
sequence variant) or functions, but rarely on alpha-diversity
metrics. Plant genetic bases of microbial interactions were also
recently assessed using microbial networks (He et al., 2021; Li
et al., 2022). These studies enabled the identification of plant
genes related to defense response, kinase activity, cell-wall integ-
rity, root development, trichome formation and nutrition.

While GWAS allowed identifying genes involved in microbiome
recruitment to improve plant growth, nutrition, and health, inter-
estingly few recent studies have assessed the effect of plant genetics
on the associated microbiome in relation to plant performance (i.e.
for Arabidopsis leaf bacterial and fungal communities on mature
stem size by image analysis, a proxy for seed production, Brachi
et al., 2022; for maize rhizosphere bacterial communities on 15
plant vigor traits, Meier et al., 2022; for foxtail millet root bacterial
communities on 12 plant vigor traits, Wang et al., 2022; and for
switchgrass rhizosphere bacterial communities on anthesis date and
plant height, Sutherland et al., 2022).

In this study, we conducted the first GWAS analysis on the
microbiome associated to the model legume, Medicago trunca-
tula, and also considering both plant growth and plant nutri-
tional strategy. We previously showed that the genotype of
M. truncatula is affecting especially the rhizosphere bacterial
communities, when analyzing both bacterial and fungal commu-
nities in the rhizosphere and in the root compartments (i.e. pool-
ing rhizoplane and endosphere) (Zancarini et al., 2013).
Therefore, we decided to conduct these GWAS analyses only on
the rhizosphere bacterial communities using 16S rRNA gene
sequencing and using a core collection of 155 accessions of M.
truncatula grown in a Mediterranean soil under controlled glass-
house conditions. First, we characterized the different genotypes
of the M. truncatula core collection for their growth and nutri-
tional strategies, and identified their associated plant genetic loci
using GWAS. Second, we described their associated rhizosphere
bacterial communities, which can be considered as the ‘extended
plant phenotype’. Then, we assessed relationships between the
plant ecophysiological traits and their associated rhizosphere bac-
terial community composition to identify bacterial candidates
predicting plant phenotypic traits of interest. Finally, we tested
whether plant genetic loci are associated with these individual
bacterial candidates through GWAS. Our study linked plant sin-
gle nucleotide polymorphisms (SNPs), its associated rhizosphere
bacterial community and plant growth and nutritional strategy.

Materials and Methods

Plant material and culture conditions

Seeds of 155 accessions of a Medicago truncatula core collection
(Supporting Information Table S1) were scarified and surface
sterilized (Mougel et al., 2006), vernalized at 4°C during 48 h,

germinated on 0.7% (w/v) water agar plates at 25°C in the dark,
and sown in a Mediterranean silty-clayey soil (Mas d’Imbert,
France) in a randomized design (Table S2). The plants were
watered with demineralized water and cultivated up to the end of
their vegetative period under a photoperiod of 14 h and a tem-
perature of 25°C : 19°C (day : night).

Plant phenotyping

At three sampling dates during the vegetative developmental
stage (488, 734 and 848 degree-days, or, respectively, 28, 42 and
49 d after sowing), three plants per accession were harvested to
measure dry shoot and root biomasses, degree of nodulation
(Moreau et al., 2008) and total carbon and nitrogen contents
using a CHN (Carbon Hydrogen Nitrogen) analyzer (Carlo
Erba, Val de Reuil, France). Then, the nitrogen nutrition index
(NNI) was calculated for the last vegetative stage (Gastal &
Lemaire, 2002; Moreau et al., 2008), and four parameters were
estimated using an ecophysiological framework (i.e. the radiation
use efficiency (RUE) for biomass production, the root to total
biomass ratio (RTR), the plant-specific N uptake (SNU), and the
conversion factor of N to leaf area (NLA), Moreau et al., 2012).
A different plant batch of three plants per accession was used to
estimate leaf area every week from 19 to 54 d after sowing using
a noninvasive monitoring setup (Moreau et al., 2009).

Bacterial diversity, composition, functional prediction, and
potential interactions

At the last harvest, plants were also analyzed to assess their asso-
ciated rhizosphere bacterial community composition and diver-
sity using an amplicon-sequencing approach. DNA was extracted
and quantified from rhizosphere soil as previously described by
Mougel et al. (2006). The variable region V4 of the 16S rRNA
gene was amplified using the F479 and R888 primers (Terrat
et al., 2015) and sequenced using Illumina MiSeq sequencing
technology by GenoScreen (Lille, France, https://www.
genoscreen.fr/fr/). Then, the bioinformatic analyses were per-
formed using the GnS-PIPE, now renamed BIOCOM-PIPE
(Terrat et al., 2012; Djemiel et al., 2020). Next, the OTUs with
counts lower than 41 over all the samples were filtered out, and a
total count between-sample normalization was applied to correct
for the different sequencing depth.

Alpha-diversity indices were calculated using the package VEGAN

(Oksanen et al., 2020). While we used the nonfiltered and
non-normalized OTU occurrence dataset for the rarefaction curves,
the observed richness and the Chao1 (Deng et al., 2024), we used
the filtered and normalized OTU occurrence dataset for the Shan-
non, Pielou’s evenness and inverse Simpson indices (Fig. S1).

The beta-diversity was estimated at the OTU level based on both
Bray-Curtis and Sørensen distances (Baselga, 2010) using VEGAN

and BETAPART packages (Baselga & Orme, 2012), respectively.
Functional prediction of the bacterial communities was

assessed using PICRUSt2 (Phylogenetic Investigation of Com-
munities by Reconstruction of Unobserved States) (Langille
et al., 2013; Douglas et al., 2020). Correspondence between EC
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and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way and categories were downloaded from https://www.genome.
jp/kegg-bin/get_htext#B3 (version 14 October 2020) in order to
be able to group EC per KEGG categories.

Finally, we calculated Spearman correlations using the SparCC
method (Sparse Correlations for Compositional data (Friedman
& Alm, 2012), using 500 iterations and 500 bootstraps) among
the filtered and normalized occurrences of the rhizosphere bacter-
ial OTUs, which are present in all the samples (n = 435), to
define the core bacterial community of M. truncatula. Only sig-
nificant correlations (pseudo P-values ≤ 0.05 based on 500 boot-
straps) with an absolute correlation magnitude ≥ 0.5 were
considered for the network display using CYTOSCAPE software
(Shannon et al., 2003). Network properties (e.g. density, dia-
meter, mean distance, transitivity, assortativity, betweenness,
eigen-centrality and cliques) and the 1000 random networks were
calculated using the IGRAPH package (Csardi & Nepusz, 2006).
Groups of OTUs were defined using the betweenness edge clus-
tering method and hubs were pinpointed based on both their
degree and betweenness centrality.

Random forests

We conducted three regression random forests (RF) (Breiman,
2001) analyses using the MUVR package (Shi et al., 2019) to iden-
tify the major OTU predictors for three plant phenotypic vari-
ables (total dry biomass at 848 degree-days after sowing (TDW
VS3), RTR and SNU). To decrease the number of OTU used in
the RF analyses, we removed rare OTUs (< 0.01%) (Fig. S1).
The statistical significance of the models was assessed with 100
permutations of the plant phenotypic variable.

Estimates of genetic variance and heritability

Heritability (h2) was calculated as genetic variance (varG) divided
by the sum of genetic variance and the error variance
(varG + varerror/n), where n = 3 is the total number of replicates
in our random design. We considered as heritable a variable with
significant nonzero genetic variance (P-value of the likelihood
ratio test for the genetic effect lower than 0.05) and h2 higher
than 0.25. Furthermore, we checked the variation within the
replicates by calculating their coefficients of variation, and
removed traits for which the median of their coefficients of varia-
tion over the different plant genotypes was greater than 0.6.

Procedure for GWAS

SNP data were obtained by Illumina sequencing from the Medi-
cago truncatula HapMap project (Stanton-Geddes et al., 2013)
and were filtered and imputed as described by Le Signor
et al. (2017). The GEMMA (Genome-wide Efficient Mixed
Model Association algorithm) software v.0.94 (Zhou & Ste-
phens, 2012) was used to test through a standard linear mixed
model for marker association with a single phenotype account-
ing for sample structure (Bonhomme et al., 2014) and popula-
tion stratification. The positions of SNPs inside or in the

vicinity of genes were downloaded from https://medicago.
legumeinfo.org/. To refine candidate gene selection, a GEMMA
P-value cut-off at 10�6 was applied to reduce the false-positive
rate while retaining minor effects SNPs. Singular enrichment
analyses (SEA) using an exact Fisher test were done with the
TOPGO R package (Alexa & Rahnenfuhrer, 2016) using GO term
annotations from Medicago truncatula v.4.0v1 (https://jgi.doe.
gov, (Tang et al., 2014)).

Full details of materials and methods are provided in Methods
S1. All datasets used to produce the analyses and figures and R
scripts are available in Notes S1. A list of the different acronyms
used is provided in Table S3.

Results

Plant growth and nutritional strategies are contrasted
within theMedicago truncatula core collection

Plant growth was characterized with standard phenotypic structural
descriptors such as leaf area, shoot, root and total dry weight at
three vegetative stages. Medicago truncatula showed significant con-
trasted biomasses and growth according to its genotype (Kruskal–
Wallis tests, P-value < 0.001, Table 1). Moreover, under our
experimental conditions, all plant genotypes of the core collection
exhibited N deficiency (nitrogen nutritional index (NNI) =
0.58 � 0.03) (Table 1), while they all showed functional nodu-
lated roots (i.e. many pink nodules of large size). Whereas no sig-
nificant difference could be assessed in the observed nodulation
score at the last vegetative stage, significant differences in nodula-
tion scores at the two first vegetative stages were recorded among
the plant genotypes (Kruskal–Wallis test, P-value = 0.01 and
0.007, respectively). A significant plant genotype effect was also
observed for NNI at VS3 (Kruskal–Wallis test, P-value = 0.01).
Finally, to go further and assess carbon (C) and nitrogen (N) nutri-
tional strategies, an ecophysiological framework (Moreau
et al., 2012) was used to estimate four parameters: RUE; RTR;
SNU and the NLA (Table 1). Following a clustering analysis,
based on Euclidean distances, five groups of plant genotypes show-
ing contrasted growth and nutritional strategies were defined that
did not correspond to the genetic structure of the core collection
studied (Table S4). Group 2 is characterized by a high biomass
along the three vegetative stages and a high-nodulation score at the
first vegetative stage (Fig. 1; Table 1). Groups 1 and 5 had low and
medium biomasses at the first vegetative stage, but high biomasses
at the last vegetative stage. Group 1 is characterized by a high SNU
and low RTR, while group 5 is characterized by high RUE and
RTR, and low NLA. Groups 3 and 4 are characterized by low bio-
masses. Group 3 showed low-nitrogen ratio and nodulation score
at the first two vegetative stages, and group 4 displayed both high
RTR and low RUE (Fig. 1; Table 1).

Plant loci associated with the plant ecophysiological traits

As plant biomass and nutritional strategies are shaped by the host
genotype, we then performed GWAS on heritable traits (i.e. sig-
nificant nonzero genetic variance and heritability higher than

� 2024 The Author(s).

New Phytologist� 2024 New Phytologist Foundation.

New Phytologist (2024)
www.newphytologist.com

New
Phytologist Research 3

 14698137, 0, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.20272 by U

niversité D
e R

ennes, W
iley O

nline L
ibrary on [13/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.genome.jp/kegg-bin/get_htext#B3
https://www.genome.jp/kegg-bin/get_htext#B3
https://www.genome.jp/kegg-bin/get_htext#B3
https://www.genome.jp/kegg-bin/get_htext#B3
https://medicago.legumeinfo.org/
https://medicago.legumeinfo.org/
https://jgi.doe.gov
https://jgi.doe.gov


T
ab

le
1
P
la
n
t
g
ro
w
th

an
d
n
u
tr
it
io
n
al
st
ra
te
g
ie
s
o
f
th
e
M
e
d
ic
a
g
o
tr
u
n
ca
tu
la

co
re

co
lle
ct
io
n
.

A
ve

ra
g
e
�

SD

K
ru
sk
al
–W

al
lis

te
st
s
P
r
(>

F
)

A
ve

ra
g
e
an

d
D
u
n
n
te
st
s

P
la
n
t
g
en

o
ty
p
e

Ec
o
p
h
y.

g
ro
u
p

G
ro
u
p
E1

G
ro
u
p
E2

G
ro
u
p
E3

G
ro
u
p
E4

G
ro
u
p
E5

Le
af

ar
ea

(c
m

2
)

V
S1

5
.7

�
2
.2

4
9

1
0
�
4
**

*
5
9

1
0
�
9
**

*
4
.6

b
7
.4

a
5
.4

b
4
.9

b
4
.1

b
V
S2

2
8
.6

�
8
.3

3
9

1
0
�
6
**

*
3
9

1
0
�
9
**

*
2
9
.7

ab
3
3
.2

a
2
4
.2

b
c

2
8
.5

ab
1
8
.9

c
V
S3

4
9
.2

�
1
4
.5

9
9

1
0
�
7
**

*
7
9

1
0
�
9
**

*
5
4
.0

a
5
5
.0

a
4
1
.5

b
c

4
8
.4

ab
3
3
.6

c
Sh

o
o
t
d
ry

b
io
m
as
s
(g
)

V
S1

0
.0
3
7
�

0
.0
1
6

3
9

1
0
�
6
**

*
2
9

1
0
�
1
0
**

*
0
.0
2
7
b

0
.0
5
1
a

0
.0
3
1
b

0
.0
3
2
b

0
.0
3
8
ab

V
S2

0
.2
5
�

0
.0
6

2
9

1
0
�
5
**

*
3
9

1
0
�
1
3
**

*
0
.2
1
b

0
.3
2
a

0
.2
2
b

0
.2
3
b

0
.2
6
ab

V
S3

0
.4
2
�

0
.1
0

3
9

1
0
�
5
**

*
5
9

1
0
�
1
1
**

*
0
.4
4
a

0
.4
7
a

0
.3
4
b

0
.3
6
b

0
.4
6
a

R
o
o
t
d
ry

b
io
m
as
s
(g
)

V
S1

0
.0
2
0
�

0
.0
0
9

4
9

1
0
�
6
**

*
2
9

1
0
�
1
0
**

*
0
.0
1
4
b

0
.0
2
6
a

0
.0
2
1
a

0
.0
1
3
b

0
.0
1
9
ab

V
S2

0
.1
1
�

0
.0
3

4
9

1
0
�
5
**

*
9
9

1
0
�
1
6
**

*
0
.0
8
c

0
.1
4
a

0
.1
0
b
c

0
.1
1
b

0
.1
2
ab

V
S3

0
.2
0
�

0
.0
5

9
9

1
0
�
4
**

*
1
9

1
0
�
8
**

*
0
.1
9
b

0
.2
3
a

0
.1
7
b

0
.1
8
b

0
.2
3
a

T
o
ta
ld

ry
b
io
m
as
s
(g
)

V
S1

0
.0
5
7
�

0
.0
2
4

1
9

1
0
�
6
**

*
3
9

1
0
�
1
0
**

*
0
.0
4
1
b

0
.0
7
7
a

0
.0
5
2
b

0
.0
4
5
b

0
.0
5
7
ab

V
S2

0
.3
6
�

0
.0
9

1
9

1
0
�
5
**

*
1
9

1
0
�
1
4
**

*
0
.3
0
c

0
.4
5
a

0
.3
2
b
c

0
.3
4
b
c

0
.3
8
ab

V
S3

0
.6
2
�

0
.1
4

4
9

1
0
�
5
**

*
3
9

1
0
�
1
1
**

*
0
.6
3
ab

0
.7
0
a

0
.5
2
c

0
.5
5
b
c

0
.6
9
a

R
o
o
t
to

to
ta
ld

ry
b
io
m
as
s
ra
ti
o
(R
T
R
)

V
S1

0
.3
4
�

0
.0
5

0
.0
2
*

4
9

1
0
�
1
3
**

*
0
.3
3
b
c

0
.3
4
b

0
.3
9
a

0
.2
9
c

0
.3
2
b
c

V
S2

0
.3
0
�

0
.0
3

0
.3
2
n
s

0
.0
3
*

0
.2
8
b

0
.3
0
ab

0
.3
1
ab

0
.3
1
a

0
.3
1
ab

V
S3

0
.3
3
�

0
.0
3

0
.0
0
8
**

9
9

1
0
�
4
**

*
0
.3
0
b

0
.3
3
a

0
.3
3
a

0
.3
4
a

0
.3
3
a

N
it
ro
g
en

ra
ti
o
(%

)
V
S1

3
.8

�
0
.3

0
.0
5
n
s

0
.0
0
4
**

3
.7

ab
3
.8

ab
3
.7

b
3
.9

a
3
.9

ab
V
S2

3
.2

�
0
.2

0
.0
2
*

3
9

1
0
�
4
**

*
3
.4

a
3
.1

b
3
.2

b
3
.2

ab
3
.1

b
V
S3

3
.2

�
0
.2

0
.0
7
n
s

0
.0
0
3
**

3
.2

ab
3
.1

b
3
.1

ab
3
.3

a
3
.1

ab
N
N
I

V
S3

0
.5
8
�

0
.0
3

0
.0
1
*

0
.0
1
*

0
.5
8
ab

0
.5
7
b

0
.5
8
ab

0
.6
0
a

0
.5
7
ab

N
o
d
u
la
ti
o
n
sc
o
re

V
S1

2
.5

�
0
.7

0
.0
1
*

0
.0
1
*

2
.3

ab
2
.7

a
2
.2

b
2
.6

ab
2
.8

ab
V
S2

3
.7

�
0
.4

0
.0
0
7
**

0
.0
0
9
**

3
.7

ab
3
.8

ab
3
.6

b
3
.6

ab
3
.9

a
V
S3

3
.7

�
0
.3

0
.3
6
n
s

0
.3
5
n
s

3
.7

a
3
.7

a
3
.6

a
3
.7

a
3
.8

a
R
U
E
(g

o
f
to
ta
ld

ry
b
io
m
as
s
M
J�

1
o
f

in
te
rc
ep

te
d
P
A
R
)

2
.9

�
0
.9

–
3
9

1
0
�
7
**

*
2
.9

b
2
.8

b
2
.8

b
2
.5

b
4
.7

a

R
T
R

0
.3
2
�

0
.0
4

–
0
.0
0
1
**

0
.3
0
b

0
.3
2
ab

0
.3
2
ab

0
.3
4
a

0
.3
3
a

SN
U
(m

g
o
f
N
g
�
1
o
f
ro
o
t
b
io
m
as
s
d
-1
)

0
.0
0
8
9
�

0
.0
0
2
3

–
2
9

1
0
�
1
1
**

*
0
.0
1
1
5
a

0
.0
0
7
7
b

0
.0
0
8
1
b

0
.0
0
8
7
b

0
.0
0
8
7
b

N
LA

(c
m

2
o
f
le
av

es
g
�
1
o
f
N
)

2
4
5
1
�

7
1
4

–
6
9

1
0
�
6
**

*
2
6
6
1
a

2
5
0
6
a

2
5
2
5
a

2
6
5
8
a

1
5
4
2
b

A
ve

ra
g
es

an
d
SD

w
er
e
ca
lc
u
la
te
d
fo
r
ea

ch
va

ri
ab

le
u
si
n
g
th
e
m
ea

n
va

lu
es

p
er

p
la
n
t
g
en

o
ty
p
e.

Si
g
n
ifi
ca
n
ce

o
f
K
ru
sk
al
-W

al
lis

te
st
s:
n
s,
*,

**
an

d
**

*
in
d
ic
at
e
n
o
t
si
g
n
ifi
ca
n
t
an

d
si
g
n
ifi
ca
n
t
le
ve

ls
at

0
.0
5
,
0
.0
1
an

d
0
.0
0
1
,r
es
p
ec
ti
ve

ly
.
Le

tt
er
s
w
it
h
d
if
fe
re
n
t
la
b
el
s
in
d
ic
at
e
si
g
n
ifi
ca
n
t
d
if
fe
re
n
ce
s
(P

<
0
.0
5
)
fo
r
D
u
n
n
te
st
s.
N
o
d
u
la
ti
o
n
w
as

vi
su
al
ly
as
se
ss
ed

,
u
si
n
g
a
q
u
al
it
at
iv
e
sc
al
e
(M

o
re
au

e
t
a
l.
,
2
0
0
8
).
Ec
o
p
h
y.
/E
,
ec
o
p
h
ys
io
lo
g
ic
al
;
N
LA

,
co
n
ve

rs
io
n
fa
ct
o
r
o
f
n
it
ro
g
en

to
le
af

ar
ea

;N
N
I,
n
it
ro
g
en

n
u
tr
it
io
n
al
in
d
ex

;
R
U
E,

ra
d
ia
ti
o
n
u
se

ef
fi
ci
en

cy
;
SN

U
,
sp
ec
ifi
c
n
it
ro
g
en

u
p
ta
ke

;
V
S1

,
ve

g
et
at
iv
e
d
ev

el
o
p
m
en

ta
ls
ta
g
e
1
(4
8
8
d
eg

re
e-
d
ay

s
o
r
2
8
d
af
te
r
so
w
in
g
);
V
S2

,
ve

g
et
at
iv
e
d
ev

el
o
p
m
en

ta
ls
ta
g
e
2
(7
3
4
d
eg

re
e-
d
ay

s
o
r
4
2
d
af
te
r
so
w
in
g
);
V
S3

,
ve

g
et
at
iv
e
d
ev

el
o
p
m
en

ta
ls
ta
g
e
3

(8
4
8
d
eg

re
e-
d
ay
s
o
r
4
9
d
af
te
r
so
w
in
g
).

New Phytologist (2024)
www.newphytologist.com

� 2024 The Author(s).

New Phytologist� 2024 New Phytologist Foundation.

Research

New
Phytologist4

 14698137, 0, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.20272 by U

niversité D
e R

ennes, W
iley O

nline L
ibrary on [13/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



0.25, Table S5) or parameters calculated from heritable variables
(i.e. RUE, RTR, SNU, NLA) and for which the median of their
coefficient of variation for the different plant genotypes was lower
than 0.6 (Fig. S2) to identify genetic loci underlying variation in
the plant phenotype using the plant ecophysiological variables,
after square-root transformation. A total of 665 SNP*phenotypic
variable associations, representing 14 ecophysiological variables
and 285 genes, were significant at P-value threshold of 10�6. The
10�6 cut-off was previously calculated by Bonhomme
et al. (2014) based on the number of linkage disequilibrium
blocks in the M. truncatula genome. To further refine SNP selec-
tion, hotspots of SNPs were selected for each ecophysiological
variable based on the presence of at least 3 SNPs at P-value
thresholds of 10�6 within a 30 kB interval. Thereby, 161 hotspot
SNP*phenotypic variable associations, representing 10 phenoty-
pic variables and 50 genes were still significant after the filtering
step (Fig. 2a). For leaf area at VS2, one hotspot was pinpointed
on chromosome 8, underlying four genes, including one involved
in multidimensional cell growth (Medtr8g104010). For RUE,
three hotspots were pinpointed on chromosome 1 and 4, under-
lying seven genes, including one involved in response to light sti-
mulus (Medtr1g088885) and two in defense response
(Medtr1g007110 and Medtr4g029110). For NLA, one hotspot

was pinpointed on chromosome 8 underlying one gene,
Medtr8g031000, described as a bestrophin-like protein. For
RTR, one hotspot was pinpointed on chromosome 8 underlying
three genes, including one involved in defense response, cell
death, leaf senescence and ethylene biosynthetic process
(Medtr8g463890). For SNU, several hotspots were pinpointed
on all the chromosomes except chromosome 8, underlying 21
genes, including one involved in root hair cell development
(Medtr4g069390), two in nodulation (Medtr7g063850 and
Medtr7g063880) and one involved in defense response and tran-
sition from vegetative to reproductive phase (Medtr3g055370)
(Tables S6, S7).

Rhizosphere bacterial communities differ within the
M. truncatula core collection, but a core rhizosphere
bacterial community could be identified

In a previous study, we have shown that the genotype of M. trun-
catula particularly affects the rhizosphere bacterial communities,
when analyzing both bacterial and fungal communities in the rhi-
zosphere and in the root compartment for seven genotypes of M.
truncatula (Zancarini et al., 2013). Therefore, in this study, we
described the rhizosphere bacterial communities associated with

Fig. 1 Plant growth and nutritional strategies of the five groups of plant genotypes. Five groups of plant genotypes were defined using the hclust
‘ward.D2’ linkage method in R software based on the ecophysiological dataset including only the non highly correlated variables (i.e. LA VS1, TDW VS1,
RTR VS1, NR VS1, TDW VS2, RTR VS2, NR VS2, LA VS3, TDW VS3, NNI VS3, RUE, RTR, and SNU). Violin and boxplots were plotted using the average
data per plant genotype (n = 146) that have been centered and scaled for each ecophysiological variable. The red and blue parts of the violin plots
represent the portion of the violin plot with positive and negative values, respectively. The black line represents the median value for the 146 plant
genotypes. The lower and upper hinges correspond to the first and third quartiles. The upper and lower whiskers extend from the hinge to the largest and
smallest value, respectively (no further than 1.5 times the inter-quartile range). Data beyond the end of the whiskers are plotted individually as black dots.
Ecophy_parameters, ecophysiological parameters calculated; LA, leaf area (cm2); NLA, conversion factor of nitrogen to leaf area (cm2 of leaf g�1 of N); NR,
nitrogen ratio (%); RTR, root to total biomass ratio; RUE, radiation use efficiency (g of total dry biomass MJ�1 of intercepted PAR); SNU, plant-specific
nitrogen uptake (g N g�1 of belowground dry biomass d�1); TDW, total dry weight (g); VS1, vegetative developmental stage 1 (488 degree-days or 28 d
after sowing); VS2, vegetative developmental stage 2 (734 degree-days or 42 d after sowing); VS3, vegetative developmental stage 3 (848 degree-days or
49 d after sowing).
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the core collection of M. truncatula to go further in the descrip-
tion of the plant phenotype and its genetic determinism.

Diversity and global structure and composition First, after the
removal of low-quality reads and chimeras on raw data, high
observed richness was recorded for the rhizosphere bacterial com-
munities associated with M. truncatula in the Mediterranean soil
used for this experiment (7656 � 632; Table S8). Then, after
removing less-abundant sequences and normalization, 48395.77
sequences per sample were used for the following analyses. The
bacterial communities were dominated by Proteobacteria (on aver-
age 44% � 2), followed by Actinobacteria (on average 16% � 3),
Bacteroidetes (on average 8% � 2), Chloroflexi (on average 8%
� 1), and Planctomycetes (on average 7% � 1) (Fig. 3a). Among
the Proteobacteria, the classes of Gammaproteobacteria, Alphaproteo-
bacteria and Deltaproteobacteria contained on average 13% � 1,
12% � 1 and 10% � 1 of the total sequences, respectively
(Fig. 3b). Rhizobiaceae represented 0.01% of the total sequences
(Table S9). Furthermore, our analyses revealed a beta-diversity of
0.25 and a high turnover due to rare species (see Bray-Curtis’ dis-
similarities, Whittaker’s and Sørensen’s indices in Table S8).

Potential functional prediction Using PICRUSt2, we were able
to predict functions that were potentially present in the rhizo-
sphere bacterial communities of M. truncatula. After rarefying,
we identified 2347 EC related to 228 KEGG pathways and 26
KEGG modules. Among them, amino acid metabolism, carbohy-
drate metabolism, metabolism of cofactors and vitamins, and the
bride hierarchies’ categories protein families: metabolism, genetic
information processing, and signaling and cellular processes were
the top KEGG functional categories identified (Fig. S3).

Core rhizosphere bacterial community Looking at the bacterial
OTUs present in all the samples, a core rhizosphere
bacterial community was defined here for M. truncatula. To
assess correlations within the core rhizosphere bacterial commu-
nity, a co-occurrence network analysis was performed. Among
the 482 bacterial OTUs belonging to the core rhizosphere bacter-
ial community, which represented 3% of the total OTUs but
76% of the total sequences, 150 displayed 358 positive and 36
negative correlations, resulting in a complex network (Fig. 3c).
Nodes belonging to the same phylum (or class for Proteobacteria)
were preferentially associated together, and hubs identified
mainly belonged to Proteobacteria and Actinobacteria (Gaiella).
Fourteen groups of OTUs have been defined using the between-
ness edge method (Table S10) and only few OTUs connected the
different groups (Fig. 3c). Moreover, several cliques of large size
(between 6 and 9 nodes) were identified within the groups 2, 3
and 5. Finally, according to its density of 0.035, the
co-occurrence network had a significantly high diameter, mean
distance, transitivity and assortativity (12, 4.2, 0.45 and 0.43,
respectively) compared to 1000 random networks with the same
number of nodes and density (Fig. S4a–d).

Plant genotype effect The plant genotype structured its asso-
ciated rhizosphere bacterial community diversity, composition

and predicted potential functions. While alpha-diversity showed
significant differences according to M. truncatula genotype only
for the Shannon and evenness indices (Kruskal–Wallis test,
P-value = 0.008 and 0.001, respectively, Table S8), the effect of
the plant genotype explained 40% of the total variation in the
beta-diversity at the OTU level (PERMANOVA test with 9999
permutations, R2 = 0.40 and P-value = 1.10�4, Table S11).
Moreover, occurrence at phylum level (or class for Proteobacteria)
showed significant differences among plant genotypes on Acido-
bacteria, Actinobacteria, Alphaproteobacteria, Bacteroidetes, Chloro-
flexi, Fibrobacteres, Gemmatimonadetes, Nitrospirae and
Planctomycetes (Kruskal–Wallis tests, P-value = 1 9 10�4,
5 9 10�3, 0.02, 1 9 10�5, 0.01, 0.02, 8.10�3, 2 9 10�3 and
7 9 10�6, respectively, Table S12). Finally, a significant plant
genotype effect could also be observed on the following KEGG
categories of the associated bacterial communities: energy meta-
bolism, amino acid metabolism, metabolism of other amino
acids, glycan biosynthesis and metabolism, xenobiotics biodegra-
dation and metabolism, transcription, translation, folding, sort-
ing and degradation, replication and repair, signal transduction,
cell motility, cellular community prokaryotes, drug resistance
antimicrobial; protein families: metabolism, genetic information
processing and signaling and cellular processes, and unclassified
metabolism (Kruskal-Wallis tests, P-value = 8 9 10�3, 3 9

10�4, 4 9 10�3, 4 9 10�4, 5 9 10�3, 2 9 10�4, 0.02,
6 9 10�4, 0.05, 1 9 10�3, 8 9 10�3, 0.01, 5 9 10�3,
3 9 10�3, 4 9 10�3, 7 9 10�5 and 0.02, respectively,
Table S12).

Variations in the rhizosphere bacterial community and in
the plant ecophysiological traits are closely associated

To assess to what extent variations in the rhizosphere bacterial
community composition and the plant growth and nutritional
strategies are associated, we ran both: a multivariate analysis to
estimate the percentage of variation in the bacterial community
structure harvested at the last vegetative stage (VS3 or 848
degree-days after sowing) explained by the plant ecophysiological
traits along the three vegetative stages; and a machine learning
approach to identify candidate bacteria that can predict different
plant ecophysiological traits at VS3.

First and foremost, using a redundancy analysis (RDA), we
showed that 10% of the variation in the bacterial community
composition at VS3 could be explained by the variation in the
plant phenotype (i.e. plant growth and nutritional strategy)
(ANOVA-like permutation test with 9999 permutations,
P-value = 0.0001, Table S13). Moreover, the nitrogen ratio at
734 degree-days after sowing and RTR showed significant mar-
ginal effects in the RDA model (ANOVA-like permutation test
P-value = 0.011 and 0.023, respectively; Table S13; Fig. 4a).

Then, using RF analyses, we pinpointed candidate bacterial
OTUs that potentially predict plant phenotypic variables at VS3,
such as total dry biomass (TDW VS3), RTR and SNU. These
three variables were chosen to identify potential plant
growth-promoting rhizobacteria (predicting TDW and RTR)
and bacteria that can improve nitrogen uptake via a
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biofertilization process (predicting SNU). Thereby, we identified
94 OTUs that were major predictors for plant biomass and nutri-
tional strategies, within which 52 OTUs were identified as Pro-
teobacteria, including 16 Myxococcales (Deltaproteobacteria)

(Table S14). Next, from this narrow list, we defined an extended
candidate list of 417 OTUs, including both the OTUs identified
by the RF and their significantly correlated OTUs. Within this
extended candidate list, bacterial OTUs identified as

(a)

(c)

(b)
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Actinobacteria (e.g. Gaiellales, Solirubrobacterales and undefined),
Bacteroidetes (e.g. Bacteroidales, Cytophagales and Sphingobacter-
iales), Alphaproteobacteria (e.g. Caulobacterales, Sphingomona-
dales, Rhodospirillales and Rhizobiales), Betaproteobacteria (e.g.
Burkholderiales) and Deltaproteobacteria (e.g. Myxococcales) were
shown as positively or negatively associated with the different
plant ecophysiological variables (Table S14). Finally, using an
enrichment analysis, we identified potential functions (i.e. EC
and KEGG pathways) that were more or less abundant for the
candidate OTUs compared to the rest of the bacterial commu-
nities (Table S15). Potential functions differentially represented
for the OTUs linked to RTR and SNU showed opposite results
(Figs 4b, S5, S6). The extended candidate list of OTUs positively
or negatively associated with RTR showed overrepresentation or
underrepresentation, respectively, of potential functions involved
in carbohydrate, energy, lipid, nucleotide and amino acid meta-
bolisms, metabolism of other amino acids, metabolism of cofac-
tor and vitamins (e.g. vitamin B6), metabolism of terpenoids and
polyketides, biosynthesis of other secondary metabolism, xeno-
biotics biodegradation, transcription, replication and repair, sig-
nal transduction and cell motility (Figs S5, S6).

Plant loci associated with rhizosphere bacterial OTUs

We previously showed that: ecophysiological traits (i.e. plant bio-
masses and nutritional strategies) and bacterial communities are
shaped by host genotype; some plant loci were associated with
the plant ecophysiological traits, especially for SNU; and that
occurrence of some OTUs can predict some plant ecophysiologi-
cal traits. To go further, GWAS were carried out on the occur-
rences of the heritable candidate OTUs (i.e. OTUs with
significant nonzero genetic variance and heritability higher than
0.25, Table S16) with low variation among the three replicates
(i.e. median of their coefficient of variation for the different plant
genotypes lower than 0.6 (Fig. S7)) predicting the plant ecophy-
siological traits. We also ran GWAS on occurrences of the herita-
ble OTUs of the core rhizosphere bacterial community network,
the top 1% most abundant OTUs (157 OTUs) and on principal
components (PC) of the community ordination plot to identify
genetic loci underlying variation in the bacterial community.

GWAS analyses on the OTUs predicting the plant ecophysiolo-
gical traits To reveal genes involved in occurrence of the bacterial
OTUs predicting total biomass (TDW VS3), RTR and SNU,
GWAS was conducted on heritable OTU counts after square-root
transformation. A total of 482 SNP*OTU associations, represent-
ing 237 genes and 23 OTUs, were significant at a P-value threshold
of 10�6. To further refine SNPs selection, SNPs were selected for
each OTU based on the presence of at least 3 SNPs at P-value
thresholds of 10�6 within a 30 kB interval. For the total biomass
(TDW VS3), 8 hotspots on the chromosomes 2, 3, 4, 6 and 8 were
pinpointed (Fig. 2b; Table S17), representing 84 SNP*OTU asso-
ciations for 4 OTUs (OTU45/Deltaproteobacteria/Myxococcales,
OTU139/Gammaproteobacteria/Arenimonas, OTU249/Actinobac-
teria and OTU306/Bacteroidetes/Bacteroides) and underlying 28
genes. Within the 20 annotated genes, four were involved in
response to abscisic acid (Medtr3g092150, Medtr3g099920,
Medtr3g100160 and Medtr3g100180), one was involved in triter-
penoid biosynthetic process (Medtr3g092095), two in defense
(Medtr3g092100 and Medtr3g092110), one was involved in root
development (Medtr2g081520) and one in response to nitrate
(Medtr8g089560) (Table S18). For the RTR, 50 SNP*OTU
associations were pinpointed, representing 5 OTUs (OTU65/Al-
phaproteobacteria/Sphingomonadaceae, OTU74/Bacteroidetes/Flexi-
bacter, OTU428/Undefined, OTU532/Alphaproteobacteria/
Sphingomonadales and OTU729/Alphaproteobacteria/Sphingomo-
nadales) and 11 genes, displayed on 6 hotspots on the chromo-
somes 1, 2, 3, 4 and 8 (Fig. 2c; Table S17). Within the 8
annotated genes, three were involved in response to abiotic or
biotic stresses (Medtr1g027660, Medtr2g033730 and Medtr4g
007030) (Table S18). For the SNU, 86 SNP*OTU associations,
displaying 8 hotspots on the chromosomes 1, 2, 4, 7 and 8 and
representing 3 OTUs (OTU122/Alphaproteobacteria/Phaeospiril-
lum, OTU218/Undefinied and OTU827/Firmicutes/Asterole-
plasma) and 40 genes, were pinpointed (Fig. 2d; Table S17).
Within the 24 annotated genes, two were involved in lignin bio-
synthetic process (Medtr2g079580 and Medtr4g009690), one in
cellular amide metabolic process (Medtr8g028125), two were
involved in defense especially through salicylic acid (SA)
(Medtr2g079670 and Medtr7g079180), three in response to

Fig. 3 Description of the rhizosphere bacterial communities associated to the core collection ofMedicago truncatula. (a) Composition of the rhizosphere
bacterial communities ofM. truncatula. Boxplots show the rhizosphere bacterial communities’ occurrences at the phylum level associated with the
M. truncatula core collection (n = 435). All operational taxonomic units (OTUs) belonging to the same phylum were summed for each sample using the
normalized occurrence table. The black line represents the median value. The lower and upper hinges correspond to the first and third quartiles. The upper
and lower whiskers extend from the hinge to the largest and smallest value, respectively (no further than 1.5 time the inter-quartile range). Data beyond
the end of the whiskers are plotted individually as black dots. (b) Composition of the rhizosphere Proteobacterial communities ofM. truncatula. Boxplots
show the rhizosphere Proteobacterial communities’ occurrences at the class level associated with theM. truncatula core collection (n = 435). All the OTUs
belonging to same class within the Proteobacteria were summed for each sample using the normalized occurrence table. The black lines represent the
median value. The lower and upper hinges correspond to the first and third quartiles. The upper and lower whiskers extend from the hinge to the largest
and smallest value, respectively (no further than 1.5 times the inter-quartile range). Data beyond the end of the whiskers are plotted individually as black
dots. (c) Co-occurrence network of theM. truncatula core rhizosphere bacterial community. Spearman correlations were calculated between core bacterial
OTUs using the SparCC method. Only significant correlations (pseudo P-values ≤ 0.05 based on 500 bootstraps) with an absolute correlation magnitude
≥ 0.5 were considered for the network display using CYTOSCAPE. The network was visualized using the edge-weighted spring embedded layout algorithm in
CYTOSCAPE without forcing by correlation weight values. Nodes represent bacterial OTUs. The genus is written on each node (if known). Line thickness is
proportional to the value of correlations between two nodes; thick and thin lines correspond to high (close to |1|) and low (close to |0.5|) correlations,
respectively. The 14 groups of OTUs have been defined using the betweenness edge method.
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abiotic stress (Medtr7g079020, Medtr7g079180 and
Medtr8g028125) and one in root hair elongation (Medtr2g
081180) (Table S18).

GWAS analyses on the bacterial community To identify host
genes that contribute to the structure of the bacterial community
of M. truncatula, we used PCA after Hellinger transformation.
The ordination plot distinguished the plant genotypes only when
considering the top 10 to 1% most heavily sequenced OTUs
(Fig. S8a), which represented > 87% to 64% of the total reads,
respectively (Fig. S8b). Thus, GWAS was conducted on the first
two PC of the PCA including only the top 10% most heavily
sequenced OTUs, after square-root transformation. Four
SNP*PC associations were significant at a P-value threshold of
10�6 (Fig. S8c; Table S17), representing one gene, Medtr4g
018910 (verticillium wilt disease resistance protein).

Fig. 4 Relation between the rhizosphere bacterial communities and the plant phenotype. (a) Redundancy analysis and variation in plant growth and
nutritional strategies that explain variation in the rhizosphere bacterial communities ofMedicago truncatula. A redundancy analysis (RDA) was done using:
(1) the filtered and normalized occurrence table summed per plant genotype (n = 155) as predicted variables; and (2) 13 of the plant phenotypic variables,
which were not highly correlated (|Spearman correlation| < 0.6) as the explanatory variables. The plant phenotypic variables analyzed explained 10.3% of
the total variation in the rhizosphere bacterial composition. Colored dots represent the 155 plant genotypes according to their corresponding
ecophysiological group, arrows the ecophysiological variables and operational taxonomic units (OTUs) are in written in gray. LA, leaf area (cm2); NLA,
conversion factor of nitrogen to leaf area (cm2 of leaf g�1 of N); NR, nitrogen ratio (%); RTR, root to total biomass ratio; RUE, radiation use efficiency (g of
total dry biomass MJ�1 of intercepted PAR); SNU, plant-specific nitrogen uptake (g N g�1 of belowground dry biomass day�1); TDW, total dry weight (g);
VS1, vegetative developmental stage 1; VS2, vegetative developmental stage 2; VS3, vegetative developmental stage 3. (b) Number of potential enzyme
classifications over/underrepresented in bacterial OTUs that are major predictors for plant ecophysiological variables. OTUs that are major predictors for
the plant phenotype variables: TDW VS3, RTR and SNU, were first identified using a regression random forest (RF) analysis. In order to test if some
functions were potentially more or less abundant for the candidate OTUs vs the rest of the bacterial communities, we considered the extended list of OTUs
that are significantly correlated to the candidate OTUs identified by the random forests. This list of OTUs was then divided into two: OTUs positively and
negatively correlated to the plant phenotype variable considered. A two-sided t-test was applied the EC_predicted.tsv output file from PICRUSt2 using the
getPvalues function of TOPGO R package (Alexa & Rahnenfuhrer, 2016) to identify enzyme classifications (EC) that were potentially differentially abundant
between the extended candidate OTUs list and the rest of the nonrare OTUs. The number of ECs is plotted using the UPSETR package in R. Bars and dots
colored: in dark red represent the number of EC more abundant in the extended candidate OTUs list than in the rest of the OTUs for the OTUs that are
positively correlated to the plant phenotypic variable; in light red represent the number of EC less abundant in the extended candidate OTUs list than in the
rest of the OTUs for the OTUs that are negatively correlated to the plant phenotypic variable; in dark blue represent the number of EC less abundant in the
extended candidate OTUs list than in the rest of the OTUs for the OTUs that are positively correlated to the plant phenotypic variable; and in light blue
represent the number of EC more abundant in the extended candidate OTUs list than in the rest of the OTUs for the OTUs that are negatively correlated to
the plant phenotypic variable.

GWAS analyses on heritable OTUs belonging to the co-
occurrence network and on the most abundant OTU To reveal
genes involved in the occurrence of both OTUs within the bac-
terial co-occurrence network and the top 1% most abundant 157
bacterial OTU counts, GWAS was performed on heritable ones
(Table S16) with low variation among the three replicates
(Fig. S7) after square-root transformation. A total of 1562
SNP*OTU associations were significant at a P-value threshold of
10�6. To further refine the SNP selection, 570 SNP*OTU asso-
ciations were selected based on the presence of at least 3 SNPs
with a P-value thresholds of 10�6 within a 30 kB interval, repre-
senting 143 genes and 41 OTUs (Fig. 2e; Table S17). For OTUs
present in the co-occurrence network, ontology analysis was run
on the 108 genes identified and pointed out 22 significant overre-
presented classes at classic Fisher P-values < 0.05, including tri-
terpenoid biosynthesis and metabolic process, response to SA,
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and response to nutrient levels and nitrate (Table S19). For
OTUs present in the top 1% most abundant OTUs, ontology
analysis was run on the 120 genes identified and pointed out 47
significant overrepresented classes at classic Fisher P-values
< 0.05, including response to extracellular stimulus, cellular
response to nutrient levels and starvation (especially iron), and
response to SA (Table S19). Within the 70 and 77 annotated
genes for OTUs present in the co-occurrence network and in the
top 1% most abundant, 7 and 8 kinases were identified, respec-
tively, with homologous of A. thaliana WAK2, CRK8, CRK25,
CRK26, PEPKR2, ARK3 and AKIN10, zero and two LRR

receptor-like kinases, and two and two other LRR family proteins
(diseases resistance protein). Moreover, within the seven genes
related to SA response, one was kinase and two were MYB or
MYB-like transcription factors. Moreover, hotspots of SNP asso-
ciated to different OTUs can be identified: on the chromosome 1
associated to OTU65/Alphaproteobacteria/Sphingomonadaceae
and OTU532/Alphaproteobacteria/Sphingomonadales, on the
chromosome 3 associated to OTU35/Gammaproteobacteria/X-
anthomonadales and OTU48/Bacteroidetes/Flexibacter, to OTU165/-
Bacteroidetes/Bacteroides and OTU306/Bacteroidetes/Bacteroides, and to
OTU88/Alphaproteobacteria/Rhodospirillales,

Fig. 5 Associations among plant single nucleotide polymorphisms (SNPs), bacterial OTUs and ecophysiological variables. The network was visualized using
CYTOSCAPE’s edge-weighted spring embedded layout algorithm without forcing by correlation weight values. Nodes represent bacterial OTUs(blue), plant
SNPs (dark green) and ecophysiological traits (i.e. TDW, RTR and SNU in light green). OTU hubs are shown with a black highlighted border. OTU*OTU
associations were the ones identified within the core bacterial OTUs using the SparCC method. Both SNP*OTU and SNP*ecophysiological variables
associations identified by the genome-wide association studies (GWAS) were selected based on the presence of at least 3 SNPs with a P-value threshold of
10�6 within a 30 kB interval. Associations between the bacterial OTUs and the ecophysiological variables are those identified using the random forest
analyses. RTR, root to total biomass ratio; SNU, specific nitrogen uptake (g N g�1 of belowground dry biomass d�1); TDW, total dry weight (g) at
vegetative developmental stage 3 (848 degree-days or 49 d after sowing).
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OTU139/Gammaproteobacteria/Arenimonas,OTU45/Deltaproteobacte-
ria/Myxococcales, OTU28/Acidobacteria/Holophaga and OTU111/-
Planctomycetes/Gemmata, and on the chromosome 4 associated to
OTU74/ Bacteroidetes/Flexibacter and OTU214/Actinobacteria. While
OTU65, OTU74 and OTU532 are predicting RTR, and OTU45,
OTU139 and OTU306 are predicting TDW VS3 based on the ran-
dom forest results, all the others OTUs in the hotspots are correlated
to at least one OTU predicting at least one of the three ecophysiologi-
cal traits analyzed in the random forest.

Discussion

To develop new plant varieties that select for beneficial microbes
in an agroecological context, using low inputs while maintaining
yields, a better understanding of the genetic determinisms that
drive the plant microbiome recruitment is needed. To our
knowledge, six untargeted approaches using GWAS have been
conducted to identify plant loci or genes associated with varia-
tion in the root, rhizoplane or rhizosphere microbiome (Bergel-
son et al., 2019; Deng et al., 2021; Meier et al., 2022;
Sutherland et al., 2022; Wang et al., 2022; Andreo-Jimenez
et al., 2023). While the common final goal of these GWAS is to
harness the beneficial microbiome through plant genetics, inter-
estingly, half of them considered plant performance traits. Our
study is the first one to assess the impact of the host genetics on
the rhizosphere bacterial communities through a GWAS for a
legume plant, Medicago truncatula, and in relation to plant
growth and C and N nutritional strategy. Hence, here, we pro-
vide new information about associations among plant genetics,
rhizosphere bacterial communities and plant phenotype.

Medicago truncatula showed genetic variation in plant
growth and nutritional strategy, but few plant loci could be
identified for these integrative ecophysiological traits

To phenotype the core collection, we used both structural pheno-
typic descriptors, such as biomasses, and functional phenotypic
descriptors, such as RUE and SNU, to describe both establish-
ment of the plant structures (i.e. leaf area and roots) and their
efficiency to uptake C and N. Indeed, we previously showed that
functional descriptors enable the discrimination
between genotypes with similar biomasses but with different
nutritional strategies (Zancarini et al., 2012, 2013). Within the
core collection of M. truncatula, five different groups of plant
genotypes were defined according to their growth and nutritional
strategies (Fig. 1; Table 1). First, group 1 showed significantly
high SNU and low RTR and RUE. According to the ‘functional
equilibrium’ model, the dry biomass distribution between root
and shoot can be regulated by equilibrium between root activity
(water and nutrient absorption) and shoot activity (photosynth-
esis) (Brouwer, 1983; Farrar & Jones, 2000). Therefore, we
observed that, contrary to plants in group 5, plants within group
1 did not invest biomass in their roots (significantly low RTR),
which were more efficient than the other groups in taking up N
(significantly high SNU), but in their shoots, which were less effi-
cient in taking up C than the other groups (significantly low

RUE). These two opposite strategies (groups 1 and 5) seemed to
be efficient with time as their total biomasses went from the
lowest/average ones at the first harvest to the highest ones at
the last harvest. This result suggests that investing in an efficient
function to either take up N or C might be costly at early devel-
opmental stages, but later yields under our experimental condi-
tions, where no nutrient was added in the watering solution.

Under our experimental conditions, without nitrogen starter
addition to compensate for M. truncatula small and low-reserve
seeds, nor any addition of nitrogen in the watering solution, N
uptake of the different genotypes ofM. truncatula was not able to
match the plant N requirements whereas: plants were in the pre-
sence of a mixture of Ensifer strains naturally present in the Mas
d’Imbert soil, corresponding mostly to Ensifer medicae species
(Rangin et al., 2008) that are considered as more efficient than
Ensifer meliloti (Moreau et al., 2008; Terpolilli et al., 2008; Lar-
rainzar et al., 2014); and we observed active nodules. However, a
difference was observed in the nodulation score at early develop-
mental stages for the plant groups 2 and 3 that showed higher
and lower total biomass, respectively, along the three vegetative
stages. These results suggest that a faster nodulation establish-
ment under our experimental conditions seems to provide
an advantage in term of growth development. Furthermore,
M. truncatula has previously been defined as an efficient root for-
ager (Batstone et al., 2017), results that we also observed pre-
viously in the same Mediterranean soil (Zancarini et al., 2012).
Therefore, we can expect that using a different soil with a differ-
ent chemical composition and microbial communities could also
affect nodulation establishment and plant N nutritional status.

To identify the genetic determinisms involved in the observed
variation in plant growth and nutritional strategies, GWAS were
performed. Except for SNU, only a few hotspots and plant loci
were highlighted for the different plant ecophysiological traits.
The identified genes were mainly involved in either plant growth
or in defense response.

The rhizosphere bacterial community is an important trait
of the plant phenotype, affected by both the plant
genotype and the ecophysiological traits and affecting
the latter

To assess the ‘extended plant phenotype’, we described the rhizo-
sphere bacterial community diversity and composition. High
observed richness for the rhizosphere bacterial communities were
recorded in our study and the OTUs identified were not domi-
nated by Ensifer contrary to the results of Brown et al. (2020). In
fact, with our metabarcoding approach, Rhizobiaceae represented
only 0.01% of the total sequences within the rhizosphere. How-
ever, Brown et al. (2020) collected their soil from the base of
Medicago plants, where Ensifer species are expected to be
enriched, while we collected our soil in fallow land, in which a
mixture of plant species/families grows naturally, including
legume and nonlegume plants.

Regarding the bacterial composition, according to the different
plant species and soil assessed Proteobacteria, Acidobacteria, Acti-
nobacteria, Bacteroidetes, Firmicutes and/or Planctomycetes are
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usually dominated the rhizosphere bacterial community (Bulgar-
elli et al., 2012, 2013; Lundberg et al., 2012; Peiffer et al., 2013;
Edwards et al., 2015; Deng et al., 2021). While the effect of the
soil on the microbial composition is well known (Lundberg
et al., 2012), in accordance with the results on legumes published
in a recent meta-analysis (Ling et al., 2022), Proteobacteria, Acti-
nobacteria and Bacteroidetes were shown to dominate the commu-
nity associated to the core collection of M. truncatula in our
Mediterranean soil. These phyla have been previously classified as
copiotroph and shown as more competitive in a nutrient-
enriched environment like rhizosphere (Fierer et al., 2007; P�erez-
Jaramillo et al., 2016). Moreover, our results suggested that
enzyme classification (EC) involved in amino acid metabolism,
carbohydrate metabolism, metabolism of cofactors and vitamins
are the major functions predicted for the rhizosphere bacterial
community ofM. truncatula.

Within the rhizosphere of the M. truncatula plants, a core
rhizosphere bacterial community was identified and potential
interactions within the core OTUs were depicted through a
co-occurrences network analysis. Only one third of the core rhi-
zosphere bacterial OTUs showed significant potential interac-
tions or direct/indirect correlations due to their similar
environmental condition preferences. However, the core rhizo-
sphere bacterial community network is significantly highly inter-
connected among the different OTUs. Several groups of highly
positively correlated OTUs, belonging especially to the same
taxa, were then identified, suggesting that they shared similar
niches as has been previously shown in different habitats, such as
in soil and in the human gut (Barber�an et al., 2012;
Faust et al., 2012). In line with a recent meta-analysis (Ling
et al., 2022), the hubs identified in our study belonged to both
the Proteobacteria and Actinobacteria phyla, and more especially
for the later to the Gaiella genus, which was also recently identi-
fied as a module hub in bulk soil (Ling et al., 2022).

Furthermore, while Brown et al. (2020) showed that plant
genotype affects the structure of the root but not the rhizosphere
bacterial communities associated with three genotypes of
M. truncatula grown in two different Mediterranean soils (i.e. M.
truncatula native range) using amplicon sequencing, we
previously showed that plant genotype affects the rhizosphere
bacterial communities but not the root bacterial and the fungal
communities for seven other genotypes of M. truncatula grown
in our Mediterranean soil using DNA fingerprints (Zancarini
et al., 2013). This plant genotype effect on the rhizosphere
bacterial communities has been confirmed in this study for a core
collection of 155 M. truncatula genotypes using amplicon
sequencing.

Finally, in addition to the effect of the plant genotype on the
rhizosphere bacterial communities, we also showed that they are
closely linked to the plant ecophysiological traits. On the one
hand, the variation in the bacterial composition at the last vegeta-
tive stage can be partially explained by the plant traits, such as the
nitrogen ratio at the second vegetative stage and RTR (Fig. 4a),
and, on the other hand, that plant traits (TDW VS3, RTR, and
SNU), can be predicted based on the bacterial occurrence using
machine learning. Among the 94 candidate OTUs identified, 16

of them belong to Myxococcales (Deltaproteobacteria) and are
negatively correlated to the total biomass and the SNU, and posi-
tively to the RTR. Myxococcales are known as micropredactors in
soil and as important players in soil C sequestration and minerali-
zation, which can be affected by organic matter, C : N ratio,
total N and soil pH, and produce versatile specialized metabo-
lites, such as carotenoids (Lueders et al., 2006; Zhou et al., 2014,
2020; Li et al., 2017; Wang et al., 2020; Lv et al., 2022; Nwa-
chukwu et al., 2022). Our study also pinpointed potential new
plant growth promoting bacteria, which are positively linked to
the total biomass and/or RTR, and potential new plant nitrogen
uptake promoting bacteria (positively linked to SNU)
(Table S14). The metabarcoding approach used in our study on
a natural soil community could not enable us to confirm and
identify the potential bacterial functions that could explain a bet-
ter plant biomass, RTR and/or SNU. Only isolation and charac-
terization of these specific rhizosphere bacterial strains would
help us in confirming these hypotheses. Indeed, for several years
now, there has been a growing interest in developing microbial
culture collections and isolating strains from the field and con-
trolled condition experiments. Furthermore, it will be important
in future studies to discriminate between direct and indirect
effects among the different drivers involved in plant–microbiome
interactions and go beyond associations to causation that our cur-
rent biostatistical approaches do not allow. Indeed, when looking
at the enzyme classifications enriched for the candidate bacteria
predicting a bigger root system (higher RTR), they potentially
express a more active metabolism (e.g. carbohydrate, energy,
lipid, nucleotide and amino acid metabolisms, etc.) hinting at an
adaptation to a richer environment. This result suggests that
more than the presence of the candidate bacteria predicting the
plant trait, the latter (i.e. higher RTR, thus potentially higher
root surface and root exudates) seems to drive the selection of
candidate bacteria (i.e. potentially more copiotroph).
Wagner (2021) recently discussed the importance of considering
plant phenotype both as a predictor and a readout in genetic stu-
dies on plant–microbiome interactions because plant genetics is
expected to harness the microbiome more through a change in its
phenotype than through a direct genetic effect.

Plant genetic potential to improve plant growth, nutrition
and defense harnessing keystone rhizosphere bacteria

To study the plant genetic determinism in its associated rhizo-
sphere bacterial communities’ structure and composition, plant
loci and genes were identified using GWAS on heritable indivi-
dual OTU occurrences such as: the candidate OTUs predicting
the plant traits; the OTUs present in the co-occurrence network;
the most abundant OTUs; and a bacterial community proxy
(principal component axes of the ordination plot).

First, our results suggested that there is a stronger plant genetic
effect on individual bacteria than at the community level. Several
authors discussed the importance of knowing if it would be possi-
ble to change the plant associated microbial community by driv-
ing only keystone taxa, or if a minimum level of community
complexity is required (Agler et al., 2016; Van Der Heijden &
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Hartmann, 2016; Banerjee et al., 2018). In our study, within the
150 OTUs present in the co-occurrence network, 30 OTUs were
both heritable and significantly determined by the plant geno-
type. These results suggest that plants can genetically harness
individual OTUs, which are correlated to other OTUs in a well-
connected network community. Moreover, these OTUs are also
directly or indirectly linked to the plant ecophysiological traits
(Fig. 5). Together, this highlights the plant genetic potential to
improve plant growth and nutrition by harnessing keystone rhi-
zosphere bacteria.

Then, we observed fewer plant loci associated with plant
ecophysiological traits than with the occurrence of the indivi-
dual bacteria. Moreover, no colocalization could be identified
between the hotspots associated with the bacterial OTUs and
the plant traits (Fig. 2). The genes identified were mainly
related to hormone response (e.g. SA, abscisic acid), defense,
triterpenoid biosynthesis and metabolic processes, response to
nutrient level or transport (especially nitrate and iron), and
root development.

More specifically, on the one hand, among the genes identified
in our GWAS for bacterial OTUs, several of them were poten-
tially involved in the establishment of the root microbiome and
defense against pathogens. Indeed, nine of the genes identified
through the GWAS, including two MYB-like or MYB transcrip-
tion factors with no clear gene to gene homology with Arabidopsis
thaliana, were involved in response to SA, SA biosynthetic pro-
cesses or SA mediated signaling pathway and were associated with
the occurrence of OTUs belonging to Acidobacteria/Holophaga,
Bacteroidete/Chitinophagaceae/Parasegetibacter, Bacteroidete/-
Flexibacter, Firmicutes/Asteroleplasma, Alphaproteobacteria/-
Rhodospirales, Alphaproteobacteria/Sphingomonadales, and
Gammaproteobacteria/Xanthomonadaceae/Arenimonas. MYBs are
known to play regulatory roles in developmental processes and
defense responses in plants, and expression of half of MYB related
genes identified in A. thaliana were responsive to SA treatment
(Yanhui et al., 2006). Moreover, Lebeis et al. (2015) showed that
among others Rhodospirales, Sphingomonadales, and Xanthomona-
daceae are either enriched or depleted in SA Arabidopsis mutants.
While SA pathways are required to assemble a normal root
microbiome (Lebeis et al., 2015), they are also closely related to
the systemic acquired resistance process (SAR), for which seven
genes have been found in our study including five that are
in common with SA processes. In addition, we found three genes
involved in terpenoid transport and triterpenoid biosynthesis.
Huang et al. (2019) showed that specialized triterpenes produced
by A. thaliana can also affect its associated root bacterial commu-
nity assembly and maintenance. Furthermore, regarding the
defense process, 14 genes involved in defense mechanisms have
been pinpointed by our GWAS analyses, including nucleotide-
binding-leucine-rich-repeat (NB-LRR) and NB-ARC disease
resistance protein, TIR-NBS-LRR protein and LRR receptor
kinase protein. NB-LRR receptor proteins are known as a second
line of defense, the effector-triggered immunity, mediated by
pathogen effector recognition (Cui et al., 2015). Also, two genes
belonging to the CRK (cysteine (Cys)-rich receptor-like kinases)
family were found to be significantly associated with the OTU81

(Gemmatimonas) occurrence. In Arabidopsis, these membrane-
localized CRK proteins are synthesized upon pathogen percep-
tion and act coordinately to enhance plant immune responses
(Yadeta et al., 2017).

On the other hand, regarding nutrition, four genes were
related to response to nitrate and eight to iron associated with,
among others, three Xanthomonadaceae in which Fe-metabolizing
bacteria are found. To assimilate iron, it has been shown for
A. thaliana that plants can synthesize coumarins, which are
known for their antimicrobial activities and roles in root-
microbiome communication, microbiome assembly and in nutri-
ent uptake (Siwinska et al., 2018; Stringlis et al., 2018, 2019;
Voges et al., 2019). Another gene associated with
OTU74/Flexibacter has been pinpointed by our GWAS which is
a proton-pump interactor, putatively implicated in rhizosphere
acidification, a mechanism necessary to increase iron solubility
(Li et al., 2015). Finally, regarding growth, one gene associated
with OTU139/Arenimonas is classified both as primary root
development and nutrient detection, and one gene involved in
glutathione (GSH) metabolism was found. Existence of an inter-
play between GSH and auxin in control of root growth has been
shown as GSH depletion reduces root growth through inhibition
of auxin transport (Koprivova et al., 2010). When there was IAA
excess, GSH was important as a redox buffer and may reduce the
concentration of reactive oxygen species that are necessary for
root growth. Finally, four other genes were found and described
as being involved in root hair elongation, differentiation, and
root development. Together these results suggest a trade-off
among plant growth, nutrition and defense, and the importance
of the different lines of defense in the establishment of the root-
associated microbiome.

In conclusion, we characterized a core collection of M. trunca-
tula grown in a Mediterranean soil for their growth, nutritional
strategies, and associated rhizosphere bacterial communities,
traits that all varied significantly among the plant genotypes. At
the plant genetic level, while a few plant loci were associated with
the plant ecophysiological traits, several hotspots and loci were
identified and associated with the occurrence of specific bacterial
OTUs, which are correlated to other OTUs in a well-connected
network community. Furthermore, the occurrence of several of
these bacterial OTUs was associated with plant ecophysiological
traits of interest. Therefore, our results suggested that we can
potentially drive both the bacterial community and the plant
phenotype through a plant genetic determinism. The use of
microbial collection and synthetic communities could help us to
better understand the microbial functions driven by the plant,
characterize the direct effect of the bacteria on the plant pheno-
type, and assess how these keystone bacteria affect the rest of the
microbial community. Moreover, focusing on microbial func-
tions more than microbial composition should allow us to find
more universal results across different soils. Finally, to further
understand plant genetic effects and the molecular mechanisms
involved in beneficial microbiome recruitment, functional geno-
mics is required to confirm our results and validate the plant
genes identified in the recruitment of these keystone microbes
and on the plant phenotype.
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