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Abstract

This paper is dedicated to structure-preserving spatial discretiza-
tion of shallow water dynamics. First, a port-Hamiltonian for-
mulation is provided for the two-dimensional rotational shallow
water equations with viscous damping. Both tangential and nor-
mal boundary port variables are introduced. Then the corre-
sponding weak form is derived and a partitioned finite ele-
ment method is applied to obtain a finite-dimensional continuous-
time port-Hamiltonian approximation. Four simulation scenarios are
investigated to illustrate the approach and show its effectiveness.
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2 Shallow water equations with viscous damping

1 Introduction

The shallow water equations (SWE) are a set of partial differential equations
that describe the motion of water in shallow areas like lakes, rivers, and coast-
lines. These equations are useful for understanding the dynamics of water flow,
as well as predicting flooding and other related phenomena. They are also used
to simulate the effects of wind and waves on the ocean surface. The study of
SWE can be beneficial for a variety of purposes, including stability and control
of moving tanks [1], coastal structure design, tsunami simulation [2, 3], flood
forecasting and mitigation [4], and water resource management.

The two-dimensional rotational SWE (2D-SWE) are a useful model to
study magnetohydrodynamic flows [5], geophysical fluids such as on large scale
oceanic flows [6], or even the flow induced by the breaking of a large dam on a
dry bed [7]. We are motivated by control applications including the boundary
control of sloshing water in a rotating tank or non-radial boundary control of
large circular water basin [8] such as in the FloWave Ocean Energy Research
Facility [9], in Nantes, France.

A common approach to include dissipation in the shallow water model is to
consider a fluid friction with the water bed, represented through some empir-
ical formulae, which relates the local tension to the fluid velocity, and results
in an additional nonlinear algebraic term in the SWE (see for instance [10, 11]
or [12], for a list of such formulas for various physical configurations). How-
ever, these empirical formulas will not lead to the possibility of controlling the
boundary tangential component of the water flow and will be useless in the
applications motivating this work. Fortunately, the derivation of shallow water
models from the Navier-Stokes equations for free surface flows with viscous
damping has been proposed either in [13], for the one-dimensional case, or in
[14], for the general three-dimensional rotational case with irregular bed topog-
raphy. From the asymptotic analysis of the Navier-Stokes free-surface problem,
a 2D-SWE is then obtained in which a second-order Laplacian-like differential
operator accounts for the viscous dissipation (see also Section 2.2, hereafter).
This latter model, which encompasses viscous damping and rotational fluid
dynamics, incorporates all the physical phenomena which are needed to address
the control problems that motivate this work. Note that [15] addresses the
global existence for the Cauchy problem for this equation in the whole plane,
for small initial data.

For analysis or control design, it may be crucial to obtain information on the
underlying geometric structure for the considered dynamical systems, together
with an account for the stored and dissipated energy. In our case we wish to
make use of the port-Hamiltonian (pH) formulation of the dynamics [16, 17],
combined with passivity-based control designs (namely impedance matching
and control by interconnection) to achieve boundary control of the shallow
water flows through boundary actuation. This pH approach has been used
for the modelling, simulation and control of distributed parameter systems
for more than twenty years [18]. The SWE were previously studied in this
pH framework (see for instance [19, 20]). In [21], the pH 1D model of an
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open channel irrigation system is spatially discretized and energy-based control
designs are used to regulate water levels and flows throughout the reaches
via sluice gates actuation. In [22, 23] the 1D and 2D sloshing problems are
considered: in both these references, the pH formulation is being used for the
modelling, simulation and control of the fluid-structure coupled system. In [8]
surface waves in a circular water tank are modelled using the pH approach
and boundary passive feedback control is designed. The pH model and energy-
based decomposition have also been proposed for the general Navier-Stokes
equations [24].

A classical approach to embed viscous friction forces in the SWE pH
model is the approximation of the viscous term that arises in the Navier-
Stokes equations with a Laplacian [16]. In a previous work [25], we used this
approach where the viscous terms are given as a function of the Laplace diffu-
sion operator only. First results of simulations in 1D were promising. However,
as reported in [26], the use of the Laplacian formulation in these equations is
misleading and may lead to non-physical solutions (which violates the funda-
mental objectivity principle of continuum mechanics [27]) and oversimplified
boundary conditions. Therefore, in the present paper, we start from the asymp-
totic approach and the resulting SWE with viscous friction, as presented in [13]
(1D case) and [14] (2D case), to derive their corresponding pH formulation.

This paper is dedicated to the pH formulation of the 2D SWE with vis-
cous damping and its structure-preserving spatial discretization. Preserving
the underlying Dirac interconnection structure in the pH model results (among
others) in energy conservation and associated dynamical properties such as
stability and controllability. Mixed finite element methods were introduced a
long time ago to perform such structure-preserving spatial discretization for
the Maxwell field equations [28]. In [29] this approach is applied to the weak
formulation of pH models to obtain a quite general class of structure-preserving
spatial discretization methods. In [30] we have shown that a partitioned version
of these mixed finite element methods directly leads to a finite-dimensional
Dirac interconnection structure and no further projection is required to obtain
finite-dimensional pH equations with a flexible choice for causality (i.e. for
the boundary port variables). This partitioned finite element method (PFEM)
method has been applied to the discretization of various 2D and 3D pH models
with non-autonomous boundary conditions [31]. Accurate convergence results
in the sense of numerical analysis have been obtained [32] which suggest a
heuristic for the optimal choice of finite element conforming spaces.

In this paper, the PFEM is applied to the rotational SWE with viscous
damping. It is structured as follows. We propose first, in Section 2, a pH model
for the rotational SWE with the appropriate viscous damping operator (see
Section 2.2.1), derived from [13, 14]. We derive, in Section 2.2.2, an extended
Stokes-Dirac interconnection structure, associated with a weighted inner prod-
uct (designed specifically to simplify the SWE dynamics, see Section 2.1.2),
and the appropriate factorization for the dissipation operator. In particular,
it is shown that the correct normal and tangential boundary port-variables
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both emerge from the power balance associated with this Stokes-Dirac inter-
connection structure. Finally, we compute the weak formulation (Section
3.1) and apply the PFEM spatial discretization to the obtained pH model
(Section 3.2). The finite-dimensional power balance is computed in Subsec-
tion 3.3. In Section 4, we validate the approach on four different simulation
scenarios:

1. a 2D simulation for the SWE in a rectangular closed tank, without
dissipation and with a zero normal boundary control;

2. the same scenario with viscous dissipation, which produces tangential
components for the velocities and a boundary limit layer;

3. a scenario where the water tank is emptied by forcing a normal component
of the velocity (i.e., normal velocity boundary control);

4. a 2D simulation for a 2D rotating circular tank with uniform initial water
level profile (i.e., tangential velocity boundary control).

To the best of our knowledge, the main contributions in this work are:

• the pH formulation of a physically coherent model for the 2D rotational
SWE with viscous damping;

• the derivation of an extended 2D Stokes-Dirac interconnection structure
with dissipation ports such that normal and tangential boundary-port
variables may be identified in the power balance equation;

• the structure-preserving spatial discretization (with a PFEM-Galerkin
approach) of the previous model to produce a finite-dimensional pH model
with discrete power balance;

• the numerical results obtained for the 2D rotational SWE with viscous
damping and normal/tangential boundary controls.

2 Dissipative SWE as a pH system

This section reviews the Shallow Water Equations written in the pH frame-
work. Firstly, Section 2.1 presents the frictionless model, without any source of
dissipation. This form leads to a power-preserving pH system, where the only
energy exchange occurs through the boundary ports. Secondly, the viscous
dissipative model is presented in Section 2.2.

2.1 Frictionless model

We consider a bounded domain in Ω ⊂ R2, with a C2 boundary ∂Ω, see
e.g. [33, Chap. III]. For any finite time horizon T > 0, we assume strong
solutions belonging to the functional space C1([0, T ]; C1(Ω̄)). Moreover, at
this stage, we formulate the hypothesis that, provided the initial water height
h0 is sufficiently high, the height h(t,x) will remain bounded from below by
some hmin > 0, which might depend on T .
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2.1.1 Classical setting

The frictionless irrotational SWE is usually written as a system of two
conservation laws as: (

∂th
∂tp

)
=

[
0 −div

−grad 0

](
eh
e0p

)
, (1)

where h is the height of the fluid, v is the velocity, ρ is the fluid density
(supposed constant), p := ρv is the linear momentum, eh = 1

2ρ ∥v∥
2 + ρgh

is the total pressure and e0p = hv is the volumetric flow of the fluid. Thus,
the first line of the matrix equation represents the conservation of the mass
(or volume, since the fluid is assumed to be incompressible) and the second
represents the conservation of linear momentum.

Furthermore, one can define the system Hamiltonian (or total energy) as
a functional of h and p, which are thus called energy variables:

H(h,p) :=

∫
Ω

1

2
ρh∥v∥2 + 1

2
ρgh2 dΩ =

∫
Ω

1

2 ρ
h∥p∥2 + 1

2
ρgh2 dΩ . (2)

The co-energy variables can be computed from the variational derivative of
the Hamiltonian such that:

eh := δhH =
1

2
ρ ∥v∥2 + ρgh ,

e0p := δpH = hv .
(3)

The time-derivative of the Hamiltonian can then be obtained as follows:

d

dt
H =

∫
Ω

(
∂th eh + ∂tp · e0p

)
dΩ . (4)

From (1), we get that the time-derivative of the Hamiltonian depends only on
the boundary variables:

d

dt
H = −

∫
∂Ω

eh e
0
p · nds , (5)

which enables to define collocated control and observation distributed ports
along the boundary ∂Ω. For example:

u∂ = −e0p · n , volumetric flow,

y∂ = eh , total pressure,
(6)

and the power-balance is given by a product between input and output
boundary ports:

d

dt
H =

∫
∂Ω

u∂y∂ ds . (7)
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For the rotational case, a slightly modified version of (1) can be defined,
that takes into account the vorticity of the fluid, see e.g., [20, 23]:(

∂th
∂tp

)
=

[
0 −div

−grad 1
hG(ω)

](
eh
e0p

)
, (8)

with (scalar) vorticity ω(t,x) and gyroscopic term G(ω) defined by:

ω := curl2Dv = ∂xv2 − ∂yv1 , and G(ω) := ρ

[
0 1
−1 0

]
ω . (9)

Since the matrix G is skew-symmetric, it will play no role in the power balance
(and it computes exactly as (7)).

2.1.2 A new choice of scalar product

As mentioned in [34], following e.g., [35], it can be interesting to adapt the
chosen scalar product to the physical problem: indeed, since the shallow water
model performs an average in one dimension, i.e., on the height of the water
column, it is natural to introduce for the velocities the scalar product in L2

h(Ω):

(v1,v2)h :=

∫
Ω

v1 · v2 hdΩ . (10)

Here the hypothesis ∀x ∈ Ω, ∀t ∈ [0, T ], h(t,x) ≥ hmin > 0 is of utmost
importance, otherwise (10) would not define a scalar product. In this case, the
computation of the co-energy variables must be adapted, since the definition
of the variational derivative, see e.g. [36, 37], requires the use of Riesz rep-
resentation theorem, which is dependent on the choice of the scalar product.
Thus, scalar fields belong to L2(Ω), while vector fields belong to L2

h(Ω):

eh := δhH =
1

2
ρ ∥v∥2 + ρgh ,

ep := δhpH = v .
(11)

Indeed the characterization (δhpH, ε q)h = H(h,p + ε q) − H(h,p) + O(ε2),

∀q ∈ L2
h(Ω) , leads to the new definition ep := δhpH = v, which will be used

in the sequel, and provides some advantages at the numerical level.
In this case, the differential operators have to be adapted, and we can find:(

∂th
∂tp

)
=

[
0 −div(h ·)

−grad G(ω)

](
eh
ep

)
. (12)

In what follows, the formal adjoint is denoted by ∗, while the formal adjoint
with respect to the new scalar product is denoted by ∗h. Both should not be
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confused with the usual adjoint. By formal adjoint, it is meant in the sense of
distributions, i.e., for all compactly-supported functions in C∞(Ω).

An operator that depends on the energy variables is said to be modulated,
in accordance with the terminology of modulated Dirac structure, see e.g., [16,
Section 2.2.2] or [17].

Let us denote by H1(Ω) ⊂ L2(Ω) the Sobolev space of scalar fields with
first order weak partial derivative in L2(Ω), and:

Hdiv
h (Ω) :=

{
ψ ∈ L2

h(Ω),div(hψ) ∈ L2(Ω)
}
⊂ L2

h(Ω).

Proposition 1 Assume that there exist regular energy variables, h ∈
C1([0, T ]; C1(Ω̄)), and p ∈ C1([0, T ]; (C1(Ω̄))2), solutions of the
SWE (12)–(11). The unbounded matrix-valued differential operator J (h,p) :
D(J (h,p)) := H1(Ω)×Hdiv

h (Ω) → L2(Ω)×L2
h(Ω):

J (h,p) :=

[
0 − div(h ·)

−grad G(ω)

]
, (13)

is modulated by the energy variables h and p, and is formally skew-symmetric.

Proof
To prove the formal skew-symmetry of J (h,p), let us first recall that the

bounded term J22 := G(ω) is a real-valued 2×2 skew-symmetric matrix. Note
also that ρω = curl2D(p) ∈ C1([0, T ]; C0(Ω̄)); thus, ∀ψ ∈ L2

h(Ω), G(ω)ψ ∈
L2

h(Ω).
Now, for the unbounded terms J12 and J21, taking care of the new scalar
product (10) for vector-valued variables, one has ∀ϕ ∈ H1(Ω), ∀ψ ∈Hdiv

h (Ω) :

(−gradϕ,ψ)h = (−gradϕ, hψ) ,

= +(ϕ, div(hψ))−
∫
∂Ω

ϕψ · n h ds . (14)

Thus, for fields ϕ, ψ vanishing at the boundary, the formal adjoint
of −grad now is div(h ·). And in the general case, the boundary
term reads −

∫
∂Ω
ϕψ · n h ds. Finally, this also shows that J12 ∈

L
(
Hdiv

h (Ω), L2(Ω)
)
, and that J21 ∈ L

(
H1(Ω),L2

h(Ω)
)
. Altogether, J (h,p) ∈

L
(
H1(Ω)×Hdiv

h (Ω), L2(Ω)×L2
h(Ω)

)
. □

The possible choice (6) of collocated input – output ports has to be adapted
accordingly:

u∂ = −ep · n = −v · n ,normal velocity,

y∂ = eh , total pressure,
(15)

and the power-balance (7) now reads:

d

dt
H =

∫
∂Ω

u∂ y∂ hds=:(u∂ , y∂)h,∂Ω . (16)
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2.2 Linear viscous (differential) dissipation

Now let us investigate the linear dissipation model induced by the Navier-
Stokes equation, averaged on a slice of fluid: the full model will be recalled first
in Section 2.2.1, and recast as a pH system (an explicit distributed pH system,
giving rise to a pH-ODE once spatially discretized) under the form J − R,
helping prove dissipativity in an easy way. Then in Section 2.2.2, enlightening a
factorization of R as GSG∗ gives rise to the definition of physically meaningful
dissipation ports and a pH system with an extended structure matrix Je (an
implicit distributed pH system, leading to a pH-DAE once spatially discretized,
see [38] for a review), allowing a more straightforward computation of the
boundary terms in the energy balance: here the tangential component of the
velocity does play a role as an additional boundary control port.

2.2.1 Modelling as a dissipative dynamical system

The viscous effects on the SWE can be obtained from the Navier-Stokes
equations, which involves a diffusion term with water viscosity µ > 0 in the
momentum equation:

∂tp = −grad(eh) +G(ω)ep − h−1τ . (17)

However, the characterization of the viscous stress τ proves intricate. Already
in the 1D case, following e.g. [39], it was suggested in [25] to use τ := −µ∂xxv;
however, the careful derivation of the viscous model from the Navier-Stokes
equations averaged on a slice proved in [13], gives instead:

τ := −4µ∂x (h ∂xv) .

In the 2D case, things become even more intricate: it was first suggested in [25]
to use τ := −µ∆v, involving the vector Laplacian∆, which appears classically
in the Navier-Stokes equations; however the careful derivation of the model
performed in [14] leads to a much more complex definition of the viscous stress,
namely:

τ := −grad(2µh div(v))−Div(2µh Grad(v)) , (18)

where Grad(v) is the symmetric tensor 1
2 (∇v+∇v⊤), and d = Div(Σ) is the

vector of the divergences of the columns of the tensor; i.e. di = div(Σ(:, i)).

Proposition 2 The unbounded matrix-valued differential operator: R(h) :
D(R(h)) := L2(Ω)×D(R22(h)) → L2(Ω)×L2

h(Ω):

R(h) :=

[
0 0

0 − 1
h grad(2µh div(·))− 1

h Div(2µh Grad(·))

]
, (19)

D(R22(h)) :=
{
w ∈ L2

h(Ω) | grad(2µh div(w)) + Div(2µh Grad(w)) ∈ L2(Ω)
}
,

is modulated by the energy variable h, and formally symmetric and non-negative.
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Proof Since R(h) acts on the second variable only through R22(h), let us
compute for C∞ fields v, w vanishing at the boundary ∂Ω:

(R22(h)v,w)h = (− 1

h
grad(2µh div(v))− 1

h
Div(2µh Grad(v)),w)h

= (−grad(2µh div(v))−Div(2µh Grad(v)),w)

= (2µh div(v),div(w)) + (2µh Grad(v),Grad(w))

= 2µ (div(v),div(w))h + 2µ (Grad(v),Grad(w))h ,

from this latter line, it is obvious that R22(h) is formally symmetric; moreover,
for the special case w = v we obtain:

(R22(h)v,v)h = 2µ (div(v),div(v))h + 2µ (Grad(v),Grad(v))h

=

∫
Ω

2µ (div(v))2 + 2µ Grad(v) : Grad(v) h dΩ ≥ 0 ,

which shows that the operator is formally non-negative. □
As a consequence, for fields vanishing at the boundary ∂Ω, the dynamical

system proves dissipative:

d

dt
H = −

∫
Ω

2µ (div(v))2 + 2µ Grad(v) : Grad(v) h dΩ ≤ 0 ; (20)

this kind of mechanical energy balance is in perfect accordance with classical
results from the literature, see e.g. [33, 40].

Since we are most interested in boundary control, we must go further and
make the boundary terms explicit, either by one integration by parts from this
first compound formulation, or by extending the formulation with dissipative
ports, which will make the computation a bit easier.

2.2.2 A port-Hamiltonian system with dissipation ports

The 2D rotational SWE with viscous damping boils down to:
∂th = −div(hep),

h∂tp = −hgrad(eh) + h curl2D(p)

[
0 1
−1 0

]
ep

+2µDiv (hGrad(ep)) + 2µgrad (hdiv(ep)) ,

(21)

together with the constitutive relations (11) given by:
eh = ρgh+

∥p∥2

2ρ
,

ep =
p

ρ
.

(22)
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The general factorization of dissipation operators proposed in [41] under the
form R = GS G∗ can be illustrated here, and provides a useful step towards the
pH modelling of dissipative systems. Indeed, it is known that div∗ = −grad,
and it has been proved in [42] that Div∗ = −Grad for symmetric tensors. Note
here that for p-type variables, the h-dependent scalar product must be used,
and the formally adjoint operators recomputed adequately.

We are now in a position to define dissipation flows, as follows: (they both
apply to ep = v),

• Fd := Grad(v)∈ L2
sym(Ω) a symmetric tensor, the so-called strain rate

tensor,

• fd := div(v)∈ L2(Ω), a scalar field, the velocity divergence,

which are both physically meaningful. In the above, L2
sym(Ω) is the space

of second order symmetric tensor fields with components in L2(Ω). The h-
dependent version of these spaces will be useful in the sequel; L2

sym,h(Ω) with

scalar product (E,F )h :=
∫
Ω
E : F hdΩ, and L2

h(Ω) with scalar product
(d1, d2)h :=

∫
Ω
d1 d2 hdΩ.

Let us denote byH1(Ω) ⊂ L2(Ω),H1(Ω) ⊂ L2(Ω) andH1
sym(Ω) ⊂ L2

sym(Ω)
the Sobolev spaces of fields with first order partial derivative of each component
in L2(Ω), and their h-dependent version H1

sym,h(Ω) ⊂ L2
sym,h(Ω) and H

1
h(Ω) ⊂

L2
h(Ω).

Proposition 3 The 2D-SWE with viscous damping (21) can be recast as the
following constrained dynamical system:

∂th
∂tp
Fd

fd

 = Je(h,p)


eh
ep
Ed

ed

 , (23)

together with the constitutive relations (22) and the additional closure relations:

ed = 2µfd, and Ed = 2µFd. (24)

The extended operator Je(h,p) : D(Je(h,p)) → X , defined by:

D(Je(h,p)) := H1(Ω)×H1(Ω)×H1
sym,h(Ω)×H1

h(Ω),

X := L2(Ω)×L2
h(Ω)× L2

sym,h(Ω)× L2
h(Ω),

and:

Je(h,p) :=


0 −div(h·) 0 0

−grad G(ω) 1
h Div(h·) 1

h grad(h·)
0 Grad 0 0
0 div 0 0

 , (25)

is formally skew-symmetric.

Proof. Firstly, let us verify that we can recast the dynamic equations
as (23). Starting from (21), and substituting the dissipation flows Fd =
Grad(ep) and fd = div(ep) leads to:
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∂th
∂tp

)
=

[
0 −div(h ·)

−grad G(ω)

](
eh
ep

)
+

(
0

h−1 grad(2µh fd)

)
+

(
0

h−1 Div(2µhFd)

)
.

With the closure relations Ed = 2µFd and ed = 2µfd, this rearranges as:

(
∂th
∂tp

)
=

[
0 − div(h ·) 0 0

−grad G(ω) 1
h Div(h·) 1

h grad(h·)

]
eh
ep
Ed

ed

 ,

which yields (23) by definition of Fd and fd.
Secondly, to verify that Je(h,p) is formally skew-symmetric, it proves

necessary to compute its formal adjoint, where the h-dependent scalar prod-
uct (10) is used for vector fields, but also for tensor fields on L2

sym,h(Ω) and

scalar fields on L2
h(Ω).

This proceeds in 3 steps: computation of the formal adjoint of 1
h grad(h·),

of 1
h Div(h·), and factorization of the damping R(h) leading to formal skew-

symmetry of Je(h,p).
Step 1 for any scalar field φ∈ H1

h(Ω) and vector field ψ ∈H1(Ω),

(− 1

h
grad(hφ),ψ)h = (−grad(hφ),ψ)

= (hφ,div(ψ))−
∫
∂Ω

hφψ · nds

= (φ, div(ψ))h −
∫
∂Ω

φψ · n h ds . (26)

Thus, the formal adjoint of − 1
h grad(h·) on L2

h(Ω) is div; and−
∫
∂Ω
φψ·n h ds

is the boundary term.
Step 2 for any vector field w∈H1(Ω) and symmetric tensor field
E ∈ H1

sym,h(Ω),

(− 1

h
Div(hE),w)h = (−Div(hE),w)

= (hE,Grad(w))−
∫
∂Ω

hEn ·w ds

= (E,Grad(w))h −
∫
∂Ω

w · En h ds . (27)

Thus, the formal adjoint of − 1
h Div(h ·) on L2

sym,h(Ω) is Grad; and −
∫
∂Ω
w ·

En h ds is the boundary term.
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Step 3: Denoting G :=

[
0 0

1
h Div(h ·) 1

h grad(h·)

]
, from steps 1 and 2, we can

conclude that G∗h =

[
0 −Grad
0 −div

]
. Then, we can rewrite (25) using the classi-

cal decomposition Je(h,p) =

[
J (h,p) G
−G∗h 0

]
, where J (h,p) is defined in (13).

We conclude to the formal skew-symmetry of Je(h,p) with the help of Propo-
sition 1. □

Remark 1 Note that if we define S := diag(2µ I, 2µ) and apply the closure relation(
Ed

ed

)
= S

(
Fd

fd

)
in (23), we get:(

∂th
∂tp

)
= (J (h,p)−R)

(
eh
ep

)
, (28)

where R = G S G∗h, which is equivalent to (19), and (28) is equivalent to (21).

Thanks to this strongly structured formulation of the original system, we
are now in a position to state the following:

Theorem 4 The evolution of the Hamiltonian (2) along the trajectories of the
dynamical system (23) with the constitutive relations (11) and the closure rela-
tions (24) is given by:

d

dt
H = −

∫
Ω

[
2µ (div(v))2 + 2µ Grad(v) : Grad(v)

]
h dΩ (29)

+

∫
∂Ω

[(−eh + 2µ div(v))v · n+ 2µv ·Grad(v)n)] h ds . (30)

The boundary term (30) alone can be further decomposed into:∫
∂Ω

[(−eh + 2µ div(v) + 2µN(s) : Grad(v))v · n

+(2µR(s) : Grad(v))v · t] h ds , (31)

where t is the tangential vector on the boundary (+90 degrees rotation of n, the
outward normal vector), and the tensors at the boundary are defined locally by N(s) =
nn⊤, and R(s) = tn⊤.

Proof. The proof proceeds in 3 steps: 1. computation of the scalar product
(e,Jee) (where e is the vector with all co-energy variables) and identification
of the derivative of the Hamiltonian, together with the in-domain terms, 2.
careful computation of the right-hand side involving boundary terms only,
3. equivalent expression of the boundary integral after projection into local
coordinates on the normal and tangential components.
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Step 1

eh
ep
Ed

ed

 ,Je


eh
ep
Ed

ed


 =

∫
Ω

(eh ∂th+ ep · ∂tp+ Fd : Ed + fd ed) hdΩ

=
d

dt
H +

∫
Ω

[
2µ (div(v))2 + 2µ Grad(v) : Grad(v)

]
h dΩ .

Step 2 Computing (e,Jee) carefully, one can group terms in three pairs and
make use of the previous results on the formal adjoints (14), (26) and (27);
indeed the three following contributions must be added:

(eh,−div(h ep)) + (ep,−grad(eh))h = −
∫
∂Ω

eh v · n h ds ,

(ep,
1

h
Div(hEd))h + (Ed,Grad(ep))h =

∫
∂Ω

2µv ·Grad(v)n h ds ,

and (ep,
1

h
grad(h ed))h + (ed,div(ep))h =

∫
∂Ω

2µ div(v)v · n h ds .

Step 3 Using the identity v ·Grad(v)n = Grad(v) : (v n⊤), and plugging the
decomposition of the velocity into a local basis v = (v · n)n + (v · t) t, leads
to (31).

The conclusion of Theorem 4 follows. □

Remark 2 When comparing (20) with (29)–(30), we can see that the closed dynamical
system (i.e., without boundary control) is dissipative, while the open dynamical
system is passive (up to the definition of appropriate collocated inputs and outputs).
The latter decomposition (31) is physically meaningful: both the normal and the
tangential components of the velocity vector at the boundary play a role. However,
this result differs from the original computation made in [25] from the vectorial
Laplacian formulation, and also from the energy balance for a compressible isentropic
fluid given in [43].

A possible choice for the boundary ports could be the boundary velocity
(with both normal and tangential components) for control:

u(t, s) = ep(t, s), ∀t ≥ 0, s ∈ ∂Ω . (32)

Such a choice of boundary control implies, according to (30), that the colocated
boundary observation is given by:

y(t, s) = (−eh(t, s) + 2µdiv(ep))n+2µGrad(ep) ·n, ∀t ≥ 0, s ∈ ∂Ω . (33)
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Then, the power balance related with the boundary control (30) becomes:

d

dt
H ≤

∫
∂Ω

y · u h ds . (34)

Remark 3 In the power balance (34), one can further decompose the density y · u
into a non viscous term y0 u0 when µ = 0, and a purely viscous contribution yµ · u
when µ > 0. This motivates splitting the output variable (33) as follows:

y = y0n+ yµ, with y0 := −eh, andyµ := 2µ (Grad(ep) · n+ div(ep)n) . (35)

The notation u0 := u ·n = un has also been introduced, since this latter quantity is
the only control variable which is available when µ = 0.

Remark 4 In this paper, we assume that the fluid height is always positive. This
hypothesis is necessary considering the definition of the inner product of Section 2.1.2.
Proving that the solutions fulfill h > 0 is beyond the scope of this paper. For this
reason, special care must be taken to ensure that the simulations meet this condition.
The interested reader is referred to [15, 44, 45] and references therein for several
results on the global existence of solutions of the viscous SWE. In particular, [15]
presents a proof that the height is always positive, at least when assuming small
initial perturbations around the equilibrium and small forcing. In this section, the
strong regularity C1([0, T ]; C1(Ω̄)) is assumed both on the height h, and on the
linear momentum p (hence, on the velocity v). In light of the results obtained in
Ω = R2, proven in [15], this strong assumption seems reasonable.

3 Structure-preserving discretization

We are now in a position to propose a structure-preserving discrete approxima-
tion of the dissipative SWE. At least two approaches may be used to guarantee
a discrete power balance mimicking (29)–(30) on the infinite-dimensional level.
The first one would rely on the flow/effort formulation of the problem, with
dissipative ports together with linear constitutive relations to take the dissi-
pation into account, see e.g. [46], the second one relies on the J − R state
formulation, as in Section 2.2.1, where R is symmetric non-negative and rep-
resents the dissipation as one single block. While the former is very useful to
enlighten the underlying Stokes-Dirac structure, it suffers from an increased
number of unknowns to be computed. The latter seems more appropriate for
numerical purpose, since it strongly reduces the number of degrees of freedom
in the discrete system, the only price to pay is that a Lagrange multiplier will
be needed to access the desired tangent control of the velocity.
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3.1 Weak formulation

Let us consider the SWE (21)–(22) with the boundary control (32):

ep(t, s) = u(t, s) = un(t, s)n(s) + ut(t, s)t(s), ∀t ≥ 0, s ∈ ∂Ω ,

where un and ut are the normal and tangential velocity respectively, and the
colocated boundary observation (33):

y(t, s) = (−eh(t, s) + 2µdiv(ep))n+ 2µGrad(ep) · n, ∀t ≥ 0, s ∈ ∂Ω .

Let us consider sufficiently regular test functions φ, Φ on Ω. The weak
form of (21) reads:

(∂th, φ)L2 = − (div(hep), φ)L2 ,

(h∂tp,Φ)L2 = − (hgrad(eh),Φ)L2 +

(
h curl2D(p)

[
0 1
−1 0

]
ep,Φ

)
L2

+2µ (Div (hGrad(ep)) ,Φ)L2

+2µ (grad (hdiv(ep)) ,Φ)L2 .

Applying integration by parts, once on the first line, and on each dissipative
terms, leads to:

(∂th, φ)L2 = +(hep,grad (φ))L2 − (hep · n, φ)∂Ω ,

(h∂tp,Φ)L2 = − (hgrad(eh),Φ)L2 +

(
h curl2D(p)

[
0 1
−1 0

]
ep,Φ

)
L2

−2µ (hGrad(ep),Grad (Φ))L2

+2µ (hGrad(ep) · n,Φ)∂Ω
−2µ (hdiv(ep),div (Φ))L2

+2µ (Φ · n, hdiv(ep))∂Ω ,

where we recall that both solutions and test functions are assumed regular
enough to ensure that the boundary duality brackets reduce to boundary L2-
scalar products.

Gathering the boundary terms of the second equation gives:

(∂th, φ)L2 = +(hep,grad (φ))L2 − (hep · n, φ)∂Ω ,

(h∂tp,Φ)L2 = − (hgrad(eh),Φ)L2 +

(
h curl2D(p)

[
0 1
−1 0

]
ep,Φ

)
L2

−2µ (hGrad(ep),Grad (Φ))L2

−2µ (hdiv(ep),div (Φ))L2

+2µ (h (Grad(ep) · n+ div(ep)n) ,Φ)∂Ω .

As a result, one can observe that parts of the boundary input/output, defined
in (32) and (33), appear parted across the two lines of the system. In the first
line, the boundary normal velocity u0 = ep ·n appears, whereas in the second
line, yµ appears, as the viscous part of the output y, see (35).
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Finally, including the boundary terms, the weak formulation of the pH
system reads:

(∂th, φ)L2 = +(hep,grad (φ))L2 −
(
hu0, φ

)
∂Ω
,

(h∂tp,Φ)L2 = − (hgrad(eh),Φ)L2 +

(
h curl2D(p)

[
0 1
−1 0

]
ep,Φ

)
L2

−2µ (hGrad(ep),Grad (Φ))L2

−2µ (hdiv(ep),div (Φ))L2

+(hyµ,Φ)∂Ω .
(36)

Remark 5 In order to obtain a finite-dimensional pH system, the integration by parts
of the dissipative terms is mandatory (otherwise the induced matrices would not be
symmetric and non-negative). On the contrary, the integration of − (div(hep), φ)L2

could have been replaced by the integration, on the second line, of the term
− (hgrad(eh),Φ)L2 . Numerical tests have shown a better behavior (e.g. on stabil-
ity) for the former choice. Indeed, consider for instance the inviscid case, i.e., µ = 0,
then the formulation with integration by parts performed on the second line implies
that the normal velocity control is imposed by an algebraic constraint, the output
being the associated Lagrange multiplier. However, the latter integration by parts
leads to some simplification as yµ is then replaced by the whole output vector y.
Further investigations are required to discriminate the two possibilities.

The weak form of the constitutive relations (22) may be written, making
use of the appropriate weighted inner product introduced in Section 2.1.2:

(eh, φ)L2 = (ρgh, φ)L2 +

(
∥p∥2

2ρ
, φ

)
L2

,

(hep,Φ)L2 =

(
h
p

ρ
,Φ

)
L2

.
(37)

To conclude to a pH system, it remains to take into account the power-
conjugated boundary quantities, namely those related to u0 and yµ. Let ψ =(
ψn

ψt

)
be regular test functions at the boundary ∂Ω, which are considered in

the local basis formed by (n, t).
The definition of the scalar observation y0, given in (35), together with an

h-dependent L2 inner product, leads to:(
hψn, y

0
)
∂Ω

= − (hψn, eh)∂Ω ,

which turns out to be, as expected, the counterpart of the control term(
hu0, φ

)
∂Ω

of (36).
On the other line of (36), the observation yµ appears to be the Lagrange

multiplier of the constraint prescribing the control in (32), which one writes
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again with h embedded in:

(hψ,u)∂Ω = (hψ, ep)∂Ω .

Hence, the weak formulation at the boundary reads:{ (
hψn, y

0
)
∂Ω

= − (hψn, eh)∂Ω ,
(hψ,u)∂Ω = (hψ, ep)∂Ω .

(38)

Then, the full pH system in weak form is given by the dynamical equations (36),
the constitutive relations (37) and the boundary ports (38).

Remark 6 Finally, the compatibility condition u0 = u · n must be fulfilled, for the
above system of equations to be well-defined.

3.2 Galerkin approximation

Consider two finite elements families (φi)1≤i≤Nh
and (Φk)1≤k≤Np defined on

Ω. Let us approximate the energy and co-energy variables in these families:

h(t,x) ≃ hd(t,x) :=

Nh∑
i=1

hi(t)φi(x) = φh(x)
⊤h(t),

eh(t,x) ≃ edh(t,x) :=

Nh∑
i=1

eih(t)φ
i(x) = φh(x)

⊤eh(t),

p(t,x) ≃ pd(t,x) :=
Np∑
k=1

pk(t)Φk(x) = Φp(x)
⊤p(t),

ep(t,x) ≃ edp(t,x) :=
Np∑
k=1

ekp(t)Φ
k(x) = Φp(x)

⊤ep(t).

Then, consider two finite elements families (ψm
n )1≤m≤N∂

and (ψm
t )1≤m≤N∂

defined at the boundary ∂Ω, and let us approximate the boundary variables
in these families as follows:

u(t, s) ≃ ud(t, s) :=
∑N∂

m=1 u
m
n (t)

(
ψm
n (s)
0

)
+
∑N∂

m=1 u
m
t (t)

(
0

ψm
t (s)

)
= ψn(s)

⊤un(t) +ψt(s)
⊤ut(t) = Ψ(s)⊤u(t),

and its colocated output:

yµ(t, s) ≃ yµ,d(t, s) :=
∑N∂

m=1 y
µ,m
n (t)

(
ψm
n (s)
0

)
+
∑N∂

m=1 y
µ,m
t (t)

(
0

ψm
t (s)

)
= ψn(s)

⊤yµn(t) +ψt(s)
⊤yµt (t) = Ψ(s)⊤yµ(t).
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Furthermore, the other part of the boundary observation given in (35) has to
be discretized in the normal family:

y0(t, s) ≃ y0,d(t, s) :=

N∂∑
m=1

y0,mn (t)ψm
n (s) = ψn(s)

⊤y0n(t),

together with its colocated control, which will be denoted with the same
exponent 0:

u0(t, s) ≃ u0,d(t, s) :=

N∂∑
m=1

u0,mn (t)ψm
n (s) = ψn(s)

⊤u0n(t).

We may now focus back to Remark 6 and confirm that the extra control u0

and the normal component un must be set to the same value for compatibility.
Therefore, numerically, the number of equations will be equal to the number
of degrees of freedom, but physically, no additional control will be available.

Substituting the discrete counterpart of the variables and using the finite
elements families as test functions in (36) gives rise to the following finite-
dimensional system:

Mh
d

dt
h = D[h] ep(t)−Bn[h]u

0,

Mp[h]
d

dt
p = −D[h]⊤eh +G[h, p] ep

−2µRGrad[h] ep − 2µRdiv[h] ep +Bµ[h] y
µ,

(39)

where the mass matrices are given by:

(Mh)i,j :=
(
φj , φi

)
L2 , (Mp[h])k,l :=

(
Φl, hdΦk

)
L2 ,

the D and G matrices are defined by:

(D[h])i,l :=
(
Φl, hd grad(φi)

)
L2 ,

(G[h, p])k,l :=

(
curl2D(pd)

[
0 1
−1 0

]
Φl, hdΦk

)
L2

,

the symmetric non-negative dissipative matrices are obtained with:

(RGrad[h])k,l :=
(
Grad(Φl), hd Grad(Φk)

)
L2 ,

(Rdiv[h])k,l :=
(
div(Φl), hd div

(
Φk

))
L2 ,

and finally the control matrices are defined by:

(Bn[h])i,n :=
(
ψn
n, h

dφi
)
∂Ω
, (Bµ[h])k,m :=

(
Ψm, hdΦk

)
∂Ω
.
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Regarding the constitutive relation, the system (37) becomes:{
Mh eh = Qh h+Nh[p] p,

Mp[h] ep = Qp[h] p,
(40)

where the matrices on the right-hand side are given by:

(Qh)i,j :=
(
φj , ρgφi

)
L2 , (Qp[h])k,l :=

(
Φl

ρ
, hdΦk

)
L2

,

both square and symmetric, and:

(Nh[p])i,l :=

(
pd ·Φl

2ρ
, φi

)
L2

, a rectangular matrix.

Finally, the finite-dimensional counterpart of the colocated control and
observation system (38) reads:{

Mn[h] y
0 = −Bn[h]

⊤eh,

M∂ [h]u = Bµ[h]
⊤
ep,

(41)

where the boundary mass matrices are:

(Mn[h])m,n :=
(
ψn
n, h

dψm
n

)
∂Ω
, (M∂ [h])m,n :=

(
ψn, hdψm

)
∂Ω
.

In compact form, the dynamics (39) together with the boundary vari-
ables (41) rewrite:

Diag


Mh

Mp[h]
Mn[h]
M∂ [h]




d
dth
d
dtp
−y0
u

 =
(
J [h, p]−R[h]

)
eh
ep
u0

−yµ

 , (42)

where the extended structure matrix J is defined as follows:

J [h, p] :=


0 D[h] −Bn[h] 0

−D[h]⊤ G[h, p] 0 −Bµ[h]
Bn[h]

⊤ 0 0 0
0 Bµ[h]

⊤ 0 0

 ,
and the symmetric non-negative resistive matrix R is given by:

R[h] :=


0 0 0 0
0 Rµ[h] 0 0
0 0 0 0
0 0 0 0

 , Rµ[h] := 2µ (RGrad[h] +Rdiv[h]) .
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Remark 7 It is important to remember that in (42), u and u0 require the
compatibility condition u · n = u0.

The constitutive relations (40) may be written in compact form as:[
Mh 0
0 Mp[h]

] (
eh
ep

)
=

[
Qh Nh[p]
0 Qp[h]

] (
h
p

)
(43)

The final discrete pH system is composed of (42), preserving the underlying
Dirac structure, and (43).

Remark 8 The discrete system (42)–(43) is a pH Differential Algebraic Equation (pH-
DAE), see [47]. In the linear-quadratic case, making use of the so-called co-energy
formulation is proven to be very efficient [32]; however, in our case, the non-linearities
forbid the substitution of the constitutive relations (43) into the dynamics (42); fur-
thermore, algebraic equations appear due to the arrangement of the boundary ports.
For these reasons, the difficulties raised by DAEs should be carefully considered.
Among them, compatibility conditions at the initial time are critical and will be
carefully checked in Section 4. Another source of difficulty would be to use the formu-
lation involving extra dissipation ports, some of them being symmetric tensors, see
Section 2.2.2; thus, it has been preferred to work with the J −R formulation, which
is of much smaller dimension. The wide class of linear pH-DAEs is already challeng-
ing and constitutes an active research topic: in particular, the index of such DAEs
can be at most 2 [48, Corollary 51]; the interested reader may refer to [38, 49, 50]
and the many references therein.

3.3 Discrete power balance

One of the main features of a pH system being the power balance satisfied
by the Hamiltonian, a discrete counterpart of Theorem 4 is expected. This
preservation property carries over for linear systems with a quadratic Hamil-
tonian, while in the modulated case or nonlinear case, only a few attempts
have already been made, see e.g., [51, 52], where the polynomial structure of
the equations makes a difference in the proof of the energy preservation.

Let us define the discrete Hamiltonian as follows:

Hd(t) := H(hd(t,x),pd(t,x)) =
1

2

∫
Ω

[
hd(t,x)

∥pd(t,x)∥2

ρ
+ ρg(hd(t,x))2

]
dΩ,

which may be rewritten as:

Hd(t) =
1

2
p(t)⊤Qp[h(t)] p(t) +

1

2
h(t)⊤Qh h(t). (44)

Before stating the power balance satisfied by the discrete Hamiltonian, let
us enlighten a trivial but crucial equality.
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Lemma 1 The following holds true:

1

2
p(t)⊤

d

dt
(Qp[h(t)]) p(t) = p(t)⊤Nh[p(t)]

⊤ d

dt
h(t).

Proof Indeed, one has:

1

2
p(t)⊤

d

dt
(Qp[h(t)]) p(t) =

1

2

(
pd

ρ
, ∂th

dpd

)
L2

,

=

(
∥pd∥2

2ρ
, ∂th

d

)
L2

,

= p(t)⊤Nh[p(t)]
⊤ d

dt
h(t) .

□

Theorem 5 The discrete Hamiltonian satisfies the following discrete power balance:

d

dt
Hd(t) = −2µep(t)

⊤ (RGrad[h(t)] +Rdiv[h(t)]) ep(t)

+u0(t)⊤Mn[h(t)] y
0(t) + yµ(t)⊤M∂ [h(t)]u(t),

≤ u0(t)⊤Mn[h(t)] y
0(t) + yµ(t)⊤M∂ [h(t)]u(t).

Proof On the one hand, one easily computes from the time-derivative of the discrete
Hamiltonian (44):

d

dt
Hd(t) = p(t)⊤Qp[h(t)]

d

dt
p(t)+h(t)⊤Qh

d

dt
h(t)+

1

2
p(t)⊤

d

dt
(Qp[h(t)]) p(t), (45)

On the other hand, multiplying (42) by


eh(t)

ep(t)

u0(t)
−yµ(t)

 by the left side leads to (since

J [h(t), p(t)] is skew-symmetric):

eh(t)
⊤Mh

d

dt
h(t) + ep(t)

⊤Mp[h(t)]
d

dt
p(t)

− u0(t)⊤Mn[h(t)] y
0(t)− yµ(t)⊤M∂ [h(t)]u(t) = −ep(t)

⊤Rµ[h(t)] ep(t).

By symmetry of the mass matrices, (43) implies:(
h(t)⊤Q⊤

h + p(t)⊤Nh[p(t)]
⊤
) d

dt
h(t) + p(t)⊤Qp[h(t)]

⊤ d

dt
p(t)

− u0(t)⊤Mn[h(t)] y
0(t)− yµ(t)⊤M∂ [h(t)]u(t) = −ep(t)

⊤Rµ[h(t)] ep(t).

Rearranging the terms and using Lemma 1, one gets:

p(t)⊤Qp[h(t)]
⊤ d

dt
p(t) + h(t)⊤Q⊤

h
d

dt
h(t) +

1

2
p(t)⊤

d

dt
(Qp[h(t)]) p(t)

= −ep(t)
⊤Rµ[h(t)] ep(t) + u0(t)⊤Mn[h(t)] y

0(t) + yµ(t)⊤M∂ [h(t)]u(t).

Substiting (45) and the definition of the matrix Rµ[h(t)] in the latter gives the result.
□
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4 Numerical results

This section is devoted to simulation tests in order to show the feasibility of our
approach. Note that the difficult question of time integration of the resulting
non-linear DAE is not treated in this work, where the Backward Differentiation
Formula (BDF) of order 2 provided by the PETSc library [53] has been used,
with a maximal time step ∆t = 0.005. In particular, the fully discrete system
is not a discrete pH system a priori, implying that the discrete power balance
is only satisfied up to the time scheme error.

Videos of the simulations will be available on the website of the journal as
supplementary materials. The codes are available as published examples on the
github https://github.com/g-haine/scrimp of the SCRIMP environment used
for the simulations [31].

For the following tests, continuous Lagrange finite elements have been cho-
sen to approximate all quantities (both scalar-fields and vector-fields). Indeed,
we assume a smooth solution in the previous sections, and the use of discontin-
uous finite elements would require further analysis. Moreover, the definition of
the matrix D involves the gradient of φi, while R involves first order deriva-
tives of Φ (except for the inviscid case where R ≡ 0). Therefore, an efficient
approach is to take the same order k for both h-type (scalar) fields and p-type
(vectorial) fields, when dissipation occurs, and an order k+1 for the h-type vari-
ables otherwise. Regarding the boundary fields, to ensure compatibility with
the traces of in-domain fields, they are approximated with Lagrange elements
of order k. In what follows, we present the results obtained for k = 2.

4.1 Closed system: the sloshing problem

Let us consider a rectangular tank of size (0, 2)× (0, 0.5) filled with a liquid of
mass density ρ = 1 kg m−3, lying in a gravity field1 g = 0.01 m s−2.

4.1.1 The inviscid case

In this first example, we aim to validate our approach by recovering known
behaviors in 1D.

Since there is no viscosity, the boundary control that is directly available
in the model is the normal velocity un, as shown in Section 3.1. In particular,
the vector control u from (32) and the Lagrange multiplier yµ from (35) are
removed from the model in this example. Taking un = 0 and an adequate initial
data, the solution will only vary in the x direction. More precisely, we choose
a continuous piecewise linear function that is constant equal to h0 =55 m
before some x0 and constant equal to h1 =50 m after some x1 > x0, and a null
initial velocity. With these values at hand, one may compute at which velocity
the front wave will propagate, see e.g., [54, Chapter 10]:

√
gh0 ≃

√
0.55 ≃

1These values have been chosen in order to be able to use a relatively large time step w.r.t. the
mesh size. Indeed, with ρ = 1000 kg m−3 and g = 10 m s−2, the characteristic velocity would
be about 100m s−1, which would require a very small time step to be approximated in a tank of
length 2m. Nevertheless, we choose to keep a ratio of 100 between these two parameters.

https://github.com/g-haine/scrimp
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0.74m s−1, which is recovered numerically, as seen on Fig. 1. Comparing the
second and third plots of Fig. 1, corresponding to time t = 0.95 s and t =
1.85 s, one may appreciate how we recover this characteristic speed.

4.1.2 Homogeneous boundary velocity control

We now add a dissipation, represented by a viscosity µ = 0.001 kg m−1 s−1,
as introduced in Section 2.2. It is then possible to access the boundary term
u, and in particular the tangent component of the velocity ut. In addition to
un = 0, let us impose furthermore ut = 0 in this test case.

It has been seen in Section 3.1 that u can be prescribed in an implicit
manner: the boundary term appearing after integrations by parts is yµ, which
turns out to be the Lagrange multiplier of the algebraic constraint (41) used
to prescribe u. It has to be noted that the use of an extended system with
dissipation ports, as presented in Section 2.2.2, instead of the J −R approach
would have made possible to prescribe directly the velocity at the boundary,
but to the price of a larger finite-dimensional system.

While the inviscid case (µ = 0) should give a constant Hamiltonian, it can
be observed on the top of Fig. 2 that it varies only at time scheme precision.
The viscous case should show a loss of energy, that is indeed observable on the
bottom of Fig. 2, a decay which shows proportional to the value of µ in our
tests.

The tangent velocity is correctly prescribed, as can be seen on the first plot
of Fig. 3, and the vorticity indeed develops near the boundaries as expected
(see the second plot of Fig. 3).

4.2 Emptying a tank: normal control

In this test, we applied an outgoing flow at the right side of the rectangle, to
simulate the emptying of the tank by opening of a sluice gate at the right end.
The initial height is constant at 50m, with a null velocity field. The control is
a parabolic profile that slowly increases as t goes to 1, and constant after this
instant. More precisely, the normal control is un(t, y) = 0.1y(y− 0.5)min(1, t)
at the right-end side of the rectangle, and null elsewhere. The tangent control
is still imposed at zero: ut = 0. The parabolic profile of un at x = 2 guarantees
the compatibility with the null tangent velocity prescribed on both the top
and the bottom boundaries of the tank.

One may appreciate the expected behavior of the height of fluid on Fig. 4.
In particular, the loss of potential energy due to the outgoing boundary flow
is clearly the dominant effect in the Hamiltonian decay.

4.3 Rotating circular tank: tangential control

In this last numerical experiment, we consider a circular tank that is rotating,
as an example of tangential velocity control. The velocity field is initialized
with a rotating field, compatible with the boundary control, while the height
of the fluid starts at a constant value, see the first plot of Fig. 5.
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Fig. 1 Evolution of the height and velocity of an inviscid fluid contained in a tank at
different time steps (t=0 s, t=1.02 s, t=2.09 s, t=3.09 s).
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At first, by the centrifugal effect, one may observe the fluid is pushed
against the boundary, as shown on the middle plot of Fig. 5 at t = 1.01 s.
Second, it bounces at the boundary and goes back to generate a spike at the
center of the tank, as seen on the last plot of Fig. 5 at t = 1.77 s.

Starting at t = 100 s, the tangential boundary control begins to reduce,
reaching zero near t = 250 s, as depicted in the first plot of Fig. 6.

Regarding the time evolution of the energies in this last experiment, one
may observe on Fig. 6 that, despite small oscillations of the total energy in the
beginning of the simulation, they quickly stabilize and the total energy behaves
as expected, even under continuous external energy supply and dissipation. A
long-time simulation (with final time tf = 500 s) has been performed, showing
excellent global behavior (see the lower part of Fig. 6). One might notice that
the spurious oscillations that occur in the beginning of the simulation coincide
with high-amplitude height oscillations, leading to a strong nonlinear behavior
of the Shallow Water Equations (see (42)), which would require some dedicated
time-stepping schemes.

Finally, on Fig. 7, one can see the effect of the decay of the boundary control
at t = 250 s (top); this decay then propagates inside the circular domain at
t = 300 s (middle); and eventually, stabilization is achieved around t = 375 s
(bottom): the kinetic energy (dashed blue curve on Fig. 6) indeed decays to
zero, while the potential energy (solid blue curve on Fig. 6) stabilizes at its
minimum value. One may appreciate the constant value of the supplied energy
Su (dashed purple curve on Fig. 6) when the power supplied at the boundary
through u reaches zero. Regarding the dissipation, it mainly occurs via DGrad

(solid green curve on Fig. 6), which is consistent with the chosen geometry,
initial data and applied control.
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Fig. 2 Variation of the different energies in play (homogeneous boundary velocity case):
in the inviscid case (top) and the viscous case (bottom). The notation Su0 represents the
supplied energy provided by the normal velocity control u0, Su the supplied energy provided
by the vectorial control u, DGrad the dissipated energy via the matrix RGrad[h] and Ddiv

via the matrix Rdiv[h], see (39).
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Fig. 3 (Top) Height and velocity of a viscous fluid in a tank at time t = 1.02 s, with
homogeneous velocity boundary control. (Bottom) Vorticity at time t = 1.02 s.
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Fig. 4 (Top) Variation of the different energies in play (emptying case).
(Bottom) Height and velocity profiles at time t = 2.09 s.
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Fig. 5 Height of fluid and velocity field of a rotating circular tank at different times t: on
top t = 0 s, in the middle t = 1.01 s, at bottom t = 1.77 s.
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Fig. 6 Time evolution of the tangential control (top) and variation of the different energies
(bottom) for a long-time simulation.
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Fig. 7 Height of fluid and velocity field of a rotating circular tank at different times t: on
top t = 250 s, in the middle t = 300 s, at bottom t = 375 s.
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5 Conclusions and further work

Firstly, this paper presented a pH formulation for the 2D rotational SWE with
viscous damping. In previous work of SWE using pH formulations, only the
normal velocity is taken into account as boundary control. With the inclusion
of viscous effects, this framework allows to explicitly take into account the
tangential velocity as boundary control port.

Secondly, using a partitioned finite element method, we achieve a finite-
dimensional continuous-time pH approximation that preserves the system’s
structure. Our method ensures the incorporation of normal/tangential bound-
ary control ports for the 2D rotational SWE with viscous damping after
discretization.

Finally, four simulation scenarios were investigated to illustrate the
approach and proved to be encouraging. However, a careful attention to the
time-marching numerical scheme should be addressed in further work, for
instance, through the study of energy-preserving time-steppers. This issue is
especially important to tackle severe nonlinearities when the Froude number
becomes greater than one, i.e. for supercritical flow, see e.g. [54]. Further-
more, the relation of compatibility condition between the finite element families
should be explored, e.g., adjusting the order of the elements.

Further work should also address the use of the models developed here
for control design, especially by taking advantage of the availability of the
tangential boundary control port.
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de fonds érodables, Paris, France. Class notes (2021). http://www.lmm.
jussieu.fr/%7Elagree/COURS/MFEnv/MFEnv.pdf

[13] Gerbeau, J.-F., Perthame, B.: Derivation of viscous Saint-Venant system
for laminar shallow water; numerical validation. Discrete and Continu-
ous Dynamical Systems - B 1(1), 89–102 (2001). https://doi.org/10.3934/
dcdsb.2001.1.89

[14] Marche, F.: Derivation of a new two-dimensional viscous shallow water
model with varying topography, bottom friction and capillary effects.
European Journal of Mechanics B/Fluids 26, 49–63 (2007). https://doi.
org/10.1016/j.euromechflu.2006.04.007

[15] Sundbye, L.: Global existence for the cauchy problem for the viscous shal-
low water equations. The Rocky Mountain Journal of Mathematics 28(3),
1135–1152 (1998)

[16] Duindam, V., Macchelli, A., Stramigioli, S., Bruyninckx, H.: Model-
ing and Control of Complex Physical Systems: The Port-Hamiltonian
Approach, p. 442. Springer, Berlin, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03196-0

[17] van der Schaft, A.J., Jeltsema, D.: Port-Hamiltonian Systems Theory:
An Introductory Overview. Foundations and Trends® in Systems and
Control 1(2), 173–378 (2014). https://doi.org/10.1561/2600000002

[18] Rashad, R., Califano, F., van der Schaft, A.J., Stramigioli, S.: Twenty
years of distributed port-Hamiltonian systems: a literature review. IMA
Journal of Mathematical Control and Information 37(4), 1400–1422
(2020)

https://doi.org/10.1016/j.jhydrol.2016.02.022
https://doi.org/10.1016/j.jhydrol.2016.02.022
https://doi.org/10.1051/m2an/2018076
https://doi.org/10.1051/m2an/2018076
http://www.lmm.jussieu.fr/%7Elagree/COURS/MFEnv/MFEnv.pdf
http://www.lmm.jussieu.fr/%7Elagree/COURS/MFEnv/MFEnv.pdf
https://doi.org/10.3934/dcdsb.2001.1.89
https://doi.org/10.3934/dcdsb.2001.1.89
https://doi.org/10.1016/j.euromechflu.2006.04.007
https://doi.org/10.1016/j.euromechflu.2006.04.007
https://doi.org/10.1007/978-3-642-03196-0
https://doi.org/10.1007/978-3-642-03196-0
https://doi.org/10.1561/2600000002


Springer Nature 2021 LATEX template

Shallow water equations with viscous damping 35

[19] Hamroun, B., Lefevre, L., Mendes, E.: Port-based modelling and geo-
metric reduction for open channel irrigation systems. In: Proceedings
of the 46th IEEE Conference on Decision and Control, pp. 1578–1583.
IEEE, New Orleans, LA, USA (2007). https://doi.org/10.1109/CDC.
2007.4434237

[20] Pasumarthy, R., Ambati, V.R., van der Schaft, A.J.: Port-Hamiltonian
discretization for open channel flows. Systems & Control Letters 61(9),
950–958 (2012)
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