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Abstract

Maintaining physical function is crucial for independent living in older adults, with gait speed 
being a key predictor of health outcomes. Blood biomarkers may potentially monitor older adults' 
mobility, yet their association with slow gait speed still needs to be explored. This study aimed to 
investigate the relationship between blood biomarkers and gait speed using the Midlife in the 
United States (MIDUS) study biomarker dataset. A cross-sectional design was employed for 
analysis, involving 405 individuals aged 60 years and over. We used a machine learning 
framework, specifically the XGBoost algorithm, feature selection methods, and the Shapley 
Additive Explanations, to develop an explainable prediction model for slow gait speed. Our model 
demonstrated the highest cross-validation score with the six most important features among 35 
variables, as elevated interleukin-6, C-reactive protein, glycosylated hemoglobin, interleukin-8, 
older age, and female sex were significantly associated with reduced gait speed (area under the 
curve = 0.75). Our findings suggest that blood biomarkers can play a critical role in integrated 
models to assess and monitor slow gait speed in older adults. Identifying key blood biomarkers 
provides valuable insights into the underlying physiological mechanisms of mobility decline and 
offers promising avenues for early intervention to preserve mobility in the aging population. 

Keywords: Interleukin-6, C-reactive protein, glycosylated hemoglobin, interleukin-8, XGBoost
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1. Introduction

Physical function is closely related to an individual's ability to perform daily activities. As 
individuals age, it is crucial to maintain adequate physical function levels to ensure independent 
daily living. One well-established measure of physical function is gait speed, which can predict 
frailty and health-related quality of life among older adults (Jung et al., 2018; Kim et al., 2016). 
Over the past two decades, gait speed has become a simple, safe, and inexpensive tool used in 
research and clinical settings to assess older adults at risk of adverse outcomes (Rydwik et al., 
2012). As a responsive measure, gait speed is appropriate to predict and diagnose a variety of 
conditions, including orthopedic, neurodegenerative, and psychiatric disorders (Middleton et al., 
2015), as well as adverse outcomes such as hospitalization and all-cause mortality (Abellan van 
Kan et al., 2009; Studenski et al., 2011). Moreover, the World Falls Guidelines (WFG) Task Force 
strongly recommends using gait speed assessment to predict fall risk in older adults (Montero-
Odasso et al., 2023).

Research has shown that slow gait speed is associated with functional decline, morbidity, and 
mortality in older adults (Kawajiri et al., 2019). Although the cut-off points to identify individuals 
with slow gait speed is still under debate, the most frequently used values are 1 m/s and 0.8 m/s. 
Castell et al. (2013) reported that a gait speed of ≤0.8 m/s doubles the probability of frailty 
diagnosis. Similarly, the WFG Task Force recommends using gait speed with a cut-off value of 
<0.8 m/s to predict falls (Montero-Odasso et al., 2023). Further, 0.8 m/s has been recommended 
as an "easy-to-remember" cut-off point to predict adverse outcomes (Abellan van Kan et al., 2009). 
Gait speed cut-off points are important for developing a roadmap for prevention and treatment in 
the follow-up of older adults. For instance, according to the European consensus on sarcopenia, 
measuring muscle mass is recommended for anyone below a gait speed threshold of 0.8 m/s (Cruz-
Jentoft et al., 2010). Therefore, assessment of gait speed using appropriate thresholds is an 
essential component of geriatric evaluation.

Quantifying biological molecules and their chemical kinetics in blood and tissues has been 
fundamental to research and medical diagnoses for decades. In particular, blood biomarkers 
comprehensively reflect physiological functionality and may help us understand the molecular 
processes underlying aging and health deterioration (Piazza et al., 2010). Moreover, they can also 
serve as essential tools in translating scientific concepts into diagnostic and therapeutic 
technologies. 
Several blood biomarkers related to the aging process have been identified, and their discovery 
continues to expand in aging studies (Moqri et al., 2024). A growing body of evidence highlights 
the potential role of blood biomarkers in relation to age-related adverse health outcomes such as 
multimorbidity and mortality (Fabbri et al., 2015; Tanaka et al., 2020). These biomarkers offer 
greater sensitivity in reflecting metabolic changes that occur with aging and may also provide 

https://www.sciencedirect.com/science/article/pii/S0531556521004289#bb0005
https://www.sciencedirect.com/science/article/pii/S0531556521004289#bb0005
https://www.sciencedirect.com/science/article/pii/S0531556521004289#bb0175
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valuable insights into the pathophysiology of age-related mobility loss. One of the most frequently 
investigated categories of blood biomarkers is inflammatory parameters in aging studies. Gait 
speed deterioration with aging is a process that has been reported to be related, among other factors, 
to increased levels of circulatory inflammatory biomarkers such as Interleukin-6 (IL-6), C-reactive 
protein (CRP), and Fibrinogen (Verghese et al., 2011; Ahmed-Yousef et al., 2023; Baptista et al., 
2012). In contrast, other biomarkers detected in the circulation, such as antioxidants and Insulin-
like Growth Factor-1 (IGF-1), have been positively associated with gait speed (Sahni et al., 2021; 
Córdova et al., 2015). Therefore, taking a holistic approach that includes various categories of 
biomarkers, such as inflammatory markers, antioxidants, metabolic markers, and lipid profiles, 
can provide a deeper understanding of age-related functional decline.

By examining blood biomarkers, it may be possible to identify patterns associated with an 
increased risk of mobility loss in older adults, thereby improving our understanding of the 
underlying physiological pathways and aiding in developing targeted interventions to improve 
health outcomes. Machine learning (ML), an innovative analytical approach, uses advanced 
artificial intelligence algorithms to detect patterns within data, aiming to create predictive models 
that consistently deliver accurate results (Bayliss & Jones, 2019). One advantage of using ML over 
traditional linear models is its ability to effectively capture complex, non-linear interactions 
between predictors, thus enhancing predictive performance. These tools have been invaluable in 
interpreting complex biological data and may hold the key to unlocking the complex underlying 
mechanisms of physical function in older adults. As mentioned above, while earlier studies have 
identified important relationships between specific blood biomarkers such as IL-6 and CRP and 
gait speed (Verghese et al., 2011, 2012), to the best of our knowledge, no study has yet investigated 
the relationship between gait speed and a broader set of blood biomarkers using an explainable 
ML methodology to capture non-linear and complex interactions.

In this study, we aimed to determine, among a large number of blood biomarkers, those associated 
with slow gait speed using a cohort, the MIDUS Biomarker dataset. We hypothesized that blood 
biomarkers would be useful to predict slow gait speed in older adults. Additionally, we aimed to 
enhance our understanding of the relationship between blood biomarkers and gait speed by 
employing distinct methodologies, including model feature importance scores and Shapley 
Additive Explanations (SHAP) values, and logistic regression associated with ROC curves to 
determine whether cut-off values of biomarkers exist in the prediction of slow gait speed. Through 
these approaches, we sought not only to predict gait speed but also to elucidate the impact of 
biomarkers on this outcome, thus providing insights into the physiological factors influencing gait 
speed in older individuals.

2. Methods

2.1. Design and Sample

This study used the Midlife in the United States (MIDUS) dataset, a national longitudinal study 
conducted over 20 years. The MIDUS study began in 1995-1996 with 7,108 non-institutionalized 
adults selected randomly via phone dialing. Approximately 9.2 years later, 75% of surviving 
participants took part in the follow-up study, MIDUS II (2004-2009). All participants underwent 
a medical interview, completed self-administered questionnaires, and underwent a physical 
examination that included a 50-foot timed walk. Additionally, as part of the refinement process for 
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MIDUS II, a subsample of African Americans from the Milwaukee, Wisconsin region was 
recruited. They were invited to participate in all of the measures from MIDUS I and MIDUS II 
and the collection of biological samples. Thus, the Biomarker Project (Project 4) of MIDUS 2 
comprised two subsamples, the longitudinal survey sample (n = 1,054) and the Milwaukee sample 
(n = 201), and collected data from 1,255 individuals, ranging in age from 34 to 84 years old. In 
this study, we analyzed a subsample of participants aged ≥ 60 (n = 405). All participants provided 
informed consent as approved by The University of Wisconsin-Madison Health Sciences 
Institutional Review Board. More details of the study are available on the MIDUS website 
(Available at: http://midus.wisc.edu/).

2.2. Blood Biomarker Assessment

Data was collected in three General Clinical Research Centers (the University of California Los 
Angeles, the University of Wisconsin, and Georgetown University). Eligible participants traveled 
and stayed overnight at one of these centers. The individuals’ fasting blood samples were collected 
in the morning before breakfast.

Participants were requested to avoid strenuous activity before the blood draw. Venous blood 
samples were collected in 10 ml serum separator vacutainers from the non-dominant arm if 
possible. After drawing, the tubes were gently inverted 3-5 times and taken to the lab for immediate 
processing. A maximum of 2 hours was allowed between blood draw and centrifuging. Fresh 
whole blood samples were refrigerated, shipped weekly to the MIDUS Biocore Lab, and assayed 
for glycosylated hemoglobin. Frozen serum and plasma in 1 ml aliquots were shipped to the 
MIDUS Biocore Lab monthly for the remaining biomarkers.

The MIDUS biomarkers dataset contains various biomarkers related to the functioning of several 
physiological systems, including the hypothalamic-pituitary-adrenal axis, the autonomic nervous 
system, the immune system, the cardiovascular system, the musculoskeletal system, antioxidants, 
and metabolic processes. The biomarkers assessed as follows: Total cholesterol, high-density 
lipoprotein (HDL), low-density lipoprotein (LDL), Triglycerides, Dehydroepiandrosterone 
(DHEA), Dehydroepiandrosterone-sulfate (DHEA-S), CRP, Intracellular Adhesion Molecule 
(ICAM), IL-6, soluble IL-6 receptor (sIL-6r), Fibrinogen, E-Selectin, IL-8, IL-10, Tumour 
Necrosis Factor alpha (TNF-α), Bone Specific Alkaline Phosphatase (BSAP), aminoterminal 
propeptide type 1 procollagen (P1NP), n-telopeptide type 1 collagen (NTx), trans-beta-carotene, 
13-cis-beta-carotene, alpha-carotene, beta-cryptoxanthin, lutein, zeaxanthin, lycopene, retinol, 
alpha-tocopherol, gamma-tocopherol, creatinine, glycosylated hemoglobin (HbA1c), glucose, 
insulin, and IGF-1.

There were two assessments for IL-6, IL-8, IL-10, and TNF-α measurements, including enzyme-
linked immunosorbent assay (ELISA) and Immunoelectrochemiluminescence (ECLIA) in MIDUS 
study. Since ECLIA provides superior assay performance than ELISA, we included only ECLIA 
assessments for these biomarkers in our analyses (Bolton et al., 2020). Assay details for each 
biomarker are available on the MIDUS Project 4 website (Available at: 
https://midus.wisc.edu/midus2/project4/).

2.3. Gait Speed Assessment

http://midus.wisc.edu/
http://midus.wisc.edu/
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A standardized 50-foot timed walk procedure was used to measure gait speed. Participants were 
requested to walk at their usual speed to a 25-foot turnaround point and return to the starting point. 
Timing began upon the instruction to start and stopped as soon as the participant's foot crossed the 
starting point on their return. Each participant completed two trials, and the completion time (in 
seconds) for each trial was recorded and then averaged. To calculate gait speed scores (in meters 
per second), we divided 15.24 meters by the average trial time in seconds. A faster gait is indicated 
by higher scores.

2.4. Machine Learning Framework

ML model constructions and evaluations were performed using Python (version 3.7). The 
implemented Python packages were as follows: numpy, pandas, seaborn, scikit-learn, smote 
imbalanced-learn, yellowbrick, and OPTUNA. The ML model is available at the GitHub 
repository: https://github.com/evrimgokce/MIDUS.

2.4.1. Data handling and preprocessing

Data on demographics, blood biomarkers, and gait were initially compiled into a Microsoft Excel 
(Microsoft Inc., Redmond, WA, USA) database. As prevalent in the ML literature, we included 
age and sex as features in the model (Bozkurt et al., 2020). Thus, the features of slow gait speed 
prediction included numerical (age and blood biomarkers) and categorical (sex) data. We created 
two categories of gait speed, slow gait speed (< 0.8 m/s) and normal gait speed (≥ 0.8), based on 
the prior literature recommending this cut-off point (Abellan van Kan et al., 2009; Castell et al., 
2013; Montero-Odasso et al., 2023). There were six samples with no gait speed information; these 
samples were dropped. In addition to this, 12 samples had various numbers of missing blood 
sample measurements. These missing values were imputed using mean values (Alasadi et al., 
2017). After preprocessing, we had 399 samples with 35 independent variables and the target gait 
speed. In ML terminology, independent and dependent variables are referred to as features and 
target, respectively. We will utilize this terminology throughout the method section.
We partitioned the original sample into a training set (80%) and a test set (20%) to evaluate 
predictive models. To ensure similar data distributions between training and test data, we utilized 
the adversarial validation technique that creates a combined dataset and trained a classifier to 
differentiate between training and test samples based on their features (Qian et al., 2022). 
According to this technique, if the classifier struggles to differentiate between the two datasets, it 
indicates that their distributions are similar, which is crucial for building reliable models. 
Typically, an area under curve (AUC) score of around 0.5 indicates that the model struggles to 
differentiate between the train and test samples. This suggests that their distributions are similar, 
making it challenging for the model to distinguish between them. We employed a Gaussian Naive 
Bayes (GaussianNB) model to verify this and proceeded to the modeling phase. Upon observing a 
close to 0.5 AUC score (0.493), indicating a challenge in differentiation, we proceeded with the 
modeling phase.

As the distribution of the target variable was quite imbalanced (slow gait speed, %18.3), we used 
the Synthetic Minority Over-sampling Technique (SMOTE) to address this issue. SMOTE 
generates synthetic samples for the minority class, thereby balancing the class distribution. By 
creating synthetic samples that resemble the minority class, SMOTE effectively increases the 

https://github.com/evrimgokce/MIDUS
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representation of the minority class in the dataset, improving the model's ability to learn from and 
correctly classify minority class instances (Chawla et al., 2002). 

2.4.2. Training and hyperparameter tuning 

We used extreme gradient boosting (XGBoost) as an ML algorithm to predict the gait speed 
category, which generally performs well on tabular data sets (Grinsztajn et al., 2022). It is a tree-
based ensemble ML algorithm with a gradient-boosting framework. The modeling phase had three 
consecutive steps: 

Step 1: Hyperparameter optimization with cross-validation using all features

In step one, we trained a base model using all available features (blood biomarkers, age, and sex). 
We adopted a pipeline approach during the hyperparameter optimization process to avoid data 
leakage. Our modeling pipeline has three consecutive components: a preprocessor object 
responsible for missing values imputation, an oversampling object that performs SMOTE on 
minority class, and a predictive model, XGBoost.

Given the limited size of the dataset, we adopted a rigorous cross-validation approach to ensure 
reliable model evaluation. The selected method, Repeated Stratified K-fold cross-validation, was 
configured with parameters n_splits=5, n_repeats=10, and a predefined seed to ensure 
reproducibility (Pedregosa et al., 2011). This method divides the training data into five folds while 
ensuring a proportional representation of each class within each fold. During each iteration, the 
model is trained on four folds, and performance is evaluated on the remaining fold (referred to as 
hold-out data). The hold-out fold is varied iteratively to ensure a comprehensive evaluation. To 
address variability and ensure thoroughness, we shuffled the data and repeated the entire process 
ten times for each hyperparameter combination before reporting the final evaluation metric. The 
final performance metric is the average score across all iterations (5 x 10 iterations). We utilized 
the OPTUNA package for hyperparameter optimization, an open-source framework based on 
Bayesian optimization designed to automate the tuning process of ML models (Akiba et al., 2019). 
The optimization process involved evaluating 300 iterations, which corresponds to testing 300 
different combinations of hyperparameters using the cross-validation strategy described 
previously.

Step 2: Feature selection based on the feature importance scores of the base model

Feature importance plot shows the importance levels of features based on gain (See Supplementary 
Figure 1). Gain is defined as the improvement in accuracy brought by a feature to the branches it 
is on. It is evident from the plot that certain features have a more significant impact on the 
algorithm's decision process compared to others. The data set has a relatively small sample size 
(399 samples) and a high number of features (35 columns). This scenario often leads to overfitting, 
where less informative features contribute to the model's complexity without adding meaningful 
predictive power or even worsening the model performance due to decreased model generalization 
performance. We utilized the SelectFromModel method from scikit-learn's feature selection 
module to mitigate this issue (Pedregosa et al., 2011). This method selects features based on their 
importance scores derived from the model, as depicted in the feature importance plot. During the 
feature selection process, we start with the most important features and iteratively add subsequent 
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important ones. At each iteration, we perform cross-validation with the same settings in Step 1 
using the base model's hyperparameters. Through this iterative process, we identify the optimal 
subset of features that maximize cross-validation performance.

Step 3: Repeat hyperparameter optimization with cross-validation using selected features

In Step 3, we repeated the same methodology in Step 1 using selected features instead of the entire 
feature set. 

2.4.3. Explainable ML Approach

We used the Shapley Additive Explanations (SHAP) to further evaluate the importance of selected 
features in the XGBoost model, another useful tool for explaining ML models (Lundberg & Lee, 
2017). Shapley's values, originating from game theory, offer valuable insights into the inner 
workings of complex machine-learning models. By providing Shapley-based explanations, these 
values shed light on the individual contributions of input features to model predictions, thus 
enhancing the interpretability and transparency of the model.

See Figure 1. for a summary of the study workflow.

Figure 1. Study workflow

2.5. Statistical Analysis

Continuous variables were presented as mean ± standard deviation (SD). Following ML feature 
selection, the receiver-operating characteristic (ROC) curve was generated for each selected blood 
biomarker to determine the cut-off values, and the area under the ROC curve was calculated. 
Optimal dichotomous cut-off values were established by maximizing Youden’s index (Perkins & 
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Schisterman, 2006). Statistical procedures were conducted using SPSS version 20.0 (IBM Corp, 
Armonk, NY, USA).

3. Results

A total of 405 participants were included in the study, with an average age of 68.29 (6.45). Among 
them, there were 217 females (53.6%). Gait speed was above 0.8 m/s in 81.7% and below 0.8 m/s 
in 18.3% of the participants. Other baseline demographic and blood biomarker characteristics of 
405 participants are summarized in Table 1 and Table 2, respectively. 

Table 1. Participant demographics

Characteristics n = 405

Age (years) 68.29 (6.45)

Sex (%)

Female
Male

 

53.6

46.4

BMI (kg/m2) 29.48 (0.32)

Gait speed (m/s) 0.98 (0.23)*

Marital status (%) (married) 65.4

Subjective well-being (M, SD)

(1 = strongly disagree, 7 = strongly agree)

5.05 (0.06)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944685/table/ztad082-T1/
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Data collection site (%)

UCLA
UW
Georgetown

 
38.3
36.0
25.7

Note. Continuous variables are presented as mean ± standard variation. BMI, body mass index; 
UCLA, University of California, Los Angeles; UW, University of Wisconsin.* n = 399.

Table 2. Blood biomarker levels of participants

Blood biomarker n M (SD) Range

Hemoglobin A1c % 400 6.22 (0.95) 4.00 - 12.01

Total cholesterol (mg/dL) 400 180.29 (40.49) 91 - 308

Triglycerides (mg/dL) 400 125.42 (70.50) 37 - 344

HDL cholesterol (mg/dL) 400 55.56 (17.21) 19 - 115

LDL cholesterol (mg/dL) 400 99.68 (35.04) 16 - 231

Creatinine (mg/dL) 400 0.83 (0.20) 0.5 – 2.1

DHEA-S (ug/dL) 397 105.83 (72.57) 2 - 495

DHEA (ng/mL) 398 6.03 (4.07) 0.4 – 24.0

Fasting glucose (mg/dL) 397 101.74 (26.51) 5 - 377

Fasting insulin (uIU/mL) 397 12.63 (10.19) 1 - 89

IGF1 (ng/mL) 397 125.45 (49.82) 29 -291
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IL-6 (pg/mL) 400 1.30 (1.30) 0.19 – 13.93

IL-8 (pg/mL) 400 15.93 (13.49) 4.96 – 235.14

IL-10 (pg/mL) 400 0.47 (2.26) 0.06 – 43.66

TNF alpha (pg/mL) 400 2.44 (0.95) 0.45 – 9.52

Fibrinogen (mg/dL) 399 362.25 (92.34) 123 - 857

C-reactive protein (ug/mL) 399 3.01 (5.32) 0.1 – 61.7

sE-selectin (ng/mL) 400 39.99 (18.86) 0.09 – 149.23

sICAM-1 (ng/mL) 400 303.89 (106.07) 4.00 – 896.47

Lutein (umol/L) 397 0.31 (0.21) 0.03 – 1.63

Zeaxanthin (umol/L) 397 0.06 (0.04) 0.01 – 0.37

Beta-cryptoxanthin (umol/L) 397 0.21 (0.19) 0.02 – 1.44

13-cis-beta-carotene (umol/L) 396 0.08 (0.07) 0 – 0.9

Alpha-carotene (umol/L) 397 0.09 (0.12) 0 – 1.74

Trans-beta-carotene (umol/L) 397 0.71 (0.88) 0.02 – 7.08

Lycopene (umol/L) 397 0.42 (0.23) 0.02 – 1.83

Gamma-tocopherol (umol/L) 397 3.32 (2.63) 0.44 – 20.82
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Alpha-tocopherol (umol/L) 397 31.47 (13.10) 5.61 – 93.16

Retinol (umol/L) 397 1.91 (0.70) 0.71 – 6.90

n-Telopeptide type 1 collagen (nM BCE) 400 14.43 (7.02) 2.04 – 54.68

Bone-specific alkaline phosphatase (UL) 400 28.27 (12.20) 7.30 – 163.91

Amino-terminal propeptide type 1 procollagen (ugL) 400 54.68 (28.07) 7.51 – 182.79

Note. Data are presented as mean ± standard variation. IL, interleukin; sE-selectin, soluble E-
selectin; sICAM-1, soluble intracellular adhesion molecule-1.

Regarding the ML model, we evaluated the standard measures derived from the confusion matrix, 
including accuracy, sensitivity, specificity, and F1 score; however, we note that the F1 score is the 
recommended metric for imbalanced data sets instead of accuracy (Lones, 2021). The base model 
achieved a cross-validation F1 score of 0.399 and a test score 0.462 with the optimal 
hyperparameter combination (see Supplementary Material). During feature selection, our model 
demonstrated that the highest cross-validation score was achieved with the six most important 
features as follows: IL-6, sex, CRP, HbA1c, age, and IL-8 (Figure 2a). Feature selection resulted 
in an improved cross-validation F1 score of 0.427 and a test score of 0.526 with the optimal 
hyperparameter combination for the base model (Table 3). In step 3, we performed the 
hyperparameter optimization with cross-validation with the selected six features. This refined 
model serves as our final predictive model with a cross-validation F1 score of 0.461 and a test 
score of 0.537, achieving an AUC of 0.75 (Figure 2d). The performance summary of the final 
model is presented in Table 3. Additionally, we implemented the Nx Cross-Validation method to 
robustly assess the impact of sample size using different data percentages during cross-validation 
(Balki et al., 2019). Performance levels remained consistent after reaching 60% of the data, 
indicating that the sample size was sufficient for the analysis.

We used the SHAP method to interpret XGBoost outputs in relation to their interactions and to 
reveal the importance of features. Figure 3a demonstrates the average effect of each selected 
feature on the magnitude of the model output. Figure 3b shows the most influential factors in 
descending order as follows: IL6, sex, CRP, HbA1c, Age, IL-8. A higher SHAP value indicates a 
higher slow gait speed risk. The results showed that IL-6 is the strongest factor in slow gait speed 
in older adults. Elevated IL-6, CRP, HbA1c, IL-8, increasing age, and female sex increased the 
risk of slow gait speed.
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Figure 2. (a) Feature importance in the XGBoost model. (b) Confusion matrix, presenting the 
summary of the actual class and predicated class. The diagonals indicate the correctly predicted 
classes (true positive or true negative), while the off-diagonal cells depict the incorrectly predicted 
classes (false positive or false negative). (c) Precision, sensitivity (recall), and F1 score of the 
model. (d) Receiver operating characteristic curves for the test set. AUC, area under curve; CRP, 
C-reactive protein; HbA1c, glycosylated hemoglobin, IL-6, interleukin 6; IL-8, interleukin 8; 
ROC, receiver operating characteristic; XGBoost, eXtreme Gradient Boosting.

Table 3. Performance metrics of the prediction model
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 Precision (%) Recall (%) Specificity (%) AUC (95% CI) F1 Score

Cross-Validation 35.1 68.3 71.4 0.739 0.461

Test 42.3 73.3 76.9 0.754 0.537

Note. AUC, area under curve; CI, confidence interval.

Figure 3. SHAP plots. (a) Mean SHAP values (b) Relative effect of each feature, providing a 
comprehensive understanding of their respective influences. Feature importance is presented in 
increasing order (vertical axis), with each point representing a sample. The dot color gets redder 
when the feature value gets higher. For the binary feature vector (sex), red dots indicated the female 
sex. The relative impact of the feature on the model output is presented on the x-axis (the right of 
0.0, increased slow gait speed risk; the left of 0.0, reduced slow gait speed risk). IL-6, interleukin 
6; CRP, C-reactive protein; HbA1c, glycosylated hemoglobin; IL-8, interleukin 8; SHAP, Shapley 
Additive exPlanations.

The ROC curve analysis of selected blood biomarkers is summarized in Figure 4. The AUC of IL-
6 was 0.691 (p < 0.001) with a 1.405 pg/mL cut-off value. The AUC of CRP was 0.612 (p = 0.003) 
with a cut-off value of 1.27 ug/mL. The AUC of HbA1c was 0.637 (p < 0.001) with a cut-off value 
of 6.221%. The AUC of IL-8 was 0.614 (p = 0.016), with a cut-off value of 13.66 pg/mL. Since 
age was among the six selected features to predict slow gait speed, we also calculated the cut-off 
value for age. The AUC of age was 0.661 (p < 0.001), with a cut-off value of 74.5.
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Figure 4. The ROC analysis of selected biomarkers by ML model. AUC, area under curve; CRP, 
C-reactive protein; HbA1c, glycosylated hemoglobin, IL-6, interleukin 6; IL-8, interleukin 8; 
ROC, receiver operating characteristic.

4. Discussion

In this study, we aimed to investigate the complex relationship between blood biomarkers and their 
predictive capacity for slower gait speed, a reliable proxy for assessing mobility and functional 
status in older adults. We have followed an explainable ML framework to predict slow gait speed 
based on a variety of blood biomarkers, including markers of inflammatory/metabolic/bone/renal 
functions, antioxidants, hormones, and lipids.

We used the feature selection method, a common data preprocessing method in ML modeling, to 
improve the discriminatory power (Cai et al., 2018). Our analysis initially considered 35 features, 
33 of which were blood biomarkers; then, we reached the highest predictive power with six 
features, including IL-6, sex, CRP, HbA1c, age, and IL-8. We demonstrated that elevated IL-6, 
CRP, HbA1c, IL-8, and increasing age were positively associated with slow gait speed in older 
adults and determined a cut-off value for each of these selected blood biomarkers. Our results are 
compatible with previous literature reporting elevated inflammatory response as a contributing 
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pathway to age-related decline in physical performance and mobility (Cesari et al., 2004; Penninx 
et al., 2004). 

Our findings demonstrated that, among the extensive array of biomarkers examined, IL-6 is the 
strongest predictor of slower gait speed in older adults. IL-6 is a pro-inflammatory marker defined 
as the “cytokine of gerontologists” (Ershler, 1993). It has been reported that circulating levels of 
IL-6 increase with age, resulting in mobility restrictions (Wei et al., 1992; Custodero et al., 2023). 
In particular, elevated circulating levels of IL-6 have been associated with slower gait speed in 
older adults (Beavers et al., 2021; Kositsawat et al., 2020; Newman et al., 2016; Verghese et al., 
2011). Although the causal relationship between the increased IL-6 and gait speed decline has not 
yet been fully established, one potential mechanism could involve IL-6 activating pathways that 
regulate muscle protein degradation and impede myogenesis, causing muscle atrophy (Belizário 
et al., 2016). Indeed, it has been suggested that elevated levels of IL-6 may contribute to a decline 
in mobility through a parallel decrease in knee extensor muscle strength (Ferruci et al., 2002; 
Custodero et al., 2020). Confirmingly, a randomized controlled study of older adults reported that 
an age-related increase in circulating IL-6 is an important contributor to declines in skeletal muscle 
strength, quality, and function (Grosicki et al., 2020).

Our study is the first to report a cut-off value of 1.405 pg/mL for IL-6 as predictive of slow gait 
speed. However, prolonged exposure to high IL-6 levels, rather than isolated elevations, might be 
more strongly associated with slower gait speed. For instance, Nadkarni et al. (2016) have 
suggested that an average IL-6 level of 2.7 pg/ml better predicted worsening gait speed over a 10-
year follow-up. Therefore, future longitudinal research should verify the IL-6 cut-off value we 
identified in this study.

According to our ML model, CRP, an acute-phase protein considered a general inflammatory 
biomarker, was the second most important blood biomarker to predict slow gait speed. In line with 
our results, Penninx et al. (2004) reported that elevated CRP levels have predicted mobility 
limitation in older adults. Likewise, CRP levels have been reported to be inversely associated with 
gait speed (Beavers et al.,2021; Sousa et al., 2016; Taaffe et al., 2000). Additionally, Beavers et 
al. (2021) reported that IL-6 appeared to be more strongly associated with slower gait speed than 
CRP when these two biomarkers were assessed in combination. Our findings align with this 
observation, yet it is important to emphasize that our ML model considered a far greater quantity 
of biomarkers, highlighting IL-6 as the most influential predictor. Kositsawat et al. (2020), 
however, reported that once other biomarkers involving IL-6, IGF-1, and vitamin D were taken 
into consideration, the previously established link between higher levels of CRP and slow gait 
speed (< 0.8 m/s) became insignificant. They suggested that the observed phenomenon can be 
attributed to the overlapping effects of IL-6, resulting in offsetting previous effects. However, 
although the precise mechanisms involved are not yet fully comprehended, it is worth noting that 
the machine learning model assessing numerous biomarkers interacting with each other is likely 
to offer a more dependable explanation of how CRP affects mobility.

Our ROC analysis provided a cut-off value of 1.27 ug/ml for CRP to predict slow gait speed. On 
the other hand, Verghese et al. (2012) reported that older adults with elevated high-sensitivity CRP 
levels (≥ 3 ug/ml) had 0.89 cm/s per year faster decline in gait speed. The discrepancies in cut-off 
values could be attributed to different study designs and techniques employed to assess gait speed 

https://www.sciencedirect.com/science/article/pii/S0047637422001452#bib17
https://www.sciencedirect.com/science/article/pii/S0047637422001452#bib23
https://www.sciencedirect.com/science/article/pii/S0047637422001452#bib36
https://www.sciencedirect.com/science/article/pii/S0047637422001452#bib36
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and CRP levels. Larger sample sizes and longitudinal data sets are required to report more accurate 
cut-off values for the relationship between CRP levels and gait speed.

Our findings demonstrated that HbA1c, a measure to estimate the mean blood glucose levels in 
the previous three months, is one of the strongest predictors of slower gait speed in older adults. 
This finding is consistent with a longitudinal study on diabetic patients showing that gait speed 
has increased in those who have decreased HbA1c value by 1% or more over a year (Sugimoto et 
al., 2021). Similarly, Azmon et al. (2018) reported a significant negative correlation between 
HbA1c and gait speed among older adults with type 2 diabetes. Considering that poor glycemic 
control in older adults with diabetes has been associated with lower muscle strength and muscle 
mass (Ogama et al., 2019; Yoon et al., 2016), one potential explanation for the contribution of 
HbA1c on slow gait speed may be its link to muscle metabolism. Additionally, HbA1c has been 
associated with inflammation (Wu et al., 2002; Gustavsson & Agardh, 2004). Relatedly, higher 
HbA1c levels have been associated with increased high-sensitivity CRP, suggesting the 
association of HbA1c with increased systemic inflammation (Ahmad et al., 2021). This appears to 
be consistent with our findings, indicating that inflammatory markers are the most important 
features in slow gait speed prediction.

Our ROC analysis provided a cut-off value of 6.22% for HbA1c in predicting slow gait speed. 
Since this level is classified as pre-diabetes by the American Diabetes Association (2010), it is 
reasonable to suggest that pre-diabetic older adults are at risk of mobility decline. Relatedly, a 
study including two cohorts of patients aged 50 years and older with type 2 diabetes has reported 
that HbA1c of 6.4% was associated with a heightened risk of all-cause mortality (Currie et al., 
2010). Although our study is the first report indicating an HbA1c cut-off value to predict slow gait 
speed, it is worth mentioning that our finding is quite close to the median value reported for all-
cause mortality in patients with type 2 diabetes. Based on these observations, it is fair to suggest 
monitoring glycemic control status to prevent both mobility loss and all-cause mortality in older 
adults.

IL-8 is another inflammatory marker that stands out in our ML model. A longitudinal study of 
older adults found that higher levels of IL-8 are associated with decreased lower appendicular lean 
mass and a higher risk of sarcopenia (Westbury et al., 2018). Also, it has been reported that IL-8 
was inversely correlated with muscle strength (Dupont et al., 2023). These data suggest that IL-8, 
along with other inflammatory blood biomarkers, may negatively impact muscle mass and muscle 
strength, leading to slow gait speed. Our ROC analysis provided a cut-off value of 13.66 pg/mL 
for IL-8 to predict slow gait speed, which is higher than the mean values of 3.35 pg/ml for serum 
IL-8 and 3.24 pg/ml for plasma IL-8 reported in studies conducted on healthy individuals 
(González et al., 2001; Straczkowski et al., 2002). However, it should be noted that the participants 
in these studies were not older adults. Future research involving healthy older individuals could 
provide more comparable cut-off values to interpret our findings.

As we mentioned above, the effect of inflammation on skeletal muscle tissue may be one possible 
common mechanism to explain the inverse association between inflammatory markers and gait 
speed. Indeed, it has been reported that chronic inflammation promotes skeletal muscle protein 
breakdown (Wilson et al., 2017), which in turn may cause muscle weakness (Custodero et al., 
2020). Similarly, inflammatory cytokines induce excessive generation of free-radical species in 
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skeletal muscle, resulting in reduced muscle force generation (Supinski & Callahan, 2007). Thus, 
decreased muscle function may lead to slower gait speed in older adults.

Another potential explanation for the association between systemic inflammation and gait speed 
may be cognition. A meta-analysis of seven studies reported an association between high 
circulating levels of IL-6 and global cognitive decline in non-demented adults (Bradburn et al., 
2017). Similarly, increased peripheral levels of IL-8 have been linked with poorer cognitive 
performance (Baune et al., 2008). Despite some inconsistencies in the literature (Gabin et al., 
2018), a meta-analysis of four studies provides evidence of a weak but significant association 
between peripheral CRP level and global cognitive decline. Regarding HbA1c, although most of 
the previous studies considered samples of only diabetics, it has been reported that high levels of 
HbA1c are associated with poor cognition (Mimenza-Alvarado et al., 2020; Silverman et al., 
2019). Since walking is a complex activity involving both motor skills and cognitive functions, 
increased levels of biomarkers related to inflammation are likely to negatively impact gait speed 
through deteriorated cognition.

Besides inflammatory markers, age and sex were within six of the most important features in the 
XGBoost algorithm, indicating that increasing age and being female contribute to slow gait speed, 
as previously reported (Andrews et al., 2023; Rössler et al., 2024). Regarding age, we established 
a cut-off value of 74.5 years of age to predict slow gait speed. Similarly, Castell et al. (2013) 
reported that a walking speed of less than 0.8 m/s was presented in 56.4 % of individuals ≥ 75 
years of age. Relatedly, it has been reported that gait speed was especially important after age 75, 
predicting frailty and increased demand for more health resources (Studenski et al., 2011; Gómez 
Pavón et al., 2007). Regarding sex, SHAP analysis revealed that the female sex is associated with 
slower gait speed in older adults, consistent with existing literature reporting that older women 
typically walk more slowly than men (Wheaton & Crimmins, 2016). One possible explanation for 
this difference is the height difference between men and women, as taller individuals generally 
have faster gait speeds, with longer legs contributing to this advantage (Bohannon, 1997). On the 
other hand, prior research has demonstrated that the gait speed difference between women and 
men persists even after height adjustment (Sialino et al., 2019; Kasovic et al., 2021). This suggests 
that other factors, including variations in muscle strength, exposure to sex hormones, lifestyle 
differences, and a greater burden of chronic diseases among women, may contribute to this 
observed sex-based difference (Tseng et al., 2014). Future research focusing on the effects of blood 
biomarkers on mobility should consider age subgroups and sex-specific pathways to better 
understand the complex mechanisms contributing to mobility loss. 

Our ML model pointed out that inflammatory markers such as IL-6 and CRP are more important 
features contributing to slow gait speed than chronological age. Previous studies have reported that 
biological age, also known as physiological or functional age, depends on factors such as genetics, 
lifestyle, and medical history besides chronological age (Jazwinski et al., 2019). As a result, 
biological age can be a more precise indicator of aging than chronological age, offering a 
quantitative standard for tracking personalized aging trajectory. Our findings suggest that blood 
biomarkers, particularly inflammatory markers, may contribute to biological age and are promising 
indicators of monitoring physical functionality as people age.

This study offers several strengths. Firstly, we achieved significant predictive power by focusing 
on an extensive number of blood biomarkers that can be easily assessed in routine laboratory 
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analyses, as well as simple sample characteristics such as age and sex. Secondly, we followed 
state-of-the-art practices for model development, including a rigorous cross-validation strategy, 
feature selection, dealing with imbalanced class distribution, hyperparameter tuning, and metric 
evaluation. Thirdly, we used two explainability methods (model feature importance scores and 
SHAP) to explain the relationship between the input features and the output of the XGBoost model, 
thereby helping to better understand the complex relationship between the blood biomarkers 
assessed and slow gait speed. Finally, we established the cut-off values of blood biomarker levels 
for the first time to predict slow gait speed.

A few limitations of this study are worth noting. First, our findings are based on a relatively small 
sample size and need to be confirmed through further research integrating multidimensional data. 
Second, since our model solely focuses on blood biomarkers, a more holistic approach considering 
multiple factors (e.g., body composition, cardiorespiratory fitness, comorbidities, age-associated 
diseases, medications, etc.) should corroborate our findings. Third, due to the cross-sectional 
design of this study, we cannot establish a causal relationship. Finally, it should be kept in mind 
that the model's performance may change with different datasets when applying ML algorithms; 
findings need to be corroborated in a broader range of population characteristics to generalize and 
verify our results.

5. Conclusions

To the best of our knowledge, this study is the first to address the complex relationships between 
numerous blood biomarkers and slow gait speed in older adults by applying an ML algorithm. Our 
findings indicate that low-grade inflammatory status plays a critical role in the underlying 
physiological mechanisms associated with mobility decline in older adults. Further research 
utilizing longitudinal mobility data is required to validate these findings and to explore how these 
biomarkers contribute to the progression of mobility impairment over time. These insights could 
form the basis for a deeper understanding of the biological signature of age-related mobility 
decline, helping to advance research in age-related functional impairments.
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Highlights

• Machine learning is a useful tool to predict mobility limitations in the aging society.
• Blood biomarkers can be employed in integrated models to predict low gait speed.
• Elevated levels of circulating IL-6, CRP, HbA1c, and IL-8 predict low gait speed.
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