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Abstract 

Neuromorphic nanoelectronic devices that can emulate the temperature-sensitive dynamics of biological 

neurons are of great interest for bio-inspired robotics and advanced applications such as in-silico 

neuroscience. In this work, we demonstrate the biomimetic thermosensitive properties of two-terminal 

V3O5 memristive devices and showcase their similarity to the firing characteristics of thermosensitive 

biological neurons. The temperature-dependent electrical characteristics of V3O5-based memristors are 

used to understand the spiking response of a simple relaxation oscillator. The temperature-dependent 

dynamics of these oscillators are then compared with those of biological neurons through numerical 

simulations of a conductance-based neuron model, the Morris-Lecar neuron model. Finally, we 

demonstrate a robust neuromorphic thermosensation system inspired by biological thermoreceptors for 

bio-inspired thermal perception and representation. These results not only demonstrate the biorealistic 

emulative potential of threshold-switching memristors but also establish V3O5 as a functional material for 

realizing solid-state neurons for neuromorphic computing and sensing applications. 

Keywords: Thermoreceptor, solid-state neuron, neuristors, negative differential resistance, vanadium 

oxides 
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1. Introduction 

The neuromorphic computing paradigm aims to employ nonlinear bio-inspired processes, such as neuron-

like spiking or synaptic learning, as computational and sensing primitives for achieving energy-efficient 

machine intelligence. One such process is the temperature-sensitive dynamics of biological neurons, 

which manifests as changes in spiking characteristics as a function of varying temperatures 1-2. A process 

that plays a crucial role in many important neural functions such as thermal homeostasis 3, peripheral 

thermal sensation 4-5, and synchronization of the circadian rhythm 6, to name a few. Indeed, temperature 

perception is among the earliest sensory modalities observed in nature and can even be traced to relatively 

primitive microorganisms 7. This is because it is essential for biological survival as it helps organisms 

react swiftly to noxiously hot or cold environments in order to protect themselves, and also helps to 

maintain the ideal body temperature to stabilize biological macromolecules and metabolic processes.  

In mammals, thermosensation is facilitated through peripheral thermoreceptors that code absolute or 

relative changes in temperature by modulating the discharge rate of action potentials signaled to the 

Central Nervous System (CNS). In addition, thermal homeostasis is achieved by hypothalamic 

temperature-sensitive neurons that regulate the body temperature to maintain high metabolic efficiency 

by evoking various physiological and behavioral responses to correct any deviations from the ideal body 

temperature. Despite such ubiquity and significance in the neural system, research on understanding the 

temperature-dependent dynamics and characteristics of artificial neurons remains very limited. Most 

previous studies have focused on developing artificial neurons based on a range of materials, including 

insulator-metal transition (IMT) materials 8-10, spintronic magnetic tunnel junctions11, and phase-change 

materials 12, and demonstrating their bio-plausibility by exhibiting the different spiking behaviors and 

inherent stochasticity 8, 13-15. However, these typically only explore the single temperature (typically the 
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room-temperature) dynamics and do not delve into the temperature-dependent dynamics or limit the study 

to quasi-static current-voltage curves 16-17. 

In this paper, we explore the effect of temperature on the spiking characteristics of V3O5-based threshold-

switching neurons and reveal the close resemblance to their biological counterparts. Specifically, we show 

that the temperature-dependence of the spiking frequency and single spike characteristics match those of 

a biological neuron. We further demonstrate that tunable, temperature-dependent spiking windows can be 

achieved by applying different bias voltages to the device thereby providing the basis for neuromorphic 

temperature sensing with different receptive ranges for applications such as electronic skin and embedded 

sensing; More generally, such behavior paves the way for advanced systems-level applications like 

bioinspired temperature regulation and in-silico neuroscience.  

2. Results and Discussion 

2.1 V3O5 thin film characterization and switching mechanism 

The two-terminal V3O5-based metal-oxide-metal (MOM) devices employed for this study have a planar 

structure, with the active device areas defined by a 10-150 μm gap between platinum electrodes of 20-50 

μm width, as shown in Fig. 1(a). The device resistance has a strong temperature dependence, reflecting 

the temperature-dependent resistivity of the V3O5 film, which exhibits semiconductor-like behavior for 

temperatures in the range of 300-400K and undergoes an IMT in the range of 433±5K, during which the 

resistivity falls by an order of magnitude (Fig. 1(b)). The continuous nature of the IMT has previously 

been shown to result from inhomogeneities in the phase transition due to the polycrystalline nature of the 

V3O5 films 18. It has been shown that the IMT in V3O5 is due to a change in the distribution of V3+ and V4+ 

ions from an ordered to a disordered state above the transition temperature19-20. This gives rise to a 
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reduction in the unit cell size by about 0.14%, which is much smaller than that observed in VO2, where 

the IMT is associated with a Mott/Peierls mechanism21. 

The thermal coefficient of resistance (TCR), calculated using the formula TCR = 𝑑𝑑R/R𝑑𝑑𝑑𝑑 where R is the 

resistance and T is the temperature, shows a distinct peak at 433 K due to the rapid change in resistance 

associated with the IMT; It is approximately constant at temperatures above and below the IMT, reflecting 

the near-exponential dependence of the resistance on temperature in the high and low resistance phases of 

V3O5 (Fig. 1(c). The magnitude of the TCR is ~3.4%.K-1 for the insulating phase of V3O5, which is similar 

to that of other materials (e.g., VO2 has TCRs between -1.6 and -4.7 % K-1) but it reaches a peak value of 

-12.8 % K-1 at 433 K 22-23. This clearly identifies V3O5 as a potential functional material for bolometer-

based applications 24-25.  
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Figure 1. Temperature-dependent conductivity and switching mechanism: (a) Schematic of the 

Pt/V3O5/Pt planar device structure. (b) Resistivity of the V3O5 film as a function of temperature for the 

heating cycle and, (c) variation of TCR with temperature (inset: variation of TCR with resistivity) for the 

corresponding V3O5 thin films. (d) In-situ SThM measurement setup with indicative circuit used for basic 

electrical measurements. (e) Ex-situ I-V characteristics and maximum temperature of the device area as 

a function of current during in-situ measurements.  (f) Line trace plots showing the temperature profile 

across the middle of the device (half-way between the electrodes and perpendicular to the current flow) 



7 
 

as a function of device current and (g) the corresponding 2D plot of temperature distribution of the device 

area obtained from in situ SThM measurements. The length of the scale bar is 5 μm. 

We have previously shown that negative-differential resistance (NDR) in V3O5-based devices results from 

resistance changes induced by local Joule heating and that this can be amplified by non-linear current 

confinement effects 26. To gain further insight into the impact of the device temperature on these processes, 

the current-voltage characteristics of Pt/V3O5/Pt devices (electrode gap 5 µm and electrode width 10 µm) 

were correlated with the temperature distribution within the device through in situ Scanning Thermal 

Microscopy (SThM) at room temperatures, as shown in Fig. 1(d). The I-V characteristics measured at 

room temperature exhibit two distinct regions: a smooth S-type NDR and a second oscillating region 

associated with the IMT for which no data points are included (Fig. 1(e)); The averaging of voltage 

oscillations has been shown to produce an apparent change in slope in the NDR region 26. Corresponding 

temperature profiles taken across the middle of the device are shown as a function of device current in 

Fig. 1(f) and 2D temperature distributions of the device area are shown in Fig 1(g). Comparison of these 

data clearly shows that the onset of NDR (0.6 mA) occurs at a significantly lower temperature than the 

IMT. These results are consistent with our previous study and confirm that threshold switching and the 

onset of CC-NDR result from the temperature dependent conductivity of the insulating V3O5 phase, rather 

than an IMT 26.  

To distill the impact of ambient temperature on the conduction mechanism, the current-voltage 

characteristics of Pt/V3O5/Pt devices were correlated with the temperature distribution within the device 

through in situ Middle Wavelength InfraRed (MWIR) spectroscopy at two different ambient temperatures, 

303K and 333K (see Supplementary Information). In both cases, the temperature distribution is initially 

quite broad but narrows as the device is biased deeper into the NDR region (Point A) before becoming 

even more localized as the high-temperature region of the film undergoes an IMT (Point B). However, the 
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current is more localized at 303K than at higher temperature due to the lower resistivity of the surrounding 

V3O5 film at 333K (i.e., a larger fraction of the current is confined to the filamentary region at room 

temperature. See supplementary information for details).  

2.2 V3O5 neuron and biological Morris-Lecar dynamics 

To explore the room temperature oscillation dynamics of the V3O5 memristor, a series resistance RL=2 

kΩ and parallel capacitance Cp=1 μF were connected to the device in Pearson-Anson configuration and a 

DC bias of Vs=6 V was applied; The quasi-static I-V characteristics of the V3O5 memristor and a circuit 

diagram of the oscillator are shown in Figs. 2(a) and 2(b), respectively, and the corresponding current 

(through the device) and voltage (across the device) oscillations, are depicted in Fig. 2(c). For stable 

oscillation the load resistance must be greater than the maximum negative differential resistance (RNDR) 

of the MOM device, i.e. (RL>RNDR), and the corresponding capacitance should be such that the electrical 

time constant (i.e. RLCp) is larger than the thermal time constant of the memristor (i.e. RthCth)27. For the 

given circuit parameters and operating conditions, the oscillation frequency was measured to be 0.40 kHz. 

 

The temperature-dependent dynamics of biological neurons were calculated using the thermosenstive 

Morris-Lecar (M-L) neuron model; It is important to note that these waveforms are strikingly similar and 

analogous to the dynamics of membrane potential and recovery variables of the M-L model, respectively, 

as shown in a prior work 28. The M-L model is a widely employed reduced two-variable version of the 

popular Hodgkin-Huxley description of a biological neuron, which was initially used to describe the 

membrane voltage dynamics of the barnacle giant muscle fiber 29. It considers three ion channel currents: 

a) Fast-activating Calcium (Ca2+) current, b) Delayed Potassium (K+) current, and c) Leakage Current; 

with an underlying assumption that the dynamics of Ca2+ are on a much faster timescale than that of the 

K+. The model is given by: 
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𝐶𝐶 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑔𝑔𝐶𝐶𝐶𝐶𝑀𝑀∞(𝑉𝑉). (𝑉𝑉 − 𝑉𝑉𝐶𝐶𝐶𝐶) − 𝑔𝑔𝐾𝐾𝑊𝑊(𝑉𝑉 − 𝑉𝑉𝐾𝐾) − 𝑔𝑔𝐿𝐿(𝑉𝑉 − 𝑉𝑉𝐿𝐿) + 𝐼𝐼𝑎𝑎  (1) 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜂𝜂. 𝜏𝜏𝑊𝑊(𝑊𝑊∞(𝑉𝑉) −𝑊𝑊)         (2) 

Where the variables 𝑉𝑉 and 𝑊𝑊 represent the membrane potential and the fraction of open K+ channels 

respectively. 𝑉𝑉𝐶𝐶𝐶𝐶, 𝑉𝑉𝐾𝐾, 𝑉𝑉𝐿𝐿, 𝑔𝑔𝐶𝐶𝐶𝐶, 𝑔𝑔𝐾𝐾 and 𝑔𝑔𝐿𝐿 are the steady-state potentials and maximum conductance of 

calcium, potassium and leak ion channels, respectively. And 𝜂𝜂 is the temperature factor, given by: 

𝜂𝜂 = 3
𝑇𝑇−22
10        (3) 

where T is the temperature of the neuron in Kelvin. 𝑀𝑀∞(𝑉𝑉) and 𝑊𝑊∞(𝑉𝑉) are the voltage-sensitive opening 

probabilities for calcium and potassium channels, respectively, 𝜏𝜏𝑊𝑊(𝑉𝑉) denotes the voltage-dependent time 

constant of potassium activation gate. The equations for these voltage-sensitive quantities and the 

parameters used for simulation are given in the Supplementary Information. 

The dynamics of the membrane potential (V) and fraction of open ion channels (W) predicted by the M-

L model are shown in Fig. 2(d). Comparison with the dynamics of the V3O5 neuron in Fig. 2(c) shows 

that the dynamics of measured voltage (VD) and current (ID) are analogous to W and V in the M-L model, 

respectively 29. As such, we considered the current through the device (ID) as the in-silico equivalent of 

the biological action potential and used it to emulate neural temperature-dependent spiking. This contrasts 

with most previous studies 14, 30-32. Further, to understand the temperature-dependent quasi-static and 

dynamic of V3O5 memristors, we used our previously developed lumped element circuit as shown in Fig. 

2(e)18. It is apparent the simulation correctly describes the dynamic and NDR characteristics (see 

supporting information). Fig. 2(f) shows voltage- and current oscillation for an applied bias of VS=6 V 

which is in quantitative agreement with experimental observations. 
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Figure 2. Experimental, calculated and simulated neurons:  (a) Experimental current-controlled I-V 

characteristics with and without load resistance. The load line passes through the NDR region of the I-V 

characteristics, leading to oscillations. (b) Schematic of the V3O5 oscillator circuit used for electrical 

measurements. (c) The experimental memristor current and voltage oscillation waveforms for VS=6 V, 

RL=2k Ω and Cp= 1 μF, at room temperature. (d) Calculated dynamics of the Morris-Lecar neuron for a 

stimulus of 140 μA/cm2. (e) Lumped element model used to simulate dynamic characteristics and (f) 

simulated dynamic responses of VDevice and IDevice during a 20 ms 6 V pulse.  
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Figure 3. Analogy between experimental and biological neurons: (a) Temperature-sensitive current-

voltage characteristics of the V3O5 memristor (electrode gap 10 µm and electrode width 20 µm), in the 

range of temperatures 295-393K. (b) Measured temporal dynamics of the memristor current at different 
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applied biases. (c) Measured temporal dynamics of the memristor current at different ambient 

temperatures. (d) Measured oscillation window frequency as a function of temperature and applied bias. 

Inset: The thermal frequency response curve at VS=6 V (RL=2 kΩ and Cp= 1 μF. (e) An illustration of the 

cross-section of the skin representing the biological thermoreceptors residing in the Dermis layer with 

spiking rate of biological thermal receptors in response to the stimulus temperatures. Redrawn and 

adapted with permission from reference33. (f,g) Simulated dynamics of Morris-Lecar neuron model at 

different applied biases (T=298 K) and different temperatures (Ia=140 µA/cm2), respectively, 

corresponding to the V3O5 neuron dynamics in (b, c).   

2.3 Artificial spiking thermoreceptor 

To understand the temperature-dependent spiking of V3O5 neuristors, we first examine the effect of 

temperature on the CC-NDR of the V3O5 memristor. Fig. 3(a) shows the CC-NDR response of a 

Pt/V3O5/Pt device (electrode gap 10 µm and electrode width 20 µm) with increasing temperatures from 

295K to 383K. The experimental threshold and hold voltages decrease monotonically over this 

temperature range from Vth=3.13 V to Vth=1.10 V and Vh=1.33V to Vh=0.86 V, respectively. Due to the 

greater temperature sensitivity of Vth, the hysteresis window between Vth and Vh also decreases with 

increasing temperature, typically reducing to zero near the IMT temperature (see supporting information). 

An effect that imposes a fundamental limit on using the memristor as an oscillator (or spiking 

thermoreceptor). 

The dynamics and temperature-sensitivity of V3O5-based oscillators were measured using the circuit 

shown in Fig. 2(a), with RL=2 kΩ, Cp=50 nF.  For this circuit, stable self-oscillation occurs for voltages 

in the range between 𝑉𝑉𝑆𝑆,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑉𝑉𝑆𝑆,𝑚𝑚𝑚𝑚𝑚𝑚, where 𝑉𝑉𝑆𝑆,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑉𝑉𝑡𝑡ℎ + (𝑅𝑅𝐿𝐿 + 50)𝐼𝐼𝑡𝑡ℎ and  𝑉𝑉𝑆𝑆,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑉𝑉ℎ + (𝑅𝑅𝐿𝐿 +

50)𝐼𝐼ℎ, respectively. Figs. 3(b) and 3(c) show typical results, corresponding to an applied bias range of 
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5.7-13.2 V (at Tamb=295 K) and device temperature range of 295-383 K (at VS=6 V), respectively (see 

supporting information for further analysis).   

 

In the latter case, the circuit begins to oscillate at a temperature of 295 K and continues to oscillate for 

temperatures up to 393 K, with the frequency increasing from 0.4 kHz to 1.1 kHz over this range, as 

summarized in the inset of Fig. 3(d). The circuit did not oscillate outside this temperature window for 

VS=6 V, which can be attributed to the formation of a stable fixed point outside of the NDR region (to 

which the system settles, hence no oscillations) through a dynamical bifurcation 29. This fixed point is 

located at the intersection of the device NDR and the circuit load line. The resistive phase of V3O5 

corresponding to this fixed point depends on the temperature; in the above example, it corresponds to the 

insulating phases of V3O5 for temperatures T<295 K and to the metallic phase for T>393 K. The effects 

of both bias (VS) and temperature Tamb on the oscillation frequency are summarized in Fig. 3(d). It is 

important to note here that the amplitude of spikes is determined by the resistance difference between the 

insulating and metallic states of the device. As the resistance of the insulating state is reduced at higher 

temperatures, the difference between that of the insulating and metallic states is also reduced, giving rise 

to a reduction in spike amplitude. The reduction in the resistance of the insulating state also reduces the 

RC relaxation time constant, which is manifest as a reduction in the width of the spikes. These 

characteristics are similar to those observed in NbOx-based devices10 and are accurately reproduced by 

simulated oscillation dynamics (see supporting information). The effect of scaling (i.e., smaller electrode 

gaps) on the NDR characteristics of devices is reported in a previous study18, and its effect on oscillation 

dynamics is shown in the supporting information.  

In mammals, environmental thermal signals are relayed from the periphery to the Central Nervous System 

by somatosensory thermoreceptor neurons as action potentials 5, 34. These sensory neurons reside in the 
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dermis layer of the skin [ top panel of Fig. 3(e)], collect information regarding the thermal environment 

and relay it to the dorsal horn in the spinal cord. There are four different types of thermal sensory neurons 

innervating the skin based on the type of ion channels embedded in their cell membranes, each of which 

differs in their thermal response curves due to the temperature-sensitive properties of the ion channels 

[bottom panel of Fig. 3(e)]. Different temperature ranges stimulate these four classes of cells and hence 

are used to discriminate between noxious hot, warm, cold, and noxious cold thermal stimuli.  In humans, 

a skin temperature of 306 K is interpreted as neutral, and hence, these are stimulated depending on the 

temperature delta between the actual skin temperature and the neutral temperature. The thermal response 

curves of the typical sensory neurons are depicted in bottom panel of Fig. 3(e). The individual response 

curves of the biological neurons are qualitatively similar to that of the V3O5 neurons (Fig. 3(d), Inset) in 

that both of their spiking frequencies first gradually rise, peak and then fall. As demonstrated by Fig. 3(d), 

one can select the applied bias to adjust the temperature range the artificial neuron is receptive to. This is 

possible because the temperature window within which the V3O5 neurons spike can be tuned by adjusting 

the load line through the application of different biases, as the appearance of the unstable fixed point 

occurs in different temperature ranges for other load lines, leading to the bias-dependent characteristic 

frequency response curves. Hence, a single V3O5 neuron can mimic the activity of different types of 

biological thermo-sensory neurons just by adjusting the supply voltage VS, which is significant for 

applications at large scale. In general, the thermal receptive ranges and shape of the V3O5 response curves 

can be easily modified by engineering the NDR characteristics and/or tuning the circuit parameters VS, 

RL and Cp. For instance, the max frequency can be modified by adjusting the parallel capacitance. The 

simulated dynamics of the M-L model as a function of applied current and temperature are shown in Fig. 

3(f) and Fig. 3(g), respectively. The Morris-Lecar neuron (at T=298 K) oscillates for input current 

densities in the range of 90-150 μA/cm2 (Fig. 3(f)) and the system transitions to a quiescent state, as shown 
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for a stimulus of 80 μA/cm2, through a bifurcation mechanism analogous to that of the V3O5 neuron. The 

frequency of oscillation increases from ≈108 Hz at 90 μA/cm2 to ≈157 Hz at 150 μA/cm2. The data in 

Fig. 3(g) (at an applied current density of 140 μA/cm2) further demonstrates the strong temperature 

dependence of the spike frequency, with the oscillation frequency increasing from ≈151 Hz at 298 K to 

≈588 Hz at 318 K. These dependencies on applied bias and temperature qualitatively match those of the 

V3O5 neuron shown in Fig. 3(b) and Fig. 3(c). 

 

Figure 4. Effect of temperature on experimental and biological neurons: (a) Effects of heating on the 

thermosensitive spikes generated by the V3O5 neuron, both the pulse amplitude and width decrease with 

increasing temperature. (b) The corresponding time derivatives of the current spikes in (a). c) The effects 

of heating on the spike amplitude and width are plotted against temperature, the temperature-dependence 

is qualitatively similar to that of (a). (d,e,f) Simulation results of the temperature-dependent Morris-Lecar 

neuron corresponding to (a,b,c). 
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2.4 Biomimetic temperature-dependent individual spike dynamics 

The overall shape of the action potential can play a role in neuronal information processing  35, synaptic 

dynamics 36, and synaptic transmission 37 so it is important to understand how the spike amplitude and 

width are affected by temperature.  This was achieved by comparing the effect of temperature on the spike 

characteristics of V3O5 neurons with those of the temperature-dependent M-L model and action potential 

dynamics in animals.  

Fig. 4(a) compares single spikes generated by the V3O5 neuron at three different temperatures (295 K, 323 

K and 353 K), highlighting the reduction in spike amplitude with increasing temperature. The spikes have 

a characteristic sawtooth shape, with a fast rise time and a slower decay time, which is reflected in the 

time derivatives Fig. 4(b). The measurement of spike width was performed by evaluating the time 

difference between the maximum and minimum values of the spike gradients plotted in Fig. 4(b). This 

shows a relatively weak dependence on temperature compared to the amplitude, decreasing from 157 µs 

at 295 K to 140 µs at 353 K. The plots of the corresponding temperature-dependent amplitude and width 

measurements are summarized in Fig. 4(c). A similar analysis was conducted on the temperature-

dependent Morris-Lecar neuron for comparison, and the results are depicted in Fig. 4(d-f). Over the 

temperature range of 298 K to 318 K, the M-L model spike amplitude drops from 95.63 mV to 78.03 mV, 

and the spike width decreases from 2.8 ms to 0.5 ms. The shape of the action potential is qualitatively 

similar to that of the V3O5 neuron but the temperature dependencies of the spike amplitude and width 

show significant differences; Spikes generated by the V3O5 neuron have a stronger temperature-dependent 

amplitude and a weaker temperature dependent width than predicted by the M-L model (See Figs. 4(c) 

and 4(f)). However, the thermosensitive spike dynamics of the threshold-switching neurons can be tuned 

by engineering the device and circuit parameters. i.e. The current spike amplitude directly corresponds to 

the quantity 𝐼𝐼𝑡𝑡ℎ,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐼𝐼𝑡𝑡ℎ,𝑖𝑖𝑖𝑖𝑖𝑖, where 𝐼𝐼𝑡𝑡ℎ,<𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎> = 𝑉𝑉𝑡𝑡ℎ
𝑅𝑅<𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎>

 . And the spike width is directly proportional 
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to the quantities 𝑉𝑉𝑡𝑡ℎ − 𝑉𝑉ℎ, 𝑅𝑅𝑆𝑆   and 𝐶𝐶𝑝𝑝  
.  It is important to note here that the amplitude of spikes is 

determined by the resistance difference between the insulating and metallic states of the device. As the 

resistance of the insulating state is reduced at higher temperatures, the difference between that of the 

insulating and metallic states is also reduced, giving rise to a reduction in spike amplitude. The reduction 

in the resistance of the insulating state also reduces the RC relaxation time constant, which is manifest as 

a reduction in the width of the spikes. These characteristics are similar to those observed in NbOx-based 

devices10 and are accurately reproduced by simulated oscillation dynamics (see supporting information). 

The effect of scaling (i.e., smaller electrode gaps) on the NDR characteristics of devices is reported in a 

previous study18, and its effect on oscillation dynamics is shown in the supporting information.  

 

Significantly, the spiking dynamics in the threshold-switching neurons are consistent with the results of 

experimental neuroscience measurements involving cell recordings from rat hypothalamus 1, 38, mouse 

hippocampus 39, cat motoneurons 40 and mouse skin sensory neurons 41. For instance, in vitro 

measurements of the rat’s hypothalamic suprachiasmatic nucleus38 indicated that the average spike 

amplitude decreased by ≈10 mV and spike duration decreased by ≈0.12 ms as the temperature was 

increased from 305 K to 313 K.  

2.5 Bio-inspired thermoreceptive sensing system 

Given the thermoreceptive properties of individual threshold-switching neurons, as summarized in Fig. 

3(a), it remains to examine the potential of a network of such neuristors in processing an applied spatial 

thermal stimulus and representing it as a discretized temperature map for neuromorphic sensing 

applications. In biology, projections of such a peripheral temperature map derived from the 

thermoreceptors and propagated to the central brain are functionally relevant for evoking behavioral 

responses to environmental temperature cues42. In fact, it has been shown in drosophila that silencing 
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hot/cold thermoreceptors leading to a distorted peripheral temperature representation, prevents the fly 

from avoiding harmful heat/cold42-43. Hence, guided by such principles, the neuromorphic thermosensation 

system discussed here can find applications in bio-inspired robotics or control systems running at edge. 

  

Figure 5. Simulated neuromorphic thermoreception and temperature representation using two-terminal 

V3O5 memristors. (a) Schematic illustration of the thermoreceptive behavior exhibited by V3O5 neurons, 

temperature of the input stimuli modulates the neuron dynamics –-frequency f, amplitude A, and width w. 

b) Schematic illustration of the neuromorphic thermosensation and the thermal representation of a 
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temperature gradient stimuli leveraging a 10×10 grid of thermal pixels consisting of memristive neurons. 

(c) A generated temperature gradient as the stimuli to the V3O5 grid. (d) The representation of the stimuli 

using a 128×128 grid of thermal pixels. (e) Pixel-wise absolute error between (c) and (d). (f,g) The 

response of the 128×128 thermal pixels grid (g) to another stimuli map (f), in presence of an additive 

temperature and frequency noise of variance σT =10 K and σf =200 Hz. (h) The effect of noise variance 

σT and σf on the average error of the grid representation across all pixels. 

 

We propose and simulate a neuromorphic thermosensation system leveraging threshold-switching 

memristors consisting of a grid of thermal pixels where each cell consists of one V3O5 neuron (Fig. 5(a-

b)). As conceptually illustrated in the figure, this grid essentially discretizes an applied spatial thermal 

stimulus where the resolution of the temperature map representation is limited by the size of an individual 

cell. Finally, the interface circuit samples the frequencies of neurons within a cell to yield the temperature 

of the corresponding cell. To demonstrate the ability of the system at a practical scale as a proof of concept, 

we adopted a coupled approach involving simulations guided by experimental measurements. Herein, we 

generated a randomized low-pass filtered heat stimuli map and applied it as an input to a grid of 128×128 

cells, one neuron per cell with an applied bias of 6V. The experimental thermal response curve f (T), i.e., 

frequency as a function of temperature, of this neuron is depicted in the inset of Fig. 3(d), where the solid 

points represent the experimental measurements with linear interpolations in between them. In the 

simulation, we used these interpolated values (with an additive white Gaussian noise of mean 𝜇𝜇𝑓𝑓 = 0 and 

variance 𝜎𝜎𝑓𝑓) to estimate the output frequencies of the neuron for any stimuli temperature. This is not an 

unrealistic assumption because for repeated experimental measurements of a V3O5 neuron at the same 

temperature, the measured values will be distributed around a mean value and the Gaussian noise accounts 

for any frequency variations across multiple measurements. This assumption enabled us to keep the 
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simulation realistic while also drastically reducing the number of repeated measurements performed 

considering the analog thermal stimuli used and the scale of the network. Finally, in our example, the 

interface circuit comprised of minimization of root mean square error, i.e., the frequency error was 

computed between the output frequencies in simulation and experimental frequencies at each temperature 

and the interface output was the temperature with the least error. While we use simple error minimization, 

one can in principle use any other technique ranging from correlative measures to spiking neural network 

approaches. 

Fig. 5(c) illustrates an applied thermal stimulus (295-393 K) to the network, Fig. 5(d) depicts the 

representation of the stimulus by the network, and Fig. 5(e) is the cell-wise absolute difference error. The 

network captures the details and essentially constructs a discrete approximation of the stimulus with an 

average absolute error of ≈1.61K across the grid and a maximum cell-wise error of ≈4.34 K. The number 

of levels in this discrete representation corresponds to the number of temperatures for which the 

experimental data was collected, 16 in our case. Hence, by increasing this number one can reduce the 

mean/maximum errors and improve the network approximation and quality of the representation.  

Finally, to assert the robustness of this system against environmental variability and noise, we consider 

two noise sources, thermal noise (𝜇𝜇𝑇𝑇 = 0,𝜎𝜎𝑇𝑇) and frequency noise (𝜇𝜇𝑓𝑓 = 0,𝜎𝜎𝑓𝑓) and evaluate the 

performance of the system. Thermal noise was used to model any deviation between the stimulus and the 

ambient temperature as seen by the neuron which can stem from a range of practical causes ranging from 

undesired insulation to device wear off, and frequency noise was used to model the frequency deviations 

due to causes such as general environmental noise or NDR degradation. Figs. 5(f-g) depict the stimulus 

applied (295-393 K) and the response of the system for a noise of  𝜎𝜎𝑇𝑇 = 10𝐾𝐾 and 𝜎𝜎𝑓𝑓 = 100𝐻𝐻𝐻𝐻. Despite 

such high noise, especially thermal whose variance is ≈10% of the total temperature range of the stimulus, 

the system’s representation captures the qualitative details with a mean error of ≈3.76 K across the grid. 
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Fig. 5(h) depicts the average error for different values of  𝜎𝜎𝑇𝑇 and 𝜎𝜎𝑓𝑓. The mean error rises from 1.606K at 

no noise (𝜎𝜎𝑇𝑇 = 0𝐾𝐾, 𝜎𝜎𝑓𝑓 = 0𝐻𝐻𝐻𝐻) to 4.897K at a very high noise (𝜎𝜎𝑇𝑇 = 20𝐾𝐾, 𝜎𝜎𝑓𝑓 = 200𝐻𝐻𝐻𝐻). And this error 

can be further driven down by increasing the number of data points in the thermal response curve (16 

points were used in our case). It can be seen that the variation of 𝜎𝜎𝑓𝑓 and 𝜎𝜎𝑇𝑇 does not have any 

disproportionate effect on the performance of the network, which implies that the system is robust against 

issues such as NDR degradation and device wear-off which is imminent over long-term usage. 

Furthermore, even a large thermal noise of 𝜎𝜎𝑇𝑇 = 20 𝐾𝐾 does not cause a great effect on the results of the 

network and causes a mean error of about ≈3.2-4.9 K depending on the 𝜎𝜎𝑓𝑓.  

To further increase the robustness of the system against noise, the number of neurons per cell can be 

increased where the thermal response curves of these neurons are distinct but overlapping. The response 

curves can be tuned by just altering the supply voltage of the neuron; hence at system-level, this scheme 

can be implemented by replicating the same neuron circuit and applying different biases to each of them. 

The use of multiple neurons with overlapping receptive ranges is to add redundancy and make the cell 

robust against noise, and this technique can also be leveraged to extend the overall receptive range of the 

cell. It is important to note here that the number of neurons used per cell and the overlap of their receptive 

ranges is an important consideration for robustness against noise. In general, a greater number of neurons 

and a high overlap between them maximize the thermoreceptor cell’s robustness. Hence, one can trade-

off between parameters such as the resolution of the thermal response curves, number of artificial 

thermoreceptors per cell, degree of overlap between their receptive ranges, and the size of the total grid 

based on desired design considerations like resolution of the output temperature map, robustness against 

noise, receptive range of the system, etc.  

 



22 
 

3. Conclusion 

In conclusion, we have demonstrated the biomimetic thermosensitive properties of the V3O5-based 

neurons and revealed their connection to that of their biological counterparts. Specifically, it was shown 

that the emergent temperature-dependent dynamics of V3O5-based threshold-switching neurons can 

emulate the neural thermosensitive spiking observed in biological neurons. This was achieved by 

exploiting the temperature dependent characteristics of V3O5 memristors in a simple oscillator circuit and 

comparing the spike-dynamics with the predictions of the Morris-Lecar biological neuron model. It was 

further shown that a network of V3O5-based neurons could be used to process a spatial thermal stimulus 

for neuromorphic sensing applications. The similarity between artificial neurons based on threshold-

switching devices and biological neurons clearly highlights their potential as neuromorphic sensory 

devices or as elements in large-scale neural dynamics simulation hardware for in-silico neuroscience.  

 

Experimental Methods 

A high quality V3O5 microcrystalline film of about ~500 nm thick was deposited on glass (SiO2) substrate 

by DC pulsed magnetron sputtering. Two terminal planar devices with lengths 20 μm were made by 

depositing 100 nm of e-beam evaporated Pt contact pads patterned using standard lift-off process by e-

beam lithography at 0.2 nm/s deposition rate having chamber pressure 1.28 mPa (9.6 × 10-6 Torr). PMMA 

was used as the electro-resist to pattern the electrodes during e-beam lithography. Before Pt electrode 

deposition a thin 5nm Ti adhesion layer was deposited by e-beam evaporation without breaking vacuum. 

The structure, composition, and morphology of the films were subsequently analysed using grazing 

incidence X-ray diffraction (GI-XRD), X-ray photoelectron spectroscopy (XPS), scanning electron 

microscopy (SEM), and transmission electron microscopy (TEM) (see supporting information)18,44. 
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Rietveld refinement was used to determine the positions, heights, and widths of XRD peaks using the 

Fullprof software package45-46. 

Electrical measurements were performed in air using an Agilent B1500A semiconductor parametric 

analyser attached to a Signatone probe station with a heating-controlled sample stage. We waited for at 

least 5 mins after reaching the corresponding expected temperature prior to each measurement to stabilize 

the device temperature. To measure the oscillation dynamics using Pearson-Anson oscillator circuit a 

Rigol MSO-8104 4-channel digital oscilloscope was used to monitor the voltage drop across the 50 Ω 

monitor resistor in series with the device. In situ thermal imaging of the devices during electrical testing 

was undertaken using situ Scanning Thermal Microscopy (SThM) mapping using an SThM probe (VITA-

DM-GLA from Brucker probes) mounted in a Dimension 3100 AFM and an InfraScope Middle 

Wavelength Infrared (MWIR) temperature mapping microscope employing by an InSb detector (Quantum 

Focus Instruments Co.)47-49. 

 
Supporting Information 

This material is available free of charge via the Internet at http://pubs.acs.org. 

Supporting figures including TEM, SEM and XPS analysis, DC and dynamic endurance, scaling effect on 

oscillation, model description and parameters. 
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