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Abstract: Thirteen porcelains assigned to Sèvres factory productions and a few references to the other
contemporary factories (Chantilly, Limoges, and Venice) have been studied on-site with a portable
X-ray fluorescence (pXRF) spectrometer in order to control the provenance attribution. Characteristic
XRF signals of major elements (Si, Ca, K, Pb) and minor/trace (Au, Bi, As, Ti, Co, Cu, Zn, Ni, Y,
Zr, Rb, and Sr) elements are compared for the paste, blue mark, various glazed (colored) areas,
and gilding. The comparison of peak intensities clearly distinguishes different types of hard- and
soft-paste porcelain, made from either similar or distinct raw materials. The analysis of transition
elements associated with cobalt identifies three types of cobalt blue and reveals that du Barry-style
decoration on certain artifacts was typical of 19th-century production. On-site comprehensive studies
of the two famous Etruscan-style breast bowls from Rambouillet Castle dairy, using pXRF and Raman
spectroscopy, confirm the use of soft-paste porcelain for the cup and hard-paste for its support,
providing detailed information on the use of gold nanoparticles in the burgundy-colored decoration.

Keywords: porcelain; pXRF; Raman; paste; glaze; cobalt; gold; pink

1. Introduction

For a very long time, the identification of objects relied solely on documentation and
sensory examination (sight, touch, and sound). Sampling-based analysis is generally not
possible for rare objects. However, the reduction in required sample sizes—from a few
grams in the 1950s to a few micrograms by the late 20th century—now allows for micro or
even non-invasive analysis of nearly all objects, particularly ceramics. With the availability
of compact and portable instruments on-site, non-invasive studies are possible.

Two non-invasive key methods are X-ray fluorescence spectroscopy, which provides infor-
mation on the chemical composition (partially, since some elements escape detection) of a variety
of Cultural Heritage artifacts [1–8], and Raman microspectroscopy, which identifies the crystalline
or amorphous phases of materials [9]. For about 20 years, these mobile techniques have been
applied to specific porcelain categories, and more recently, combined analyses have examined
the decoration (the most sophisticated part, hence the most technologically characteristic) of
the very representative artifacts developed by the Arts of Fire from notable factories, includ-
ing Rouen [10], the Parisian region (Saint-Cloud, Pavie, etc.) [10], and Meissen (Saxony) [11].
Studies using just one of these techniques have been conducted on a series of productions from
Medici (Florence) [12], Chantilly [13], Mennecy [13], Saint-Cloud [13], and Sceaux [14] soft-paste
factories. Other major European manufacturers have also been analyzed, such as those in Central
Europe [15,16], the United Kingdom [17,18], and Italy (Capo di Monte) [19]. However, most
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past studies focus on case studies of fragments [13,18,20,21], primarily using laboratory-based,
non-portable instruments for elemental analysis of pastes [15–21].

In some cases, a significant number of similar objects (tens of pieces) have been
analyzed, lending representativeness to the measurements, although the overall number of
objects studied remains limited. Nonetheless, these studies have shown that the presence of
certain phases in enamels [13,14], specific elemental distributions associated with cobalt [22]
or gold nanoparticles [11], and the proportions of relevant impurities detectable by pXRF
(e.g., Y, Rb, Sr, Zr, and U) in pastes or glazes [11] can reliably differentiate provenances.

To further this approach, we are focusing on the early production years of the factory initially
established in Vincennes (1740), which later became the Manufacture Royale relocated at Sèvres in
1756 [23–26]. Before kaolin discovered near Limoges in 1767 was exploited [27], hard-paste factories
had to import kaolin from German territories, and we aim to distinguish these different sources.

Our objective is to develop discrimination procedures for different productions using
mobile, non-invasive (contact-free) measurement methods, which inherently have cer-
tain limitations. The analysis is conducted on the accessible surfaces of objects, whether
enameled or not. To ensure usability by non-specialists, these procedures need to be
straightforward and as visually intuitive as possible. Eleven objects bearing the Sèvres fac-
tory mark, along with two that may be attributed to Sèvres or Chantilly, will be compared
with French (Chantilly, Limoges) and Italian references (Venice, likely Vezzi, decorated by
Antonio Bon [28]) to identify major differences in elemental composition. Objects with
uncertain assignments will also be analyzed. The varying distances from production sites
should correspond with the use of different raw materials. Some objects are suspected to be
fakes or embellishments (e.g., later addition of polychrome decoration). The complemen-
tary methods, XRF and Raman, will also be applied to one of the most famous artifacts from
the Sèvres factory, Etruscan-style breast bowls on a stand from Marie-Antoinette’s dairy
at Rambouillet Castle [29,30], two pieces representative of 18th-century royal production,
designed by Pierre Julien [31]. Additional artifacts will be analyzed in future campaigns.

2. Materials and Methods
2.1. Objects

Among the most characteristic Sèvres artifacts are the two Etruscan-style milk cups
made for Marie-Antoinette’s dairy at Rambouillet Castle [29]. Equally famous is the service
decorated with antique casserole dishes and flower garlands (“petits vases et guirlandes”),
ordered in 1770 by Madame du Barry from the Royal Manufacture of Sèvres and delivered to
her in 1771 for her music pavilion in Louveciennes [30,32]. This service includes 322 pieces.
Fakes are common, and the authenticity or provenance of artifacts studied here is questioned.

Information about the objects is given in Table 1. A question mark is added when the
attribution is uncertain.

Table 1. List of studied artifacts with assigned provenance and date. Inventory numbers are shown.
For simplicity, only the number will be used in the text. Dates are deduced from the mark. Permission
from Sèvres-Cité de la Céramique to study the objects and publish these images of work in progress was
granted by V. Mesqui, curator at the Musée national de Céramique and co-author of this manuscript.

Inventory Number
(Expected Date) View Description Provenance

(Expected) Refs.

MNC 23399
F: stand
C: breast bowl
(1787)
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Table 1. Cont.

Inventory Number
(Expected Date) View Description Provenance

(Expected) Refs.
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2.2. Techniques 
Set-ups of the instruments are shown in Figure 1. 
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2.2. Techniques 
Set-ups of the instruments are shown in Figure 1. 
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Table 1. Cont.

Inventory Number
(Expected Date) View Description Provenance

(Expected) Refs.
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Figure 1. Examination of two Etruscan-style Rambouillet Castle dairy breast bowls and stands
(MNC 23399 and MNC 23400). View (a) of the Raman set-up and the laser illumination optics and
simultaneous collection of the Raman signal; view of the positioning of the head of pXRF spectrometer
on the MNC 23399 (b) and MNC 23400 (c) stands.
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2.2.1. Portable X-Ray Fluorescence Spectroscopy (pXRF)

The procedure has been described in detail in previous articles [10,11,38–40]. X-ray
fluorescence analysis was performed on-site using a portable instrument (Elio-Bruker,
Berlin, Germany). The set-up included a miniature X-ray tube system with a Rh anode,
a ~1 mm2 collimator, and a large-area Silicon Drift Detector with an energy resolution of
<140 eV for Mn Kα, and an energy range of detection from 1.3 keV (in air) to 43 keV. The
working distance between the instrument front and the analyzed spot is 1.40 cm, which
permits the selection of colored areas located on rather flat or convex zones. Depending on
the object, the measurement was performed by positioning the instrument from the top to
the lateral side. Perfect perpendicularity to the area measured was sought. Measurements
were carried out in point mode with an acquisition time of 180 s, using a tube voltage of 50 kV
and a current of 80 µA. Additional measurements with an AlTiCu filter were made to compare
more precisely the signals in the 8–21 keV range (Ge, Rb, Sr, Y, Zr, and U elements). But a
longer recording time is required for the analysis (300 s instead of 180 s). The analysis depth,
defined as the thickness of the top layer from which 90% of the fluorescence originates,
was determined using the Beer–Lambert law to be approximately 6 µm at Si Kα, 170 µm at
Cu Kα, 300 µm at Au Lα, and 3 mm at Sn Kα [41].

In comparison, glaze and enamel thicknesses range from a few tens of microns (thin
painted enamel) to approximately 500 to 1000 µm for very thick glaze. The data fitting
procedure using Artax 7.4.0.0 (Bruker, AXS GmbH, Karlsruhe, Germany) software has
been described in previous papers [38–40]. As the energy of the X-ray photons varies
significantly depending on the transition of the element considered, the absorption also
varies considerably. Analyzing a compound surface with layers of varying thicknesses
complicates the straightforward calculation of composition. When the stratigraphy is not
known, the calculation of the chemical composition is not possible [38–40,42]. To address
this, we compared the areas of characteristic peaks as performed in previous studies [38–40].
The variability in peak area measurements based on the measurement procedure has
been studied previously [43]. The net area under the peak at the characteristic energy of
each selected element in the periodic table was calculated, and the counts of the major,
minor, and trace elements were determined for the paste and colored areas (white, red,
yellow, orange, blue, green, and black). Before plotting the diagrams, the net areas for
each element were normalized by the number of XRF photons derived from the elastic
peak of the rhodium X-ray tube. Normalization with respect to the Co signal was used
for comparing specific elements. The normalized data were then plotted in ternary scatter
plots for interpretation and discussion, using the software Statistica® 13.5.0.17 (TIBCO
Software Inc., Palo Alto, Santa Clara, CA, USA).

For clustering/similarity analysis (dendrogram), the dataset was first explored using
the Pandas library. Agglomerative Clustering from sklearn.cluster® module was then
performed. To visualize and illustrate the composition of each cluster, dendrograms were
generated, displaying the points in each cluster and their relative distances. Ward’s method
was selected and implemented as the linkage method, using the spicy.cluster.hierarchy®

module for visual representation and matplotlib® for plotting. The code was developed
and executed in a Jupyter Lab® environment, version 4.1.6.

2.2.2. Raman Microspectroscopy

Some artifacts were analyzed on-site using a mobile HE532 set-up (Figure 1) (HORIBA
Scientific Jobin-Yvon, Palaiseau, France). Due to the limited availability of the objects, the
analysis conditions varied based on the type of object being studied.

Long working distance (LWD) 50× (Olympus Corp., Tokyo, Japan) and 200× (Mi-
tutoyo Corp. Tokyo, Japan) microscope objectives were used. Analyzed spots are about
5 × 5 and 1 × 1 µm2; the in-depth penetration is similar for the colorless glaze, respectively,
and strongly reduced for dark-colored areas. Typically, a 50–3200 cm−1 spectral window
was recorded. Counting time ranged between a few minutes and a few tenths of minutes
(at least three accumulations required to suppress cosmic ray signals). The measurement
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campaigns were carried out under different conditions (room temperature was not con-
stant), and the limited resolution of the instrument led to an uncertainty of ±2 to 3 cm−1

on the wavenumbers.

3. Results
3.1. Nature of Pastes

Figure 2 shows the XRF spectra recorded on the bodies. Pastes MNC 23399 (breast
bowl), MNC 28003 (Chantilly monkey), and MNC 424.2 (Chantilly figurine) show intense
peaks characteristic of the lead element, as expected for soft-paste porcelain; the latter paste
is very rich in calcium. For these bodies, the aluminum peak is barely visible, but traces
of chlorine are detected, which is consistent with the recipes [20,23–26]. In the case of egg
cup MNC 22618, traces of sulfur are detected, possibly due to the use of gypsum as a raw
material or contamination from firing with earth charcoal.
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Figure 2. Representative XRF spectra recorded on the paste (the inventory numbers XXX (MNC XXX)
and the magnification of the spectrum are given, see Table 1). Arrows: peaks of Sn, Cl, or S elements.

In the spectral window shown in Figure 2, traces of tin (Sn Lα peak at 3.44 keV, located
just after the potassium peak at 3.31 keV) are detected in figurine MNC 28003, attributed to
the Chantilly factory [36]. Signal comparisons are made more precisely using the Sn Ka
peak at more than 25 keV (see further). The traces of lead observed in other objects are
probably due to surface contamination during the firing of lead-rich enamel (very volatile
PbO oxide reacts with the surface). As a result, the surfaces of unglazed biscuits are free
from lead contamination. The residual iron content varies, and the differing intensities
of the K and Ca peaks highlight significant variations in composition. Additionally, the
significant intensities of Rb, Sr, Y, and Zr traces detected between 13 and 17 keV are noted,
which will be compared later.

Figure 3 compares the areas of the characteristic XRF peaks for the elements silicon
(the major element), fluxes (Ca, K, and Pb), and tin, measured on the accessible areas of the
paste and different colors. Full data set is given as Supplementary Materials.

The Si-Ca-K ternary diagram distinguishes three types of paste, which can be described
as follows:

(i) lime-rich (those called “Sèvres 1” and a production attributed to Chantilly (with the
lead signal excluded)),

(ii) potassium-rich (e.g., the Limoges medallion, with the lead signal also excluded), and
(iii) intermediate (e.g., the lead-rich breast bowl MNC 23399).
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Two groups of glazes are identified, differing in potassium content (Pb is excluded
here as well).

The Pb-Ca-K diagram clearly confirms that the first two types of paste are hard-paste
porcelain, while the third is soft-paste porcelain (e.g., bowls MNC 23399 and MNC 23400,
figurines MNC 424.1 and MNC 424.2).

The egg cup (MNC 22618), monkey figurine (MNC 28003), and Limoges medallion
(MNC 25341) pastes exhibit weak lead signals. For the two first-mentioned artifacts, the
presence of lead is likely due to surface contamination during firing (possibly from the use
of a kiln contaminated by lead or lead evaporation–condensation from overglazes). The
paste of artifact MNC 28003 contains the highest concentration of lead. For the case of the
Limoges medallion (MNC 25341), one of the first “hard”-paste porcelain made in France,
a voluntary addition of lead-based frit by making a hybrid paste intermediate between
soft- and hard-paste is not excluded; this addition of frit facilitating sintering at lower
temperatures. Only an examination of the microstructure or a micro-destructive analysis
could answer that.

The Ca vs. Pb diagram shows the absence of tin in the glaze, except for objects at-
tributed to the Chantilly factory (e.g., MNC 28003, MNC 424.1, and 424.2), where cassiterite
was already identified in the glaze [13,14]. This diagram confirms the presence of four
types of porcelain:

(i) Hard-paste porcelain, identified as standard Sèvres production (MNC 23399 stand,
MNC 21134 biscuit, MNC 2641 biscuit, MNC 5568 figurine, MNC 4992 bowl, and
2023.4.1 biscuit);

(ii) Two similar objects whose paste (surface only?) contains traces of lead: the egg cup
MNC 22618 attributed to Sèvres (mark S, i.e., 1771) with a decoration known as “petits
vases et guirlandes” used on the table set of the Countess du Barry [32], and the biscuit
medallion representing King Henri IV made at Limoges (MNC 25341) [34];

(iii) Soft-paste porcelain containing a moderate level of lead: the two figurines (MNC
424.1 and MNC 424.2) assigned to the Chantilly factory [35,44];

(iv) Soft-paste porcelain rich in lead: the MNC 28003 monkey figurine was also assigned
to Chantilly.

The paste of Rambouillet Castle dairy breast bowl (MNC 23399) [29,30] belongs to
this latter group, although it is likely that the true lead content of the paste is lower
than measured due to contamination during measurement by the glaze (as there was no
measurable surface of paste without risking damage to the object, the measurement was
made on a fault, a scratch revealing the paste). The area without glaze was smaller than the
spot analyzed by pXRF.

The binary diagrams K vs. Pb (Figure 3d) and Ca vs. Pb (Figure 3e) clearly distinguish
hard-paste (Group 1 in Figure 2) from soft-paste porcelain (Group 3). Measurement #4 of the
MNC 23399 breast bowl (from the glaze scratch) shows a high Pb signal due to significant glaze
contribution within the analysis spot. For the egg cup (MNC 22618), it is likely that the paste
surface was heavily contaminated by lead oxide in the gas phase during the firing of the enamel.

Certain impurities, such as yttrium and zirconium (typical impurities in quartz in
the form of zircon), rubidium (an impurity associated with sodium and potassium), and
strontium (associated with calcium), exhibit relatively strong XRF signals despite their
low concentrations. Moreover, their Kα peaks are located in a spectral zone with minimal
overlap with other peaks.

The Sr vs. Rb impurity diagram highlights the use of different raw materials supplying
calcium (Sr) and alkalis (Rb). Data points aligned on the same line suggest the simultaneous
presence of these two elements from the same material. All artifacts attributed to earlier
production at the Sèvres factory align on the same line. Therefore, the unassigned figurine
(MNC 5568) in green clothing is likely a Sèvres hard-paste porcelain, rich in calcium, while
figurine MNC 2641 aligns with the Limoges medallion; the egg cup (MNC 22618) aligns
with MNC 28003 and MNC 424.2 (assigned to Chantilly). These results suggest that each
group shares the same raw materials.
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Impurity levels vary based on the geological origin of the raw materials. If the geological
context differs significantly, the relative intensities can distinguish between different types
of production. Consequently, the Y-Rb-Sr diagram differentiates at least two groups of
pastes (Figure 4). The first group (MNC 23737.1, MNC 23399 (stand), 2023.4.1, MNC 4992, and
MNC 21134), with lower strontium levels, corresponds to the groups already identified as
standard calcium-rich Sèvres porcelains (data in the squared area of Figure 3a). The diagram
using the zirconium signal provides similar information.
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The second group, rich in strontium (and containing the most calcium-rich paste), in-
cludes figurines MNC 2641 (biscuit), MNC 424.1, and MNC 424.2 (Chantilly-enameled fig-
urines) and MNC 28003 (monkey figurine), along with artifact MNC 22618 (egg cup). This
distinction also applies to the glazes. Binary plots of Figure 5 compare Y vs. Si (yttrium is
associated with sands) and Ti vs. K (titanium, found in kaolins, generally as anatase and in
quartz and feldspar as rutile), providing additional information. The specific characteristics
of egg cup MNC 22618, distinct from Sèvres production, are confirmed, as are those of
figurines MNC 28003 and MNC 5568. Comparing values obtained from different spots
on the same object allows for estimating uncertainties due to measurement procedures
and paste heterogeneity. Objects aligned vertically, indicating similar Si signals, may
correspond—particularly for extreme values—to the use of different sands. In the binary
Ti vs. K plot, the light brown coloring of the body in the biscuit (2023.4.1) is attributed to its
higher Ti (and associated Fe) content.
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The signals of the major elements clearly distinguish soft-paste from hard-paste porce-
lains, while trace elements are more effective in recognizing production sites when suffi-
ciently differentiated raw materials are used. The same applies to the analysis of glazes.
Thus, the signals of the major elements, including lead, help distinguish glazes fired at
low and high temperatures. Clustering based on characteristic impurities with significant
signals better differentiates provenance: For example, the Venice teapot (MNC 13358) forms
a unique group. Measurements from restored areas also form a separate category.

Given the uncertain attribution of the ochre-colored biscuit 2023.4.1, particular atten-
tion was paid to its paste and to the comparison with three objects with well-established
attributions: the medallion depicting King Henry IV (MNC 25341) produced in Limoges,
and two Sèvres biscuits (MNC 2641 and MNC 21134).

The Ward’s hierarchical diagrams (Figure 4), constructed from the signals of major
elements (Si, K, Ca, and Pb) and trace elements (Sr, Rb, and Y), discriminate between
different groups: Major elements distinguish paste types (hard or soft), while impurities
reflect common or geologically similar raw materials. For uncolored glazes, the lead content
is decisive. These diagrams also reveal objects not belonging to the studied groups, such as
figurine MNC 5568.

The use of a primary filter (a stack of 25 µm Cu, 25 µm Ti, and 259 µm Al foils) enhances
the peak-to-background ratio within the relevant energy range, as shown in Figure 6. Compar-
ison of the biplots relating to flux signals (Pb, K, and Ca), characteristic flux traces (Sr and
Rb), and sands or other raw materials (Y) containing quartz (feldspars, pegmatites) shows
the proximity of the values measured for the brown biscuit 2023.4.1 to those of the Sèvres
biscuits (MNC 2641 and MNC 21134), and their distinct difference from the Limoges biscuit
(MNC 25341). The Y/Zr vs. Rb/Sr biplot maximizes the differences between paste types,
making it a useful tool for future comparisons and confirming the attribution of biscuit
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2023.4.1 to the Sèvres factory, as also suggested by the fleur-de-lys mark. Complementary
Y vs. Si and Ti vs. K plots, shown in Figure 5, provide additional criteria.
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Figure 6. Comparison of the net intensities (cps as counts) recorded with (blue) and without (red) filter
(a) and Pb vs. K/Ca, Sr vs. Rb, Y vs. Sr, Y vs. Rb, Zr vs. Sr, Zr vs. Rb, and Y/Zr vs. Rb/Sr biplots
(b) comparing peak areas of the brown biscuit (2023.4.1, not definitively attributed, red dot) with those
measured on Limoges (MNC 25341, dark blue spot) and Sèvres (mean values of MNC 21134 and MNC
2641, light blue spot)) reference paste. Net intensities of high-energy trace elements (Rb, Y, Sr, and Zr)
were taken only from filtered measurements, while K and Ca were measured without filtering.
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3.2. Glazed Decoration
3.2.1. Blue

The rarity and geological diversity of cobalt deposits, as well as the evolution of “extrac-
tion” processes for materials used as sources of blue coloring, result in associated elements
that can be comparable in quantity to cobalt itself, providing a unique signature of the coloring
material’s provenance [22,45]. For the periods of interest—primarily the 18th-century produc-
tion period—but also later periods involving forgeries or embellishments (where decoration
is applied and fired onto initially “white” objects)—the main elements characterizing these
cobalt sources include Mn, Cu, Bi, Ni, As, and Zn [3,4,17,29,30]. The primary sources of
cobalt are expected to be the Ore Mountains (Erzgebirge, Saxony, and Bohemia), the Vosges
Mountains (Sainte-Marie-aux-Mines, France) [45], and the Giftain Valley (now called Gistain
in Spanish and Chistau in Aragon) in the Pyrenean Mountains of Aragon, Spain [22,46,47].
Other minor mining sites have also been identified in Germany [45].

The spectra (Figure 7) and diagrams (Figure 8), both ternary and binary, clearly
distinguish three types of cobalt sources:

(i) The teapot (MNC 13538), decorated by the workshop of A. Bon [28], likely on a form
previously produced at the Vezzi factory, uses cobalt rich in arsenic and bismuth, with
traces of copper and low levels of nickel and zinc, presumably from the Erzgebirge,
which is consistent with early Italian production [10,22].

(ii) The blue color observed in pieces MNC 4992 (bowl with “R” letter mark, dating to
1770) and MNC 26466 (vase with dot mark, dating to 1750) is similar, indicating the
use of the same cobalt source over a significant period, likely from the Giftain Valley
as indicated in some documents [20]. Some manganese and nickel are associated with
cobalt, along with traces of arsenic but without any bismuth.

(iii) The turquoise blue tripod stand of the Rambouillet Castle dairy bowl (MNC 23400)
contains an addition of copper to achieve this color, which explains the higher level of
nickel, as nickel is often associated with copper.

(iv) The two objects with “petits vases et guirlandes” decoration (MNC 22618 and MNC 23247),
inspired by the Comtesse du Barry tableware set, show a high zinc signal, ruling out
the possibility of it being an impurity. Although Co-Zn-Al spinel was first synthesized
in 1775 [48], it was only used in blue glaze a few decades later, as seen in 19th-
century Meissen porcelain [11]. In fact, the elements associated with cobalt vary not
only according to the mining source but also due to the “refining” processes and
deliberate combinations with other chemical elements to achieve specific colors using
new pigments. Therefore, the decoration of the objects likely occurred after the 18th
century, specifically decades after the commissioning of the table service by Countess
du Barry around 1769–1770 [32].

3.2.2. Gold-Based Decoration

Figure 9 compares the XRF signal of gold with that of two elements used for the pre-
cipitation of colloidal gold from the stock solution in aqua regia, tin according to the Kunckel
method for preparing Cassius purple [49,50], or arsenic, according to Perrot’s method for
producing the gold nanoparticles required for the preparation of ruby glass [51–54]. These
associated minor elements can yield colors ranging from pink to purple, depending on
the size and composition of the gold nanoparticles [49]. We observe the association of
gold with tin in the pink/burgundy colors of objects MNC 23400 (turquoise breast bowl
stand) and MNC 22618 and with arsenic in the Vezzi-Bon teapot and the pink breast bowl
stand (MNC 23399).

The use of arsenic in the pink background of tripod MNC 23399 is clearly intentional
to achieve the desired color, as evidenced by the gradual decrease in arsenic levels along
a straight line toward the measurement on the burgundy lines of object MNC 23400.
The technique of Perrot (real name Bernardo Perrotti, originally from Altare, Italy, and
established in Orléans and Paris) [51–53] being of Italian origin makes its use by Antoni
Bon understandable. Therefore, the decorations of the two supports were produced using
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both Perrot’ and Kunckel’ preparation methods, indicating that these two techniques were
mastered at Sèvres.
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3.2.3. Yellow Color

The ternary diagrams in Figure 10 enable the evidence of colors created either by
metallic gold nanoparticles or traditional mineral pigments. Three types of yellows are
observed: almost pure tin yellow for bowl MNC 4992 (Sèvres, 1770), and two yellows
containing varying levels of antimony (Naples yellows with a pyrochlore structure [55–60])
for the monkey MNC 28003 (Chantilly) figure and the MNC 13538 Vezzi-Bon teapot. The
red color of vase MNC 23737.1 is either opacified with calcium antimonite or modified with
antimony yellow (Figure 9).

3.3. Detailed Raman Study of Two Marie-Antoinette Breast Cups

We observed the limitations of pXRF measurements alone. To gain a deeper un-
derstanding of the enameling techniques, Raman analyses were conducted on the most
iconic objects in the studied corpus. Figure 11 visually compares the supports of the
Rambouillet Castle dairy bowl in terms of background color and specific coloring de-
tails. Figures 11 and 12 present the Raman spectra of the pink (MNC 23399) and turquoise
(MNC 23400) backgrounds, respectively.

For both objects, similar Raman signature contrasts are evident: intense spectra for
the enamel of the cup, with broad bands around 500 and 1050 cm−1, characteristic of an
amorphous phase of lead silicate [61–64], along with narrow peaks around 635 and 970 cm−1,
characteristic of the β-wollastonite phase (CaSiO3, noted #2 in Figure 12) [13,14,65]. This
pattern is analogous to the signature found on the Sèvres 1781 plate, which has been
extensively characterized for its composition and phases [20,66]. Focusing on the surface
shows a dominant lead glass signature, while deeper glaze analysis reveals an increased
β-wollastonite signature, indicating significant precipitation at the glaze–body interface.
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Figure 11. View of one of the “flesh” colored cups (white to pink), of the support with a pink background,
and detail of the sheep’s heads with a turquoise (MNC 23400) and pink (MNC 23399) background.
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Figure 12. Representative spectra collected on the support and section of the MNC 23399 breast bowl:
(a,c) full spectral window. On the right, a zoomed view of the lower wavenumber range (b,d). The
colors or nature of the analysis points are indicated (1: 508, 2: 490, 3: 565, and 4: 815 cm−1).

In contrast, the two breast bowl stands show a weak spectrum with bands around
500 cm−1 (#1 in Figure 12), as well as another very weak and broad component around
815 cm−1 (#4). The narrow quartz band (#2, 465 cm−1) [61,65,66] and the main band of
feldspar (508 cm−1) [61,66] are also sometimes observed.

The Raman signatures of Figure 12c,d are characteristic of a hard-paste containing
mullite (low-intensity broad components at ~300 and 430 cm−1), quartz (narrow peak
at ~464 cm−1), and the amorphous aluminosilicate phase associated with mullite (low-
intensity broad component at ~480 cm−1) [61,62]. Differentiating between the spectrum of
mullite and the associated amorphous phase is difficult with the green laser wavelength,
especially with a mobile device, as the spectra are very similar and weak.

The pink and burgundy-colored areas/lines show strong and rather narrow fluorescence
(Figure 12c,d and Figure 13a), indicative of the presence of metal nanoparticles (NPs) [67].
Indeed, depending on their size, gold NPs produce colors ranging from pink to purple (re-
gardless of the preparation method, such as Cassius’ purple or Perrot’ red). Note the variable
luminescence profile for the pink and burgundy decoration (Figure 12c,d and Figure 13a,c,d).

Black is obtained with a spinel phase, formed by mixtures of varying proportions of
Fe2O3, MnO2, Cr2O3, and CuO [67–69]. Identifying the exact composition of this phase
from the Raman spectrum alone is difficult [65,68,69], but the 640 cm−1 value is consistent
with an Mn-rich spinel.
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in the layer or at depth (~ten(s) of μm); 1′: 490; 2′: 635; 3′: 972; 4′: 1045; 1: 462; 2: 141; 3: 640; 4: 824; 5: 
410 and 460; 6: 485; 7: 508; 8: 337; 9: 593. 
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suggesting it may be less aluminum-rich than, for instance, Meissen paste [10,61,62]. 

The glaze is colored with NPs, and the decoration was completed using a muffle or 
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Figure 13. Representative spectra collected on the MNC 23400 stand and breast bowl ((a,c) full
spectral window). On the right, zoom in on the low energy range (b,d). The colors and nature of the
analysis points are indicated, specifying whether the measurement is carried out on the surface, in
the layer or at depth (~ten(s) of µm); 1′: 490; 2′: 635; 3′: 972; 4′: 1045; 1: 462; 2: 141; 3: 640; 4: 824;
5: 410 and 460; 6: 485; 7: 508; 8: 337; 9: 593.

The hairs on the top of the sheep’s head (spot diameter a few µm2) are colored tin
yellow (characteristic spectrum with a strong peak around 140 cm−1 and a component
around 330 cm−1) [55–60]. This is consistent with the Sn-Au-Sb diagram in Figure 9, where
the yellow of the pink-colored sheep’s head MNC 23399 (spot diameter ~1 mm2) is located
near the Sn vertex. This tin yellow is also found in the blue mark of MNC 23400 (Figure 9),
indicating contamination during preparation, which also shows the intense peak around
815 cm−1 and its shoulder around 780 cm−1 (noted #4 in Figure 9), characteristic of a
lead–calcium/potassium arsenate with an apatite structure [30,49,53–55], formed when
cobalt from hydrothermal vein mines reacts with lead-based enamel [22,66,70–72].

The breast-shaped milk cups are unambiguously made from soft-paste glazed with
lead-rich enamel and fired at a relatively low temperature (petit feu, probably 700–800 ◦C) [26].
The pink color is achieved by dispersing gold nanoparticles (NPs), as confirmed by pXRF (Figure 9).

The three-sheep supports are hard pastes, but the signature is not strongly mullitic,
suggesting it may be less aluminum-rich than, for instance, Meissen paste [10,61,62].

The glaze is colored with NPs, and the decoration was completed using a muffle or
petit feu firing (especially for the tin-yellow overglaze), with the mark applied during this
second firing.
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4. Conclusions

Table 2 summarizes the most relevant characteristics for identifying the provenance
and evolution of the features. Figure 14 compares the different types of pastes observed in
this study with a Meissen paste.

Table 2. Raman analyzed areas of Marie-Antoinette cups and supports.

Object Colored Area Zone Identified Phases Assignment

MNC 23399
Breast bowl
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K, Ca, and Pb), trace elements (Y, Zr, Rb, and Sr) measured on the body surface for only French; and 
(c) French and Meissen artifacts (variables are Si, K, Ca, Pb, Sr, Y, Zr, and Rb normalized by Rh); (d) 
hierarchical clustering classification with variables Ag/Co, Cu/Co, Bi/Co, As/Co, Zn/Co, and Ni/Co 
measured on the blue decorations and marks. MNC inventory numbers are given, see Table 1 and 
reference [4]. Rh*: Rhodium anode and Compton peak. 
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Figure 14. Comparison of (a) pXRF spectra of pastes in Meissen, Sèvres, Limoges, and Venice (Vezzi)
productions; two spectra obtained at different points show the rather good reproducibility of the
signatures; (b) hierarchical clustering classification by using peak areas of major elements (Si, K,
Ca, and Pb), trace elements (Y, Zr, Rb, and Sr) measured on the body surface for only French; and
(c) French and Meissen artifacts (variables are Si, K, Ca, Pb, Sr, Y, Zr, and Rb normalized by Rh);
(d) hierarchical clustering classification with variables Ag/Co, Cu/Co, Bi/Co, As/Co, Zn/Co, and
Ni/Co measured on the blue decorations and marks. MNC inventory numbers are given, see Table 1
and reference [4]. Rh*: Rhodium anode and Compton peak.

Examination of the XRF spectra from the main factories of the mid-18th century (Figure 14a)
highlights that the key differences involve the relative proportions of Si/K/Ca for the
major elements and Rb/Sr/Zr for the trace elements. The iron level is also a criterion
for discrimination. Meissen paste is the richest in potassium, and since it is fired at very
high temperatures, it forms more mullite compared to other porcelain bodies, which is
also clearly visible in the Raman spectra [61,62]. The first productions of Sèvres are rich in
calcium and contain less mullite. Porcelains from Venice and Limoges show intermediate
characteristics (less calcium and more iron in the case of Venice). The addition of filters
provides more precision in measuring low-intensity peaks [73,74] but requires longer
counting times. The significant intensity of traces of Y, Rb, Sr, and even Zr negates the need
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for filters when access time to objects is limited. The value of these last three trace elements
as a provenance marker has also been recognized in PIXE analyses [75].

The comparison of similarity links visualized by Ward’s technique in the hyperspace
of the chosen data (Figure 14b,c) provides additional insights and raises some questions.
The classifications based on the major element signals (Si, K, Ca, and Pb) and trace elements
(Y, Rb, Sr, Zr) producing significant XRF peaks in the pastes align well with the established
attributions, confirming findings from previous work on the specificities of paste composi-
tions. For example, the soft-paste porcelains of Chantilly and Sèvres are clearly distinct.
However, the similarity between the compositions of Meissen and Limoges porcelain is
striking if Pb traces of Limoges paste (Figure 2) are not considered. The proximity of the
paste signature of artifact MNC 22618 to that of Limoges suggests that this item may be a
later “replica” (likely from the 19th century), made in the style of the service of the Countess
du Barry.

Examination of the clustering diagram (Figure 14d), constructed from signals normalized
to cobalt and elements associated with cobalt in ores (namely, Ag, Cu, Bi, As, Zn, and Ni),
clearly highlights the use of modern ingredients (MNC 19944 Meissen figurine, Group 4) or
the addition of copper to achieve a color between blue and turquoise (MNC 23400 Sèvres,
Group 4). The differences in other groups are less clear and may reflect the use of cobalt
from different sources or periods. The Sèvres objects in Group 2 are relatively well grouped,
while the Venice object is well isolated. Remarkable homogeneity is observed in subgroup 1,
with little difference from subgroup 1′, both comprising Meissen objects. Group 3, which is quite
distinct, mainly consists of figurines that were likely enameled afterward. More data of this kind
and detailed examination are necessary to advance the use of these classification techniques.
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