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ABSTRACT 

Supramolecular organic nanowires are ideal nanostructures for optoelectronics because they 

exhibit both efficient exciton generation, by virtue of their high absorption coefficient, and 

remarkable light sensitivity, by virtue of a small number of grain boundaries and high 

surface-to-volume ratio. To harvest photocurrent directly from supramolecular nanowires it is 

necessary to wire them up with nanoelectrodes possessing different work functions. However, 

devising strategies that can connect multiple nanowires at the same time has been challenging. 

Here we report a general approach to simultaneously integrate hundreds supramolecular 

nanowires of N,N′-Dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) in a hexagonal 

nanomesh scaffold featuring asymmetric nanoelectrodes. Optimized PTCDI-C8 nanowires 

photovoltaic devices exhibit a signal-to-noise ratio approaching 107, a photoresponse time as 

fast as 10 ns and an external quantum efficiency >55%. This nanomesh scaffold can also be 

used to investigate the fundamental mechanism of photoelectrical conversion in other 

low-dimensional semiconducting nanostructures. 

 

Semiconducting supramolecular nanowires are versatile nanostructures that combine the 

advantages of soft materials like polymers in terms of flexibility and low-cost 

solution-processability with the physical and chemical characteristics of organic crystals.1-4 

Along these nanowires, photo-generated charge carriers can be transported efficiently to reach 

the electrodes by virtue of optimal π-electron overlapping.5-7 Supramolecular nanowires are 

also particularly suitable for exciton dissociation because their high surface-to-bulk ratio 
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minimizes the diffusion length from the bulk to the interface where exciton separation 

typically occurs.8-10 Recently, long-range exciton transport, up to a few microns, has been 

reported.11 Other advantages for photonic applications include lower interface reflection loss 

compared to thin-film,10,12 and the possibility to tune the optoelectronic properties by rational 

molecular design and aggregation.13-16 All these characteristics make supramolecular 

nanowires ideal active components in optoelectronic devices. In addition, these devices 

represent a perfect platform for studying how the order at the supramolecular level affects 

photoelectrical conversion.17,18 

So far, a variety of supramolecular nanowires have been synthesized and 

investigated.19-24 Some of them have been used in organic field-effect transistors and 

phototransistors showing promising optoelectronic properties.25-27 However, photovoltaic 

devices based solely on organic nanowires are challenging to fabricate, because it is hard to 

control the interface between the nanowire and the electrodes, where the dissociated exciton 

are to be collected.28,29 In order to efficiently harvest photocurrent from nanowires, one of the 

prerequisites is to interface them with an external circuit possessing asymmetric 

nanoelectrodes. At the same time, the nanoelectrodes should also cover a large area so as to 

incorporate as many nanowires as possible. Since low-cost production represents one of the 

advantages of this technology, the nanoelectrodes should also be easy to fabricate. Although 

these requirements could be satisfied in a thin-film vertical diode configuration, such 

approach is not applicable to neat one-dimensional semiconductors because nanowires alone 

would not form an even and pinhole-free layer to sustain the top electrode without the 

addition of a strengthening polymer layer.8 Furthermore, making electrical contact with 

bottom-up nanostructures is still a long-standing research topic in supramolecular 

electronics.30-32 

Here we report a vertical-channel nanomesh scaffold that supports and connects 

supramolecular nanowire between two nanoelectrodes with different work functions. 

Patterned by nanospheres lithography, the scaffold comprises millions of hole-shaped 

nanoelectrodes in a hexagonal array with a channel length below 100 nm. The height 

difference between top and bottom electrodes enables zone-selective modification with a 

series of organic/polymeric semiconductors to further tune the asymmetry between the 
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electrodes. We have focused our attention to N,N′-Dioctyl-3,4,9,10-perylenedicarboximide 

(PTCDI-C8) nanowires as model system for optoelectronics. PTCDI-C8 is a commercially 

available n-type organic semiconductor that self-assembles into supramolecular nanowires 

through solvent-induced-precipitation.14,21,25 When asymmetrically connected to 

nanoelectrodes, PTCDI-C8 nanowires exhibit well-defined photovoltaic effect under 

monochromatic visible light. In particular, the resulting photonic device shows high external 

quantum efficiency when in resonance, ultrafast photoresponse and high signal-to-noise ratio 

because of an efficient charge and exciton transport.25,33 

 

RESULTS AND DISCUSSION 

 

Fabrication of honeycomb-shaped asymmetric nanoelectrodes 

Nanospheres lithography refers to a patterning approach that utilizes hexagonal 

close-packed (hcp) nanospheres monolayer as mask.34 By combining additive- and 

subtractive-process, nanospheres lithography offers a versatile method to fabricate large-area 

and periodic nanostructures with different materials like metals, graphene, semiconductors 

etc.35-37 The fabrication procedure starts with the deposition of a polystyrene (PS) nanospheres 

hcp-monolayer (Fig. 1a). Then oxygen plasma treatment is applied to widen the gap between 

adjacent PS nanospheres (Fig. S1 in the Supporting Information). Au is then deposited by 

high-vacuum thermal evaporation followed by a lift-off step (Fig. S2). Thereafter, the gold 

nanomesh serves as a mask to remove SiO2 dielectric layer by reactive ion etching. The 

exposed surface of heavily n-doped Si was designed to act as the counter-electrode. Therefore, 

the inter-electrode distance in our device is determined by the SiO2 thickness (90 nm in our 

case). To estimate the yield of fabrication process, we carried out a large device statistics and 

found that 83% out of the total 160 devices exhibited leakage current below 1 nA at ±1.5 V 

bias voltage (Fig. S3; Surface area: 0.07 cm2).  

Significantly, our approach is extremely versatile, e.g. it is possible to make further 

modifications inside the nanohole (Fig. 1b).38 Firstly, a thin layer of semiconducting p-type 

polymer like poly(3-hexylthiophene) (P3HT) was spin-coated without altering the nanomesh 

morphology. This process is referred to as “conformal spin-coating”, which is realized by 
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depositing a very thin film onto a relatively rough surface containing nanostructures. In 

contrast, if the spin-coated film were much thicker, the nanostructured surface would be 

smoothened as shown in the second step of Fig. 1b. Here the substrate flattens by 

poly(4-vinylphenol) (PVP) sacrificial layer was then transferred into an oxygen plasma 

chamber to “burn off” redundant PVP film. By controlling the etching dose, only P3HT 

modification layer inside nanoholes is left since PVP could be washed away by ethanol 

thereafter. For each step of the procedure depicted in Figure 1b, the change in morphology 

has been characterized by atomic force microscope (AFM) (see Fig. S4). 

Figure 1c and d show the photograph images of fully covered PS nanospheres 

monolayer with 1100 nm sphere diameter and the resulting nanomesh scaffold, respectively. 

The polychromatic shades originate from light dispersion effects of nanosphere- or hole-array 

with period comparable to visible light wavelength. Figure 1e and 1f portray the 

topographical AFM images of samples displayed in Fig. 1c and 1d, respectively. As 

suggested by the colourful appearance in photograph images, the PS nanospheres monolayer 

and honeycomb-like hole-array scaffold show high degree of periodicity. The SEM analysis 

performed at a tilt angle of 54o (see Fig. 1g and 1h) further confirm that i) the side walls are 

vertical and sharp, and ii) the gold nanomesh stays on top of dielectric layer without 

collapsing. The latter observation is in accordance with the low leakage current level 

measured as reported in Fig. S3.  

 

Optoelectronic properties of nanowires on bare nano-scaffold 

Our geometry was used to incorporate large-area and full-coverage nanowires films 

produced through hierarchical assembly (Fig. 1i). In particular, PTCDI-C8 molecules were 

self-assembled into supramolecular nanowires by solvent-induced-precipitation. Then, the 

obtained supramolecular nanowires were organized into quasi-monolayer thick films floating 

at the water/air interface (see method section and Fig. S5).39 Before transferring them onto the 

nanomesh scaffold, 50 µL of PVP solution (ethyl acetate; 100 mg/ml) was dropped onto the 

water surface to compress the floating supramolecular nanowires into uniform films. 

Compared to spin-coating, this assembling approach has two advantages: i) the 

supramolecular nanowires can be even distributed on surfaces, as confirmed by fluorescence 



	 5	

microscopy (Fig. S5), and ii) 100% of material can be deposited at surfaces, without any 

waste. Figure 2a displays the SEM images of full-coverage supramolecular nanowires on top 

of a nanomesh scaffold. It reveals that almost every nanohole is accommodating nanowires as 

evidenced further in the zoom-in in Fig. 2b and 2c.  

After PTCDI-C8 nanowires deposition and thermal annealing inside glovebox, we 

successfully observed photovoltaic effect which could be attributed to the light absorption by 

PTCDI-C8 supramolecular nanowires. Figure 2d portrays exemplary I-V curves in dark and 

under monochromatic light (470 nm; 212.9 mW/cm2). The inset in Fig. 2d shows the 

molecular structure of PTCDI-C8. During the measurement, Si is grounded to 0 V, so we can 

define the gold nanomesh as cathode according to the photocurrent direction. Since 

PTCDI-C8 is an n-type semiconductor, the excitons should separate at nanowires/Si interface. 

Then photo-generated charges are efficiently transported though the nanowires and are 

collected at the gold cathode. Thin film X-ray diffraction (XRD) analysis was also carried out 

to shed light on the molecular stacking in these solvent-induced-precipitation derived 

supramolecular nanowires (Fig. S5). While distinct diffraction peaks confirm the crystalline 

nature of the nanowires, the peaks position suggests that disc-like PTCDI-C8 molecules 

exhibit slipped π-π stacking along [100] direction corresponding to the long axis of the 

nanowire, thereby favouring efficient in-plane charge carrier transport.14  

To investigate how the geometry parameters influence the total photocurrent, we 

adjusted the size of nanowires by mixing PTCDI-C8 solution with a series of alcohol from 

methanol to 1-hexanol as non-solvent. Generally, high boiling point alcohols, i.e. with 

increasing number of carbon atoms in the main chain, enable slow molecular diffusion 

thereby providing longer times for PTCDI-C8 to self-assemble and form supramolecular 

nanowires (Fig. S6). As a result, the size of the nanowires increases monotonically with the 

number of carbon atoms in the alcohol molecule of the non-solvent (Fig. S7). The photo 

response spectrum and photocurrent dependence on different nanowires size are shown in Fig. 

S8 and Fig. 2e. Interestingly, the photocurrent of supramolecular nanowires from different 

non-solvents peaks when ethanol is used (Fig. 2e). On the one hand, bigger nanowires could 

be beneficial thanks to the enhanced light absorption from thicker active layer. On the other 

hand, thicker and wider nanowires possess increased rigidity. When the rigidity is larger, e.g. 
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for the case of 1-butanol, 1-pentanol and 1-hexanol, nanowires will bridge the two sides of the 

hole without necessarily touching the underlying Si electrode (Fig. S7). In this case, both the 

photocurrent and dark current will decrease significantly because of the poor contact between 

nanowires and Si.  

In order to verify this hypothesis, we have also deposited identical supramolecular 

nanowires film onto different nanomesh scaffold patterned by nanospheres with diameter of 

480 nm, 600 nm, 800 nm and 1100 nm. The ISC and VOC values are summarized in Table 1. 

By keeping all the remaining geometrical parameters unchanged, we have found that larger 

nanoholes provide greater space for nanowires to bend and ultimately make a suitable 

physical (i.e. electrical) contact with Si (Fig. S9). In accordance to the prediction that the 

photocurrent should be proportional to the area of nanowires/Si interface, we found that ISC 

increases when larger diameter patterns are used (Table 1). Hence, the roughness of 

nanomesh scaffold and nanowires conformity jointly determine the effective area of 

nanowires/Si interface, which should be linearly associated with the overall photocurrent. The 

geometry parameter has been fully optimized to target larger nanowire/Si interface for higher 

photocurrents. It should be noted that the gold nanomesh forms a plasmonic structure that can 

also potentially act like an antenna to further boost the absorption if properly optimized.40 No 

clear evidence for this effect could be detected in the present study probably due to the fact 

that the organic nanowire absorbs at the interband transition of Au. However, for nanowires 

absorbing at longer wavelengths the nanomesh could favour both the electronic and the 

photonic functionalities. 

 

Exciton separation enhancement with P3HT-modified anode 

When heavily-doped Si is contacted with organic semiconductors, it always behaves 

as hole injecting electrode regardless if the employed silicon is n- or p-type doped.41 Here we 

have indeed observed hole collection from PTCDI-C8 nanowires by n-Si (Fig. 2d). However, 

the best photoresponsivity amounted to 10-20 µA/W. The Fermi energy of n-doped Si lies 

approximately in the center of PTCDI-C8 bandgap thus enabling both electron and hole 

collection process at such electrode. In order to enhance hole-selectivity and suppress 

non-radiative recombination at Si/nanowires interface, the Si could be modified with a layer 
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of p-type semiconducting polymer, inhibiting electron transfer from the PTCDI-C8 to the Si 

electrode by forming p-n junction with PTCDI-C8 supramolecular nanowires.   

According to the method described in Fig. 1b, a ca. 5 nm thick layer of P3HT was 

deposited to selectively modify the Si surface and to facilitate hole transport across a p-type 

semiconductor. Such interface tailoring resulted in a significant ISC enhancement up to 

500-fold after nanowires deposition along with a VOC improvement from 0.18 V to 0.30 V. As 

a photodetector, the signal-to-noise ratio of our PTCDI-C8 supramolecular nanowires devices 

increased from 104-105 to 107 in photovoltaic mode as a result of the anode modification. The 

P3HT interlayer could also reduce the dark current to ~10% of its initial level when 1.5 V 

working voltage was applied, so that the signal-to-noise in photoconduction mode improved 

significantly of three orders of magnitude, i.e. from 10 to 104 (Fig. 3a).  

To quantify more accurately the efficiency of the photovoltaic process in 

supramolecular nanowires, we acquired SEM images of the device and counted the number of 

nanowires inside single nanoholes (Fig. S10). The analysis displayed in Fig. S11 reveals that 

4.05% of the whole device surface is occupied by the PTCDI-C8/P3HT interface. 

Furthermore, we also fabricated and tested supramolecular nanowires device with smaller 

surface area (28×28 µm2), which could be viewed within a single AFM image, making it 

possible to quantify more precisely the photovoltaic performances with respect to those 

measured in large-area devices (Fig. 3b; Fig. S11). In the small device, the PTCDI-C8/P3HT 

interface was estimated to occupy 9.08% of the whole device surface. Calibrated by real p-n 

interface area, the peak external quantum efficiency (EQE) could reach 47% when 

illuminated through a 500-nm green light for the device shown in Fig. 3b. A similar EQE 

value of 55.4% is achieved for a large-area device under the same illumination condition (Fig. 

3c). For both large and small area supramolecular nanowires devices, the EQE, 

photoresponsivity (R) and PCE showed a well-distinct wavelength dependence with the best 

results obtained at PTCDI-C8 nanowires absorption peak (Fig. 3c; Fig. S12 and Fig. S13). 

Because the average thickness of the supramolecular nanowires employed here is only ~45 

nm to maintain the required flexibility, the insufficient light absorption represents, together 

with low p-n junction occupation, the main limiting factors for further performance 

improvement. 
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As illustrated in Fig. 3d and related inset, the current in the photoconduction region 

(1.5 V) manifested better linear relationship with rising incident light power density than in 

the photovoltaic region (0 V). In other words, the photocurrent saturation effect could be 

somewhat limited when the device is biased, because the applied electric field could help to 

remove accumulated electrons at the interface in terms of drift current. Additionally, the 

external voltage bias would also enhance the photo responsivity, i.e. photocurrent, for several 

times (Fig. 3d). For example, the photo responsivity spectrum of small surface 

supramolecular nanowires device (28×28 µm2) was investigated by varying the working 

voltage from 0 V to 1.5 V and the data are summarized into a colour-filling contour image 

(Fig. 3e). The maximum photo responsivity (R) in photovoltaic mode is ~196 mA/W after 

calibration and it is further improved to 1.2 A/W when 1.5 V voltage bias is applied 

(photoconduction mode). Such a responsivity value is among the best results reported for 

organic photodiodes.42 Our PTCDI-C8 supramolecular nanowires photovoltaic device could 

also be operated under very low light power density. As shown in Fig. S14, the current still 

displays a 10-fold increase when irradiated by 0.018 µW/cm2 green light.  

The short inter-electrodic distance and good charge transport ability make this 

supramolecular nanowires photodetector switch faster than previously reported 

phototransistors with longer channel lengths.42,43 Figure 3f shows that the photocurrent in the 

supramolecular nanowires photonic device starts to rise immediately after laser irradiation 

and the current peaks ~10 ns after the laser pulse hits the sample in the case of a biased device 

(photoconduction mode, V = 1.5 V). Similar response time in photoconduction mode has also 

been demonstrated for bare nanomesh scaffold without P3HT modification (Figure S16). As 

for the photovoltaic mode, the device switches on a slightly longer times with photocurrent 

peak at ~20 ns because of lack of an external driving voltage. Such ultrafast photoresponse 

time within tens of ns proves that our supramolecular nanowires photonic devices are suitable 

for operating at high frequency.  

 

Tuning of photovoltaic properties by hole transport layers 

In this study, the possibility of modifying the anode with different polymers makes it 

possible to unravel the origin of VOC in photovoltaic process, which could be helpful to 
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understand the working principle of supramolecular nanowires photonic devices. Here we 

investigated how the energy level alignment of p-n junction influences the VOC by changing 

different hole transport layers including P3HT, IIDDT-C3 and F8T2.44,45 The UV-Vis 

absorption spectra and HOMO-LUMO energy levels are summarized in Fig. 4a. From Figure 

4b and Table 2, we discovered that larger HOMO energy difference (ΔHOMO) between 

donor and acceptor leads to enhanced ISC but smaller VOC. Different from P3HT/PCBM 

system, here the main driving force for excitons dissociation at donor/acceptor interface is 

ΔHOMO rather than ΔLUMO.46 Although large ΔHOMO should lead to a more efficient 

exciton separation, a large ΔHOMO would also represent a larger energy loss at the interface. 

In organic solar cells, such kind of energy loss in terms of heat would typically sacrifice VOC 

to a certain degree. The latter consideration supports the experimental evidence that 

F8T2-modified devices exhibited larger VOC than P3HT-modified devices, and 

IIDDT-C3/PTCDI-C8 interface would reach the largest VOC (Fig. 4b; Table 2 and Table S1). 

The relationship between FF and the conductivity of each modification layer is discussed in 

Fig. S17 and S18.  

Fig. 4c shows the photo responsivity (R) spectra recorded on the above mentioned 

modification layers and bare device without modification. In view of the reduced thickness 

which is less than the typical exciton diffusion length for polymers (Lex ~10 nm),47 the 

efficiency of exciton transport and separation in the hole transporting layer should be high. 

Since the photocurrent is apparently determined by the absorption superposition of 

PTCDT-C8 nanowires and the modification layer, we can deduce that the exciton diffusion 

length in PTCDI-C8 supramolecular nanowires should be larger than or at least comparable 

with the nanowire thickness of ~45 nm, otherwise the modification layer would contribute 

more significantly to the photocurrent than in Fig. 4c. The much longer Lex than amorphous 

polymers originates from the ordered molecular stacking in supramolecular nanowires.48,49 

Delocalized excitons and their efficient transport in PTCDI-based dye aggregates was 

reported by the aid of transient fluorescence analysis,50 which is consistent with our electronic 

device measurement. 
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CONCLUSIONS 

In summary, we have reported direct light energy harvesting from supramolecular nanowires 

by connecting them to a nanomesh scaffold which was fabricated at macroscopic, centimetre 

scale. Our device exhibits numerous advantageous features. First, the polymer/nanowire p-n 

junction features a fast photoresponse owing to the reduced anode-cathode distance. Second, 

the possibility to chemically modify anode and cathode separately enables the realization of 

tailored interfaces to replace conventional Ca and Al cathodes, and makes it unnecessary to 

use a transparent electrode like ITO. Third, such device geometry guarantees that the current 

will flow only across the p-n junction area therefore not following side pathways that generate 

shunt parasitic connections. Currently, a model PTCDI-C8 nanowire photovoltaic device 

shows an external quantum efficiency >55%, a signal-to-noise of 107 and a response time as 

fast at 10 ns. In the future, further device optimization can be achieved in various fronts. For 

example, thin films of polymer insulators on plastic substrates could be used to endow 

flexibility and further cost reduction. Thinner dielectric layers and nanoholes with tailored 

size as well as more flexible nanowires could increase the overall photocurrent by 

maximizing the contact area between the nanowire and the anode. Another possible approach 

to improve the contact area is to flatten and smoothen the nanomesh scaffold with 

semiconducting organic crystals by selectively crystal seeding and growing inside nanoholes. 

Significantly, other photoactive low-dimensional architectures such as inorganic nanowires or 

organic dye aggregates could be integrated in our device to investigate their inherent photonic 

properties, as long as the requirements of high absorption coefficient, good wire conductivity 

and conformity to the nanomesh scaffold are fulfilled. Furthermore, our vertical-channel 

device configuration can be exploited for fundamental studies in other organic 

nano-structured optoelectronic devices, such as light-emitting diodes, or even spintronics like 

spin-valves based on nanowires, because for these devices the combination of asymmetric 

electrodes with ad-hoc work-function, desirable spin transport, nanoscale controlled channel 

length and maximal density of active nanostructures are vital.   
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Figure 1| Design of vertical-channel nanomesh scaffold with asymmetrical and tunable 

contact. a) Fabrication procedure of hexagonal hole-array nanomesh scaffold through 

nanospheres lithography and reactive ion etching. The geometry parameters of the resulting 

nanostructure could be tuned by PS nanospheres diameter, etching dose of O2 plasma and 

dielectric layer thickness on the wafer. b) Zone-selective modification of the bottom silicon 

contact with polymeric semiconductor like P3HT. c) Photograph of large-area PS 

nanospheres monolayer on silicon wafer, and d) resulting nanomesh electrodes after reactive 

ionic etching. e) AFM image (topography) of PS nanospheres monolayer, and f) final 

nanomesh scaffold. g) and h) SEM images taken on bare nanomesh electrodes (substrate tilt 

angle = 54o). Top gold electrode and bottom silicon electrode is spaced by 90 nm SiO2 layer. i) 

Cartoon showing high density nanowire photodiodes realized by vertical-channel nanomesh 

scaffold (dielectric layer and silicon substrate are omitted). 
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Figure 2| Photovoltaic effect of PTCDI-C8 supramolecular nanowires fully covering a 

bare nanomesh scaffold. a), b) and c) SEM images taken on nanomesh electrodes bearing 

PTCDI-C8 nanowires, which was grown from ethanol non-solvent. The nanomesh scaffolds 

bearing single nanowire in c) were fabricated from PS nanospheres with different diameters, 

i.e. 800 nm PS nanospheres upper image and 1100 nm PS nanospheres lower image. It is clear 

that the nanowire starts to make conformal contact with the underlying electrode only at 

distance of ca. 150 nm from the hole edge, regardless of the hole diameter. d) Photovoltaic 

response of PTCDI-C8 supramolecular nanowires when illuminated by 470 nm blue light @ 

212.9 mW/cm2. The molecular structure of PTCDI-C8 is depicted in the inset. e) Short circuit 

current (ISC) of photovoltaic cell with supramolecular nanowires produced from varying 

non-solvent from methanol to 1-hexanol. The round symbols represent the average ISC 

measured on 6 devices and the error bars represent the highest and lowest current value 

measured in each case. The space-filling models and chemical formulae display all the 

alcohols used to grow PTCDI-C8 nanowires of different size and rigidity. 
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Table 1| Photovoltaic property dependence on geometrical parameters 

Samples:a Responsivityb VOC 
Sphere diameter (R, µA/W) (V) 

 Methanol Ethanol Methanol Ethanol 

480 nm 0.113 0.174 0.14 0.14 

600 nm 0.393 0.717 0.18 0.19 

800 nm 0.868 0.903 0.22 0.20 

1100 nm 1.30 1.732 0.23 0.23 

a Thermal treatment at 150 oC for 30 minutes; bR value is measured under 525 nm green light 

with the power density of 167.7mW/cm2.  

  



	 19	

 

Figure 3| Photovoltaic effect of PTCDI-C8 supramolecular nanowires on P3HT modified 

nanomesh scaffold. a) Electrical measurement with (blue line) and without (red line) light 

illumination @ 470 nm and 212.9 mW/cm2. The device area is 0.07 cm2 and the bottom 

silicon electrode is modified by P3HT interlayer. Inset shows the photo-switching cycles 

driven by 0 V and 1.5 V working voltage. The signal-to-noise ratio could reach 107 at 0 V and 

maintain 104 at 1.5V. b) Illustration of small surface area nanowire photovoltaic device (28 × 

28 µm2). There are 697 holes bearing 1260 nanowires in the small region of 784 µm2. c) 

Calibrated external quantum efficiency for both the large (0.07 cm2) and small area (784 µm2) 

PTCDI-C8 supramolecular nanowires devices. After calibration, both the large area and small 

area device exhibit similar EQE value dependent on the irradiation wavelength. d) I-V traces 

upon irradiation at different light intensity. The inset shows relationship between photocurrent 

and incident light power with 0 V and 1.5 V working voltage applied. The non-idealities in 

I-V trace may suggest the presence of an un-optimized contact issue. The possible origins of 

such contact resistance are discussed in detail in Fig. S15. e) Calibrated responsivity of the 

small device at different driving voltage (0 V to 1.5 V) and varying wavelength (350 nm to 

650 nm). The best R at 0 V is 196 mA/W (500 nm green light illumination) and it further 

increases to 1.2 A/W when the nanowires device is biased at 1.5 V. f) Time dependence of 

transient photocurrent response of P3HT/PTCDI-C8 nanowires devices to a 500 nm, 3 ns 
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light pulse. The green shaded area indicates the laser pulse duration. [Laser pulse energy ~ 20 

nJ/cm2]. The measurement protocol is thoroughly described in the method section. The 

negative current with the flow direction opposite to photocurrent peak originates from the 

interference brought by charge photo-generation and discharging process upon laser pulse at 

Si/SiO2 and Si/P3HT interfaces. The negative signal could be reduced by using bare 

nanomesh without P3HT modification layer to remove Si/P3HT interface (Figure S16). 

Complete elimination of such effect would require to replace the silicon electrode with a 

metal one. 

 

 

Figure 4| Device engineering with different hole transporting layers. a) UV-Vis 

absorbance of PTCDI-C8 nanowires and P3HT, F8T2, IIDDT-C3 thin films which are 

deposited on quartz using the same condition for photovoltaic device. The inset shows the 

HOMO-LUMO energy level alignment of these four organic semiconductors with the unit of 

eV. b) I-V curves, and c) non-calibrated photo responsivity of supramolecular nanowires 

devices with bare, P3HT, IIDDT-C3 and F8T2 modified silicon anodes. The experimental 

results shown in panel b) were collected under 500 nm and 2.43 mW/cm2 illumination.  
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Table 2| Photovoltaic response of PTCDI-C8 supramolecular nanowires with different 

anode modification layer.  

Samples EQEa VOC  FF PCEa Ra  Rb 

  (V)   (mA/W) (mA/W) 

Si-n+ 0.11% 0.15 0.36 0.0027% 0.443 0.428 

P3HT 53.8% 0.30 0.30 2.2% 216.8 206.8 

F8T2 41.6% 0.39 0.29 2.1% 167.6 117.2 

IIDDT-C3 22.3% 0.49 0.26 1.3% 89.87 84.91 

a The EQE, PCE and responsivity (R) are obtained by using P = 2.43 mW/cm2 at λ = 500 nm. 

b Responsivity measured under 525 nm light illumination in order to minimize F8T2 

contribution to the PTCDI-C8 nanowires photovoltaics. All the current related data were 

calibrated by considering a surface coverage factor of 4.05% in order to evaluate the intrinsic 

photovoltaic process in supramolecular nanowires. 

 

 

 

 

 

Method Section 

Materials. Polystyrene (PS) nanospheres mono-dispersed suspension (10w%, in water), 

Poly(3-hexylthiophene-2,5-diyl) (Mn 54000-75000, 99.995%), 

N,N′-Dioctyl-3,4,9,10-perylenedicarboximide 

(98%),  Poly(9,9-dioctylfluorene-alt-bithiophene) (99.9%) and Poly(4-vinylphenol) (Mw 

~25000) were purchased from Sigma-Aldrich without further purification. The small bandgap 

p-type polymer of IIDDT-C3 were purchased from 1-Material and used as received. The 

silicon wafer was purchased from Fraunhofer with 90-nm thick thermally grown SiO2 

dielectric layer (n-doping level ~3 1017 cm-3).   

Reactive ion etching conditions. The gold nanomesh electrode on top of 90 nm SiO2 was 

patterned by nanospheres lithography, according to literature.35,36 Then we deposited a thin 

layer of LiF (~20 nm) by shadow mask to define the device surface. LiF was chosen as the 
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resist for several reasons: i) it can be easily removable with water. ii) it is electrically inert. iii) 

It exhibit high corrosion stability in reactive ion etching. Using a Plasmalab 80 plus reactive 

ion etching system purchased from Oxford Instruments, the SiO2 dielectric layer not being 

protected by gold and LiF would be removed under a condition of 200 W plasma power and 5 

sccm C2F6/25 sccm Ar mixed gas.  

Anode modification. P3HT/chlorobenzene (2.5 mg/ml) and PVP/propylene glycol methyl 

ether acetate (120 mg/ml) were spin-coated onto the nanomesh scaffold in sequence. Before 

spin-coating PVP, the substrate periphery was cleaned by a cotton bud soaked in chloroform 

in order to improve wettability. Then oxygen plasma treatment was performed to selectively 

burn off the PVP/P3HT layer on top of nanomesh. The etching dose was verified by AFM 

characterization. The residual PVP could be washed away by ethanol. The electrical 

performances of all the modification layers, i.e., P3HT, F8T2 and IIDDT-C3, were explored 

by integrating them in bottom-contact bottom-gate OFET devices (Fig. S17; Fig. S18 and 

Table S2). The AFM topology analysis was supplied as Fig. S19. 

Hierarchical assembling of full-coverage PTCDI-C8 supramolecular nanowires film. For 

the first step, we made 0.25 mg/ml PTCDI-C8 solution in chloroform. Then 200 µL of 

PTCDI-C8 solution was injected into 3 ml of alcohol solvent. Supramolecular nanowire 

formation occurs within seconds because molecular interactions are favoured in the 

non-solvent. The supramolecular nanowires were carefully collected and dispersed again in a 

solvent mixture of hexane/ethanol (3:1). The dispersion was dropped onto water surface to 

form floating nanowire film, which was compressed by 50 µL PVP/Ethyl acetate (100 mg/ml) 

before transferring the supramolecular nanowires onto the substrate. Although water is 

involved during device fabrication, we should note the moisture does not affect the electrical 

properties of hierarchically assembled PTCDI-C8 supramolecular nanowires, which exhibited 

typical n-type transfer curve in OFETs (Fig. S20). The on/off ratio could reach 105 upon 

annealing at 80 oC inside N2 glovebox. The drain current would increase steadily after further 

annealing with elevated temperature from 150 oC to 225 oC at a step of 25 oC due to the 

improved molecular ordering (Fig. S20).  

Optoelectronic measurement. All the optoelectronic characterization was performed inside 

nitrogen filled glovebox. For the irradiation, we used Polychrome V as monochromatic source, 
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which was purchased from Till Photonics. The output power spectrum has been calibrated by 

The PM100A Power Meter from Thorlab company and the data was supplied as Fig. S21. 

Coupled with monochromatic light source, Keithley 2636A system source meter was used to 

make electrical characterization. 

Transient photocurrent measurements. Transient photocurrent measurements were 

performed by applying a DC voltage (Vb) ranging from -1.5 V to 1.5 V between highly doped 

n-type Si substrate and top Au nanomesh (cathode). The Si substrate is referred as an anode 

and was connected to zero potential. The AC signal from the cathode, separated by a circuit 

comprising a capacitor and a coil (bias-T) was connected to a 2 GHz current amplifier (the 

schematic of the measurement setup is shown in the inset of Fig. S22). The charge carriers 

were created by a pulsed laser impinging perpendicular to the top Au surface. The laser pulse 

duration was 3-4 ns, and its repetition rate was 10 Hz. The samples were measured upon 

irradiation at λ = 500 nm. The time dependence of the photocurrent (I(t)) was recorded by a 

2.5 GHz oscilloscope. The zero-time was set to the beginning of the laser pulse, which was 

determined from the intersection of the dark current and rising slope of the I(t). Here I(t) 

curve has been smoothed and background I(t) from an empty nanomesh scaffold without 

supramolecular nanowires has been removed.  All measurements were performed in a 

nitrogen atmosphere with H2O and O2 levels below 10 ppm. All devices were tested in terms 

of current-voltage characteristics prior to the transient photocurrent characterization. 

 


