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Abstract: We analyse theoretically the nonlinear dynamics of a single-mode laser diode
subjected to both optical injection and optical feedback. Detailed mappings of the laser dynamics
reveal that, due to optical feedback (OF), the locking boundaries resulting from optical injection
(OI) shift towards larger negative detunings and higher injection rates and display a periodic
pattern of the injection locking boundaries. We demonstrate how feedback induces a cascade of
quasiperiodic bifurcations associated with abrupt dynamic changes, hence altering the route to
locking. A close inspection of the laser optical spectra for increasing feedback rate reveals the
complex interplay between undamped relaxation oscillations and external cavity frequencies.

1. Introduction

Semiconductor lasers play a critical role in modern telecommunications by enabling high-speed
data transmission in optical fiber communication systems. An optically injected laser generates a
variety of dynamics, including periodic regimes, chaos, and injection locking [1,2]. Furthermore,
under appropriate conditions, the optical injection of chaos into a second laser enables the onset
of chaos synchronisation and the related chaos-based secure communications [3–6]. Injecting
a polarized field or a single mode into a multi-polarization or longitudinal mode laser creates
new opportunities for chaos instabilities while also providing further controls for controlling the
dynamics of the system [7,8]. Optical injection is also used for random number generation [9,10],
microwave generation [11–13] or enhanced modulation bandwidth [14]. Moreover injection of a
delayed optical field -also called optical feedback- creates novel and different instabilities [15–21].
When controlled, these instabilities allow for novel applications such as laser stabilisation [22],
optical chaos-based cryptography [3,9,23–28] and interferometric applications [29].

In practice, most of today’s applications of nonlinear dynamics combine optical injection
and optical feedback, e.g., for the enhancement of chaos bandwidth for information security
[30–32], or photonic-based artificial intelligence [33–38]. In that context, it has been shown
that a fine-tuning of both optical injection and optical feedback is required to achieve optimal
performance in task solving [37,38].

Nevertheless, systematic studies of the laser dynamics and the complexity induced in the
presence of both optical feedback and injection remain scarce. Experiments have revealed
a shift of the injection locking region when increasing the feedback rate [39,40]. However,
theoretical confirmation is still lacking. Nizette et al. [41] use asymptotic approximations to
demonstrate delay-periodic oscillations in the injection locking bifurcation boundaries with
increasing feedback rate. There is therefore this asymptotic and theoretical study that predicts an
oscillation of the locking boundary when feedback is applied, but does not really address the
dynamics of the laser. Experimental studies, on the other hand, suggest a shift in the locking
region and even an increase in the complexity of the injection dynamics, but no oscillation of the
locking limit. There is a need for a theoretical, systematic, detailed and coherent study of the
dynamics of a laser diode under optical injection and optical feedback.
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In this paper, we perform in-depth numerical investigations of a semiconductor laser subjected
to both optical injection and optical feedback. This study, which begins with very low feedback
rates, provides insights into the impact of parasitic feedback in an optical injection system. We
clarify earlier claims by studying the effect of increasing optical feedback rate on the injection
locking boundaries and the dynamic properties. More specifically, we highlight how optical
feedback deeply alters the route to chaos or locking by demonstrating the emergence of what
we call a cascade of quasiperiodic bifurcations, going from simple time-periodic dynamics to
complex regimes through secondary feedback-induced bifurcations. We contrast the impact
of the feedback depending on the time-delay value [42]. Finally, we emphasise feedback’s
effects on specific dynamics that bifurcate from the injection locking: (i) wave mixing from the
saddle-node bifurcation line, (ii) time-periodic dynamics from the Hopf bifurcation line, (iii)
injection-induced chaotic regimes next to the Hopf bifurcation line.

2. Numerical model

We consider a single mode rate equation extended to account for optical injection and optical
feedback as follows [15]:

dE(t)
dt
=
(1 + iα)

2

[︃
G [N(t) − N0] −

1
τph

]︃
E(t)

+ κf E(t − τ)e−iωτ + κinjAe−i∆ωt,
(1)

dN(t)
dt
=

1
τs

[ pNth − N(t)] − G [N(t) − N0] |E |2 (2)

where E(t) is the slow varying amplitude of the complex electric field; N(t) is the carrier density;
α is the linewidth enhancement factor. τph is the photon lifetime. τs is the carrier lifetime;
G is the gain coefficient; N0 is the carrier density at transparency; κf is the feedback rate; τ
is the length of the delay line; κinj is the injection rate; p = I/Ith is the normalised injection
current; Nth = N0 +

1
Gτ ph is the carrier density at threshold; ∆ω is the angular frequency detuning

(∆ω = 2π∆f = 2π(fd − fr)) between the drive and the response laser. A is the steady-state solution
of the electric field amplitude of a single-mode semiconductor laser.

The values of the parameters used in the numerical simulations are presented in Table 1. We
work with short delays (less than 3 ns) and a low current I = 1.015Ith. This is motivated in

Table 1. Parameter values used in numerical simulations

Symbol Parameter Value

α Linewidth enhancement factor 5.0

τph Photon lifetime 2.0 × 10−12 s

τs Carrier lifetime 2.01 × 10−9 s

G Gain coefficient 7.0 × 104 s−1

N0 Carrier density at transparency 1.680 × 108

κf Feedback rate [0 − 10] GHz

κinj Injection rate [0 − 60] GHz

∆ω Detuning [−18; 7] GHz

τ Feedback delay time 1 ns to 3 ns

p Normalised injection current 1.015

Nth Carrier density at threshold 2.394 × 108

A Steady-state amplitude 3.573 × 103
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particular by neuromorphic applications based on laser diodes subjected to simultaneous optical
injection and optical feedback, such as delay reservoir computing [43]. Indeed, the literature
shows the best performance near the laser threshold [44]. We apply a second-order Runge-Kutta
method to integrate Eqs. (1)–(2). In our simulations, we consider a range of [0 − 20] GHz
feedback rate and [0 − 60] GHz injection rate which corresponds in our system to [0 − 17] %
of feedback ratio and [0 − 51] % of injection ratio compared to stationary laser power with
κ(%) = κ(GHz) τL, where τL = 8.5 × 10−12 s is the internal round trip time.

3. Mapping of dynamics with both optical injection and optical feedback

In this section, we analyse the impact of the gradual introduction of optical feedback on the
mapping of the optical injection dynamics. We sweep two parameters, the injection rate κinj and
the detuning ∆ω at a fixed pumping current of 1.015 Ith and a feedback delay-time τ = 3 ns. The
influence of optical feedback is shown in Fig. 1, with a serie of maps for a range of feedback rates,
starting from 0 (no feedback) to 0.60 GHz (small feedback rate of 0.51 % compared to stationary
laser power). These maps are colour-coded, where each colour corresponds to a number of major
peaks in the optical spectrum obtained numerically from the Fourier transform of the complex
optical field. The central triangle-shaped region (deep blue colour) delimits the injection locking
zone, and lighter blue to yellow represents time-periodic dynamics with different periods. Red
regions reveal over 15 peaks in their optical spectrum, showcasing rich and complex spectra,
generally associated with chaos.
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Fig. 1. Maps of the dynamics of the injected laser diode in the injection-detuning parameter
space. Feedback time delay τ = 3 ns. Feedback rate κf = (A) 0, (B) 0.05, (C) 0.10, (D)
0.20, (E) 0.30, (F) 0.40, (G) 0.50 and (H) 0.60 GHz. The colour codes the number of major
peaks in the optical spectrum; dark blue: injection-locking; red: complex dynamics close to
chaos or chaotic. On map (A), the triangle, square and star are the three scenarios studied in
section 6.

Without feedback, in Fig. 1(A), the system exhibits a well-known dynamic map: a saddle-node
(SN) bifurcation line delimits the triangular-shaped locking region for negative detuning values
and a Hopf bifurcation line delimits the region for the positive detuning values. Additionally,
a chaotic region is observed from the Hopf bifurcation line in weakly positive detunings and
low injection rates, consistent with literature [4]. At a very low feedback rate κf = 0.05 GHz,
in Fig. 1(B), the locking area slightly expands and the Hopf bifurcation line exhibits a periodic
structuring with low amplitude. For negative detunings, under the SN bifurcation line, spectra
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become more complex and the feedback introduces periodically dynamics transitions with a
periodicity of ∆ω ∝ 1/τ, hence yielding a periodic structuring of the map of dynamics. As the
feedback rate increases in Fig. 1(C) and (D) κf = 0.1 GHz and 0.2 GHz, spectra exhibit increasing
complexity i.e. the colour code tends towards red. The Hopf bifurcation line oscillates with a
period ∆ω = 1/τ in detuning. In panels (E), (F), (G), and (H), with feedback rates of 0.3, 0.4,
0.5, and 0.6 GHz, respectively, the destabilisation and complexification of the spectra continues,
following the trend described in the previous map. We also notice that the oscillation is not
limited to the Hopf bifurcation line in positive detunings, the nested bifurcations under the Hopf
bifurcation line, including the chaotic region, see their boundaries also oscillating with ∆ω ∝ 1/τ.
The SN bifurcation line exhibits also a 1/τ-periodic structuring in detuning, but it differs from
that of the Hopf bifurcation. We also observe that dynamics become essentially chaotic outside
the injection locking region visible in red. We observe that the transitions to locking through the
SN and the Hopf bifurcation lines are notably different: from the SN we have a sharp and abrupt
transition towards highly chaotic spectra. In contrast, when crossing the Hopf bifurcation, we
observe a smoother transition to locking.

Earlier experiments have measured that the locking region shifts towards negative detunings in
the presence of optical feedback [39,40]. Our measures of the vertical and horizontal shift of the
zone confirm and detail this behaviour. In 2015, Song et al. [40] used a laser diode with both
optical injection and optical feedback but based on a fiber Bragg grating (FBG) mirror. Given
their feedback delay (about 30 ns), the period of the Hopf bifurcation oscillation is expected
to be about ∆ω ≈ 33 MHz in detuning. We assume that their limited experimental resolution
prevented them from seeing the appearance of the cascade of quasi-periodic bifurcations or the
Hopf bifurcation line. We assume the same limitation in Liao et al. in 2013 [39], where the long
delay (about 80 ns) leads to an oscillation with a periodicity of about ∆ω ≈ 12 MHz.

Similar oscillations of the injection locking (IL) bifurcation boundaries for increasing feedback
rates have also been predicted by Nizette et al., but without the IL shift [41]. However, the theory
was performed with a simplified normalised model, using asymptotic assumptions (low feedback
rate, low injection rate, large delay). Our study, employing a full model without approximations,
enables us to obtain an accurate representation for comparison with the approximate prediction
derived from an asymptotic study. Even with the same parametric conditions as in the theoretical
study, we show that the IL zone shifts as soon as feedback is applied and we do not see the
oscillation of the locking limits. The oscillation we show here is only visible at higher injection
rates and detuning values than in the asymptotic study.

4. Contrasting long and short cavity regimes

We compare the impact of the feedback delay time on the injection locking boundaries. The
period of the relaxation oscillation being τRO = 2.1 ns, the previous delay time of 3 ns is
considered as a long cavity [45]. We compare here a feedback delay time of τ = 1 ns with
τ = 3 ns. Figure 2 shows four dynamic maps of the locking area in the (κinj;∆ω) plane for
various parameters. Figure 2(A) is obtained with a feedback rate of 0.9 GHz and a 1 ns delay
(<τRO), corresponding to a short-cavity regime. Similarly to Fig. 1, the feedback transforms
the boundaries of the locking area, leading to oscillations in the bifurcation lines. The Hopf
bifurcation line periodically oscillates, while the SN bifurcation line shows a more abrupt
transition and less regular oscillation. Both oscillations in the bifurcation lines have a period
∆ω ∝ 1/τ = 1 GHz in detuning. Figure 2(B) is produced with a low feedback rate (0.9 GHz)
and a 3 ns delay. The Hopf bifurcation line is again 1/τ-periodic at 0.33 GHz. Interestingly, the
SN bifurcation line is irregular and non-periodically structured. Figure 2(C) is generated with a
strong feedback rate (10 GHz) and a delay time of 1 ns. We observe that the locking region has
shifted by nearly 9 GHz towards the negative detunings and also towards higher injection rates.
The oscillation of the Hopf bifurcation line still exists at a periodicity of 1/τ, but its amplitude has
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Fig. 2. Comparison between short delay and long delay for weak and strong feedback. (A)
& (B): weak feedback κf = 0.9 GHz. (C) & (D): strong feedback κf = 10 GHz. Horizontal
axes are different depending on the feedback rate to take account of the injection locking
region shift.

decreased significantly, making it less noticeable. On the other hand, the saddle-node bifurcation
line remains non-oscillatory and almost smooth. Figure 2(D) is made with a strong feedback
rate (10 GHz) and a delay time of 3 ns. The locking area has shifted due to the optical feedback.
The oscillation of the Hopf bifurcation line is still present but with a strongly damped amplitude,
becoming almost indiscernible. The saddle-node bifurcation line, in this case, is irregular and
lacks periodic structure. Compared to Fig. 2(C), we note that the injection locking region is
wider for a similar level of injection. In each of the four cases studied, we focus our attention on
the injection locking zone and its behaviour. If we now look at the effects of various delays and
feedback rates in the unlocked regimes, we see that periodic P1 regimes (color from dark blue
to green) from the Hopf bifurcation persist in all maps, even with a strong feedback rate of 10
GHz. This behaviour was previously observed in Fig. 1 for low to moderate feedback rates. The
robustness of periodic regimes from the Hopf bifurcation in an optically injected system even at
a moderate feedback rate agrees with experimental observations [40].

According to our findings and in agreement with recent experiments [39,40], increasing
feedback rate shifts the injection locking area towards negative detunings and higher injection
rates. In Fig. 3 we measure the horizontal (detuning) and vertical (injection rate) shift in the case
of both short (1 ns) and long (3 ns) delays with feedback. The value of the horizontal shift is
considered relative to that without feedback, ∆ωRelativeShift = ωOI+OF −ωOI . The same procedure
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Fig. 3. (A) Horizontal and (B) Vertical shift of the injection locking region as a function of
feedback rate.

is used for the vertical shift value. In Fig. 3(A), we plot the IL horizontal shift from 0 GHz to
20 GHz of feedback rate. It evolves linearly within the considered feedback rate range: a linear
regression gives a slope of −0.88 GHz of detuning per GHz of feedback with R2>0.99 regardless
of the feedback delay time. There is a slight difference between 0 and 5 GHz, but this disappears
for larger feedback rate values. In Fig. 3(B), we depict the IL vertical shift in injection rate as a
function of the feedback rate for both short and long cavities. There is a non-monotonic trend,
with a shift toward weaker injection rates for κf< 2 GHz, which is due mainly to the deformation
of the IL region. Then, the locking region shifts towards higher injection rates. We also observe
an apparent saturation of the vertical shift, unlike the horizontal shift. The behaviour is similar
for the two cavity regimes, thus indicating that a higher injection rate is required to lock the laser
when subjected to feedback.

To our knowledge, no experimental study has revealed such oscillations of the locking injection
boundaries of a laser subjected to optical injection and feedback. Our analysis shows that to
observe these oscillations, the detuning steps must be performed at a resolution close to the
inverse of τ, and the feedback rate must be low.
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Fig. 4. Bifurcation diagram, comparing two injection rates without and with feedback. The
colour codes the dynamic regime: IL = Injection Locking. TP = Time-Periodic. R-CO =
Route to Chaos & Chaotic Oscillations. CQB = Cascade of Quasiperiodic Bifurcations.
(κinj, κf ) = (A) (12;0) GHz. (B) (12;0.1) GHz. (C) (3.2;0) GHz.(D) (3.2;0.1) GHz.
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Fig. 5. Optical spectra of laser subjected to optical injection and optical feedback in the
cascade of quasiperiodic bifurcations. κinj = 30 GHz, κf = 0.1 GHz, ∆ω = (A) −6.5 GHZ,
(B) −6.85 GHz, (C) −7.15 GHz.

5. Cascade of quasiperiodic bifurcations in the route to locking

In this section, we investigate the periodically repeating changes outside the locking region seen
in Fig. 1(B) to (E) with weak feedback rate. Figure 4 depicts the corresponding bifurcation
diagram of the maxima and minima of the output intensity of the laser. The control parameter is
the detuning ∆ω ∈ [−7; 7] GHz.

In Fig. 4(A) without feedback, the injection rate is set to 12 GHz. For the ∆ω interval in red,
the laser is in the IL regime. For larger ∆ω, the system undergoes a Hopf bifurcation and for
smaller and negative detunings, the system undergoes a SN bifurcation. Figure 4(B) corresponds
to the same injection rate but with 0.1 GHz of feedback rate. Outside locking through SN
bifurcation the laser enters in a cascade of quasiperiodic bifurcations. The periodicity of these
repeating bifurcations is ∆ω ≈ 1/τ = 1/3 = 0.33 GHz. A similar cascade is observed after the
Hopf bifurcation in the positive detunings beyond ∆ω = 3 GHz. In Fig. 4(C) without feedback,
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the injection rate is set to 3.2 GHz. We have a quite classical bifurcation diagram with the
laser being chaotic in ∆ω = [−1; 1.2] GHz next to injection locking. In Fig. 4(D) for 0.1 GHz
of feedback rate, we see that the chaotic regime and the injection locking regime are almost
unchanged. However, periodic dynamics occurring in positive and negative detunings undergo
periodically repeating quasiperiodic bifurcations.

Figure 5 details the optical spectra recorded when sweeping∆ω through one of the quasiperiodic
bifurcations induced by feedback. In Fig. 5(A), we observe a quasiperiodic wave mixing (QP
WM) supplemented with frequencies (fRO). In Figure (B), detuning is shifted by 0.35 GHz
leading to a periodic wave mixing with a periodicity equal to the detuning. Then, in Figure
(C), detuning is again shifted by 0.35 GHz and the optical spectrum is again a QP WM. Thus,
we confirm that the system alternates between time-periodic and quasiperiodic dynamics. This
phenomenon occurs periodically with detuning, at 1/τ, or every ∆ω = 0.33 GHz.

6. Analysis of the impact of feedback on typical injection dynamics

6.1. Wave-mixing from the Saddle-Node bifurcation line

In this section, we make a closer inspection of a first dynamical scenario, and how feedback
affects the typical dynamics of a laser diode with OI. We start with the WM between the drive

20 10 0 10
100

80

60

40

20

0

20 10 0 10
100

80

60

40

20

0

20 10 0 10
100

80

60

40

20

0

Detuning (GHz)

(A) (B)

(C)

20 10 0 10
100

80

60

40

20

0

Detuning (GHz)

o
p

ti
ca

l p
o

w
er

 (a
.u

.)

(D)

Fig. 6. Scenario 1: wave mixing from the saddle-node bifurcation line. Optical spectra
of laser subjected to optical injection with κinj = 24 GHz. Feedback rate and detuning
(κf ;∆ω) = (A) (0 GHz; −6.5 GHZ), (B) (0.05 GHz; −6.5 GHz), (C) (2.5 GHz; −13 GHz) &
(D) (10 GHz; −13 GHz). Detuning is changed to take account of the shift in the locking
zone.
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Fig. 7. Scenario 2: time-periodic dynamics from the Hopf bifurcation line. Optical spectra
of laser subjected to optical injection with κinj = 50 GHz and detuning ∆ω = 5.5 GHz.
Feedback rate κf = (A) 0 GHz, (B) 0.9 GHz, (C) 2.5 GHz & (D) 5 GHz.

and the response laser emerging from the SN bifurcation of the locked steady state. As shown
in Fig. 6(A), without feedback, the WM creates P1 dynamics with a periodicity equal to the
detuning value. In Fig. 6(B), we use 0.05 GHz feedback rate while keeping all other parameters
constant. The overall structure of P1 WM is preserved in the optical spectra (B). Feedback yields
undamped relaxation oscillations around each peak. These new frequencies corresponding to
relaxation oscillations are spaced by 0.5 GHz. The spectrum in Fig. 6(C) with feedback rate of 2.5
GHz shows degradation in the WM shape, exhibiting spectral broadening, with a disappearance
of the WM harmonics. We find fRO subharmonics. Plus, external cavity frequency (ECF) is seen
in the spectrum as a series of periodic peaks. These peaks are precisely spaced at 0.33 GHz,
corresponding to 1/τ. In Fig. 6(D) with a feedback rate of 10 GHz, we can observe that the
WM structure has disappeared, and the spectrum is chaotic and wide (bandwidth about 15 GHz).
Peaks related to ECF and thus to the delay are visible. The fRO signature has completely vanished,
indicating that the feedback dynamics have taken precedence over the injection dynamics.

In conclusion, we show that feedback yields undamped relaxation oscillations resulting
eventually in significant spectral broadening. Feedback dynamics become dominant over
injection dynamics. We see that the threshold at which feedback becomes dominant is very
low (less than one GHz of feedback rate), as we can see on the dynamic maps. The external
cavity frequencies exacerbated the chaotic dynamic, finally supplanting the original dynamic
(P1 in chaos). Therefore next to the Saddle-Node bifurcation line, feedback induces secondary
bifurcations on time-periodic dynamics that lead to chaos.
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Fig. 8. Scenario 3: chaos under the Hopf bifurcation line. Optical spectra of laser
subjected to optical injection and optical feedback. Injection rate, feedback rate and detuning
(κinj; κf ;∆ω) = (A) (2.5 GHz; 0 GHz; −0.5 GHZ), (B) (2.5 GHz; 0.4 GHz; −0.5 GHz), (C)
(2.5 GHz; 2.5 GHz; −1 GHz) & (D) (10 GHz; 5 GHz; −3.5 GHz).

6.2. Time-periodic dynamics from the Hopf bifurcation line

In this section, we study the feedback influence on the spectral components of time-periodic
dynamics near the Hopf bifurcation line. In Fig. 7(A) without feedback, we see P1-dynamics
originally triggered by the undamping of relaxation oscillations at the Hopf bifurcation line.
Figure 7(B) with a feedback rate of 0.9 GHz shows that each peak is surrounded by new
frequencies close to fRO/2 and 1/τ, implying a complex interaction between these two time
scales. We understand that there is a competition between ECFs and fRO as expected from the
literature [3]. With κf = 3 GHz in Fig. 7(C), we observe new frequency components next to
the previous P1 peaks. The overall P1 structure is still visible. The presence of fRO, which had
appeared in the previous figure, has vanished; with no peak around fRO = 0.5 GHz. In Fig. 7(D),
with κf = 5 GHz, we observe similar characteristics to those seen for κf = 3 GHz. In other words,
the optical spectrum still exhibits a global P1 structure, with multiple additional frequencies,
leading to quasiperiodicity. Unlike scenario 1, the spectral broadening is here limited. The P1
peaks are surrounded by peaks with a frequency spacing of about 8 MHz, which corresponds to
subharmonics of the external cavity fundamental frequency at FECF/41.

In conclusion, we investigated how feedback affects spectral properties of dynamics emerging
from the Hopf bifurcation. We find that time periodic dynamics is supplemented with new
frequencies. Increasing feedback rate adds relaxation oscillation and external cavity frequencies
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and preserves quasiperiodicity (QP), the dynamic regime does not become chaotic like near the
SN bifurcation line in scenario 1. This shows how in dynamic maps, even with feedback, P1 and
QP regimes persist next to the Hopf bifurcation line even at a high feedback rate. The structure
of the final optical spectrum differs significantly from the scenario with the SN bifurcation line.

6.3. Chaotic states near the Hopf bifurcation line

Here we investigate the effects of feedback on chaotic regimes induced by OI. We chose to work
within the "chaotic bubble" located below the Hopf bifurcation line (see star-shaped point in
Fig. 1(A)).

In Fig. 8(A), we choose ∆ω = −0.5 GHz and κinj = 2.5 GHz without feedback. The optical
spectrum (A) shows a chaotic regime with a bandwidth of ∼10 GHz revealed by the presence of
a continuum of frequencies. Harmonics are recorded at 1 GHz and are approximately uniformly
spaced, implying chaos caused by wave mixing involving fRO. Panel (B) is similar to (A) with
a 0.4 GHz feedback rate. Panel (C) is obtained with a higher feedback rate of κf = 2.5 GHz
and ∆ω = −1 GHz. To "follow" this relatively narrow chaotic zone, we need to change our
injection and detuning parameters. The optical spectrum has evolved as a result of feedback.
The width has not changed, but it has regular peaks that are reminiscent of the external cavity
spectral signatures. Finally, in panel (D), we continue to focus on this specific chaotic bubble
with κf = 5 GHz, κinj = 10 GHz and ∆ω = −3.5 GHz. The optical spectrum is slightly wider and
has significant regularly spaced peaks corresponding to ECFs.

7. Conclusion

In summary, we have analysed the effect of optical feedback on a laser subjected to optical
injection, through a systematic analysis of dynamic mapping, bifurcation diagrams and optical
spectra. We unveiled how the locking boundaries are modified with increasing feedback rates.
The boundary of the injection locking region oscillates with a periodicity linked to the feedback
delay time. We also showed that feedback has a profound impact on an optically injected laser’s
dynamics, producing cascades of quasiperiodic bifurcations. In the (κinj;∆ω) plane, we identify
four significant phenomena: (i) the emergence of a cascade of quasiperiodic bifurcations, (ii) the
oscillation of the injection locking boundary, (iii) dynamics that become mainly chaotic outside
the locking region, (iv) a shifting of the injection locking zone towards negative detunings and
higher injection rates. We started at extremely low feedback rates (0.05 GHz), allowing us to see
these phenomena at their earliest stages and their impact at high feedback rates (10 GHz).

We also investigate the impact of feedback on three conventional optical injection dynamics.
Feedback yields undamped relaxation oscillations, resulting in significant spectral broadening.
When increasing feedback rate, ECFs appear and become dominant, eventually supplanting the
original dynamic regime (e.g. WM transformed into chaos). On chaotic regimes, we observe that
feedback causes chaos broadening and frequency content modification, including the spectral
signatures of the external cavity. The transitions to locking through the SN bifurcation line and the
Hopf bifurcation line are quite different, abrupt for the SN and smooth for the Hopf. This allows
the maintenance of quite robust P1 regimes next to the Hopf bifurcation line. We also discussed
the effect of delay on these feedback-related dynamics varying the delay and noted no qualitative
difference between a long and short delay apart from increasing or decreasing the prominence
of the phenomena described above. Our comprehensive analysis therefore complements earlier
theoretical approximations and brings new light to recent experimental observations.

We explored a theoretical framework that offers several intriguing predictions, which we
aim to experimentally verify. Two notable phenomena have caught our attention, the cascade
of quasiperiodic bifurcations and the oscillations in the Hopf bifurcation boundary. Still, the
experimental observation requires a short feedback delay and a moderate feedback rate, presenting
certain experimental challenges. Our investigation also delves into the domain of optical injection
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applications, particularly in the context of microwave frequency generation. We provide insights
into how these systems would behave in the presence of low-level parasitic feedback rate, with a
specific focus on their robustness near the Hopf bifurcation line.
Funding. Ministère de l’Enseignement supérieur, de la Recherche et de l’Innovation; European Regional Development
Fund; Fondation CentraleSupélec; Conseil régional du Grand Est.
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