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Addressing Reachability and Discrete Component Selection in Robotic
Manipulator Design through Kineto-Static Bi-Level Optimization

E. Mingo Hoffman1, D. Costanzi2, G. Fadini3, N. Miguel2, A. Del Prete4, and L. Marchionni2

Abstract— Designing robotic manipulators for generic tasks
while meeting specific requirements is a complex, iterative
process involving mechanical design, simulation, control, and
testing. New computational design tools are needed to simplify
and speed up such processes. This work presents an original
formulation of the computational design problem, tailored
to help design generic manipulators with strong reachability
requirements. The primary challenges addressed in this work
are twofold. First, the necessity to consider the design of both
continuous quantities and discrete components. Second, the
ability to guide the design using high-level requirements, like
the robot’s workspace, without needing a specific manipulation
task, unlike other co-design frameworks. These two challenges
are addressed by employing a novel kineto-static formulation,
resulting in a Mixed Integer Nonlinear Programming problem,
which is solved using bi-level optimization. A compelling use
case from a real industrial application is presented to highlight
the practical effectiveness of the proposed method.

I. INTRODUCTION

Designing robots is a complex and iterative process,
involving mechanical design, control synthesis, and exper-
imental testing. Without the aid of computational design
(co-design) tools, this process can become more laborious
and may result in a sub-optimal design. The development
of an industrial manipulator exemplifies these complexities.
Requirements such as nominal payload, workspace coverage,
and maximum control effort must be met while ensuring
structural integrity and appropriate selection of actuators.

Initial design choices are often based on heuristics, influ-
enced by the designer’s experience with previous models.
If these heuristics are based on inaccurate assumptions, they
can trigger a domino effect of necessary changes, prolonging
the design process through multiple iterations. On the other
hand, co-design frameworks can accelerate the achievement
of a functional design while optimizing specific user-defined
metrics [1] [2]. However, modern co-design tools oriented
towards robotics are often complex and task-specific. The
metrics to be optimized must be specified through mathe-
matical expressions to be minimized or maximized, and the
resulting design may depend on the specific task used for
the optimization, reducing its generality. Furthermore, the
mechanical design may include components that can vary
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continuously within a range, such as link lengths, or com-
ponents that must be selected from a discrete catalog, such
as motor sizes. This aspect is often overlooked, requiring
further iterations to adapt the output of the co-design tool to
real components.

To tackle these challenges, this work introduces a novel
method to streamline generic robotic manipulators’ design,
formulating the co-design problem as a kineto-static Mixed
Integer Nonlinear Programming (MI-NLP) problem solved
using bi-level optimization. Bi-level optimization addresses
two interconnected problems, with one nested within the
other, enabling different optimization strategies for the outer
and inner loops. This formulation allows the inclusion of con-
tinuous and discrete design variables and the optimization of
control effort, reachability, and manipulability, regardless of
the specific manipulation task to be performed, thus being as
generic as possible. This paper presents the formulation and
the mathematical tools used to solve the MI-NLP problem
and a real use case of a manipulator design, mounted on a
mobile platform developed by the company PAL Robotics.

II. STATE OF THE ART

This work takes inspiration from and extends the bi-level
optimization scheme to concurrently optimize hardware and
control of a leg’s design for jumping in [3]. In such a frame-
work, the outer level optimization made use of a genetic
algorithm (GA), the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [4], to optimize gait timings and design
variables, such as link lengths and motor choice. The inner
level optimization was instead in charge of optimizing the
state and control trajectories through Differential Dynamic
Programming (DDP) [5]. However, the hardware parameters
in [3] were treated as continuous variables. As a result, the
optimized results from CMA-ES are refined by selecting the
closest available discrete options. The use of DDP in the
inner loop makes it difficult to consider constraints on state
variables, so this bi-level approach was further extended in
[6] introducing interior-point optimization in the trajectory
optimization and the possibility of studying several tasks
with design discrete variables

Another notable tool in this domain includes the open-
source Matlab toolbox Vitruvio [7]. Vitruvio guides de-
signers in choosing the design parameters of the legs of
walking robots; as optimization criteria, they made available
minimum energy consumption and minimum peak control
effort. The proposed approach is divided into three steps:
trajectory generation for a baseline robot, followed by motion
analysis, and finally, optimization of the design parameters



through a GA, again CMA-ES. An issue of this approach,
as highlighted in the letter, is that design and motion are not
optimized concurrently.

Co-design has also been an important paradigm in the
development of humanoid robots, where it is important to
choose the hardware parameters such that the robot can
effectively and safely interact with the environment and
with humans. In [8], ergonomic indexes are used as fitness
functions in a bi-level optimization scheme that shares a
structure similar to ours: a GA for the outer loop, which
generates populations of robot designs, then evaluated in
terms of ergonomic indices through NLP optimization. They
leveraged the GAs also to generate initial guesses for the
inner optimization, to reduce the sensitivity to the problem’s
initial conditions.

In [9], a Python toolbox named Timor for industrial modu-
lar robotics is introduced, which allows the optimization of a
manipulator’s design according to the tasks to be performed
by selecting existing modular components. From the same
authors, in [10] a GA with a lexicographic evaluation of
solution candidates is used for identifying an optimal module
composition in task-tailored modular robots.

The work in [11] proposed a method for concurrently
optimizing both the morphology parameters of a robot and
its control policy for multi-task purposes. Optimizing the
design for a broad range of tasks, rather than for a specific
task, increases complexity but can yield robots capable of
performing a wider array of tasks with superior performance
compared to robots optimized for a single task. Their ap-
proach combines Stochastic Programming with Trajectory
Optimization (TO) to tackle the scalability issues inherent in
multi-task co-design problems.

In [12] the co-design problem is formulated for legged
robots as a TO problem, augmented with the design variables
of the model. To parameterize the robot model, they consid-
ered simple prismatic legs and derived analytical equations
to compute their inertial properties. While our methodology
may seem similar to that in [12], where hardware and control
variables are optimized concurrently within a single NLP
framework, our method implements on top of that a bi-
level optimization scheme to address also the optimization of
discrete actuator choices. This consideration is not supported
in [12], as integer design variables were not included.

Recently, a task-driven computational framework that si-
multaneously optimizes the mounted pose and morphology
of modular manipulators was presented in [13].

As seen in this section, multiple co-desing works relying
on bi-level optimization, however, sufficient and necessary
conditions for optimality are still an open question [14].
However, the literature highlights that GA-like optimization
techniques are effective in locating the global optimum
region due to their inherent parallelism. These methods do
not require the objective function to be differentiable and are
highly robust in addressing non-convex problems [15].

Most of the literature on computational design applied to
robotics still frames the design problem around solving a
specific task. While these approaches can achieve optimal

results for specific applications, they often struggle to scale
when the number of tasks to be performed increases. Only
a few solutions have been proposed that can manage the
complexity and variability introduced by multiple tasks. This
gap highlights the need for more versatile methodologies
that can address requirements to adapt to different use cases
without compromising performance. In these regards, the
main contribution of our work is a method that:

• enables the optimal design of manipulators without
requiring the specification of particular manipulation
tasks, relying on the definition of a minimum fully
reachable workspace;

• accommodates both continuous and discrete design vari-
ables, allowing for the selection of components from a
catalog.

This is achieved by employing a kineto-static MI-NLP for-
mulation of the co-design problem, which is solved using
bi-level optimization. The proposed approach integrates the
benefits of concurrent optimization for continuous design
and control variables while addressing the complexity of
selecting discrete components and ensuring the generality
of the obtained design regardless of the manipulation task to
be performed.

III. COMPUTATIONAL DESIGN

This section presents the kineto-static formulation of the
co-design problem and the method to solve the resulting
MI-NLP problem. As previously stated, this work employs
a similar bi-level optimization scheme as in [3], with the
difference that the continuous design variables are optimized
within the inner optimization loop using the interior point
method, and the discrete design variables are optimized in
the outer optimization loop, using genetic algorithms (see
Fig. 1). [16] provides a comprehensive review of bi-level
optimization methodologies, while [17] compares various
outer-loop methods.
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Fig. 1: Bi-level optimization scheme.

This work focuses on designing robotic arms with serial
kinematic structures and a fixed number of Degrees of Free-
dom (DOFs) n and links n+ 1. The following assumptions
are considered (see Fig. 2):



• the axis of rotation of each joint Ji is fixed;
• each actuator Ai is placed at the joint Ji+1 and aligned

with its rotation axis;
• each link Li carries the mass and inertia of the consec-

utive actuator Ai, where the inertia is computed without
considering any reduction.

The design parameters include the relative position of each
joint, the joint limits, the link’s mass, the center of mass
(CoM), and the inertia tensor. These design parameters
cannot be chosen freely; for example, the relative position
between two joints affects the link lengths, CoM position,
and mass. At the same time, the choice of actuators impacts
these dynamic quantities, as each actuator contributes with
its mass and inertia. Ultimately, the selection of actuators for
each joint affects the velocity limits, the torque limits, and
the efficiency.
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Fig. 2: Serial manipulator modeling with the frames of both the
joints and links depicted. Additionally, for the i − th link and
its associated actuator body, an orange ellipsoid is illustrated to
represent the body’s inertia.

A. Model Parameterization and Design Variables

We denote the set of all design variables as D = DR∪DZ,
where DR contains the continuous design variables and DZ
contains the integer ones.

1) Continuous Design Variables DR: The continuous de-
sign variables include:

• the pose bTJ0 ∈ SE(3) of the first joint J0;
• the scaling factor of links’ lengths, represented by the

vector λ ∈ Rn−1.
The link length scaling factor λ affects kinematic and
dynamic properties and requires scaling inertial properties
when modified. In this work, the factor scales the main link
axis while maintaining the cross-section and density, with
limits set to prevent weakened links.

The inertial properties of the i-th link can be fully de-
scribed by 10 scalars [18]:

• the link’s mass mi ∈ R;
• the position of the CoM iri ∈ R3 w.r.t. the joint frame

associated to the link, with iTAi the homogeneous
transformation from the joint to the actuator frames and
rA,i the CoM of the actuator in actuator frame;

• the inertia matrix iIri ∈ R3×3 at the CoM, expressed in
the joint frame, defined by 6 scalars due to its symmetry,
and its eigenvalues satisfying the triangle inequality.

It is important to note that, when scaling a link that carries
an actuator, the latter should remain unchanged, and only the
actual link should be scaled. For this reason, we express the
previous quantities in terms of their link and actuator parts:

mi = mL,i +mA,i, (1)

iri =
mL,irL,i +mA,i(

ipAi
+ iRAi

rA,i)

mi
, (2)

iIri = IL,i +
iRAiIA,i

iRT
Ai
+

+mA,i

[
rL,i − (ipAi

+ iRAi
rA,i)

]2
× . (3)

In (1), mL,i ∈ R and mA,i ∈ R are the mass of the i-th
link and actuator, respectively. In (2), rL,i ∈ R3 is the CoM
position of the i-th link, expressed in the i-th joint frame,
rA,i ∈ R3 is the CoM position of the i-th actuator, expressed
in the actuator frame, i.e. the (i + 1)-th joint, ipAi

∈ R3

is the position of the i-th actuator w.r.t. the i-th joint, and
iRAi

∈ SO(3) is the rotation matrix from the i-th joint
frame to the following one. Finally, in (3), IL,i ∈ R3×3 and
IA,i ∈ R3×3 are the inertia tensor of the link and actuator,
respectively, expressed at their CoM, and [·]2× the square of
the skew-symmetric matrix applied to the vector going from
the CoM of the actuator to the CoM of the associated link.

Given mi under the hypothesis of homogeneous density,
its scaled version m′

i is:

m′
i = λimL,i +mA,i. (4)

Let us consider a scaling matrix acting in a specific direction:

Λi =



λi 0 0
0 1 0
0 0 1


 . (5)

We scale the body along a local joint axis defined by
the versor ûi. The rotation matrix Ri is constructed with
columns ûi and a pair of unit vectors forming an orthogonal
basis for ker(ûi). The final scaling matrix is given by

Si = RT
i ΛiRi. (6)

Scaling the link moves the position of the actuator w.r.t. the
joint of a quantity:

ip′
Ai

= Si
ipAi

. (7)

The scaled CoM can be computed as:

ir′i =
mL,iSirL,i +mA,i(

ip′
Ai

+ iRAi
rA,i)

m′
i

. (8)

Finally, the scaled inertia tensor can be computed as the
scaled inertia of the link plus the inertia of the actuator
adjusted for its new position:

iI′ri = I′L,i +
iRAi

IA,i
iRT

Ai
+

+mA,i

[
rL,i − (ip′

Ai
+ iRAi

rA,i)
]2
× . (9)



As demonstrated in [19], an inertia matrix I (see Ap-
pendix I) can be derived from the density-weighted covari-
ance matrix J using the following relationship:

I = tr(J)I3x3 − J, (10)

where tr(·) denotes the matrix trace operator, and I3×3 is the
3×3 identity matrix. Being the density-weighted covariance
scaling given by:

J′ = λiSiJS
T
i , (11)

the scaled inertia I′L,i can be written as:

I′L,i = tr(J′
L,i)I3x3 − J′

L,i. (12)

2) Integer Design Variables DZ: The integer design vari-
ables represent actuator choices and are optimized using the
outer genetic loop. Specifically, we used the Ant Colony
Optimization (ACO) algorithm [20], an effective strategy for
mixed-integer search spaces. An explicit mapping between
the actuator identifier AID ∈ {0, 1, ..., a − 1}, with a the
number of possible actuator choices, and its specifics has
been used to modify the robot model used in the inner loop.

When the ACO algorithm generates a new population,
it creates a new set of chromosomes, representing the
actuators chosen for each individual. Following this, the
inner optimization loop calculates each individual’s fitness
using the robot model modified with the selected set of
actuators. In the following, we describe the outer and inner
optimization loops, respectively, the ACO algorithm and the
NLP formulation.

B. ACO Algorithm

The selection of actuators in robotic manipulator design
is as critical as their placement in the kinematic chain.
It typically involves simulating tasks to evaluate required
torques, often using nominal values for actuator mass and
inertia. However, real actuators from vendor catalogs can
differ significantly, requiring designers to balance project
requirements and specifications. This often necessitates addi-
tional simulations to validate the selection, making optimal
choices complex. To address this, we propose formulating
an MI-NLP problem for actuator selection, structured as
follows:

min
DZ

F(DZ) =
{
f(DZ0

), f(DZ1
), . . . , f(DZI−1

)
}

s.t. DZk
∈ AID,

(13)

where I represents the number individuals of the population
for each generation, and DZk

is a set of discrete variables
associated with the individual k. The objective is to minimize
the fitness function f(DZ), by selecting the optimal set of
actuators from the catalog AID. The ACO algorithm is an
evolution strategy classified as a stochastic metaheuristic,
that takes inspiration from ants and the way they find the
shortest path when transporting resources to their colony.
Real ants, while exploring their space, lay down pheromone
trails that tend to dissolve as time passes, thus guiding ants
to the path that takes less time to travel. ACO implements
agents, simulated ants, keeping track of their positions, i.e.

the decision variables, and the quality of their solution,
an information for the agents of the later generations. Ex-
tended ACO (GACO) [21] generates future generations of
ants by using a multi-kernel Gaussian distribution based
on pheromone values, which are computed depending on
the quality of each previous solution, ranked through an
oracle penalty method. GACO can work on mixed integer
search domains, in contrast to the original version which is
thought to work only on combinatorial or continuous search
domains. For this reason, the MI-NLP problem in (13) was
solved using the GACO implementation in PyGMO, a Python
scientific library derived from the PaGMO framework [22].
In nested methods, as the one proposed in this work to solve
the bi-level optimization problem, the optimization in (13)
selects the minimum residual of (14), see the following
section, evaluated at all the ants of the current generation,
and computes the successive generation.

C. NLP Formulation

When designing a robotic manipulator, a crucial issue is
to define the relative placement of the joints so that the robot
can reach all the points belonging to the operational space
with its end-effector, a.k.a. reachable workspace. Moreover,
the robot needs its actuators to be able to withstand the
torques generated by its weight and the payload. Another
important aspect that should be taken into account is the
manipulability of the robot within the desired workspace.
Having low isotropy of the manipulability, in a specific con-
figuration, reflects a poor capability of producing speed in the
operational space. These indices are usually considered with
trade-offs based on specific tasks when designing manipu-
lators [23]–[25]. Given a desired minimum fully reachable
workspace, the kineto-static approach aims at optimizing the
design of the robot such that:

• the robot can reach all the points with its end-effector;
• the robot can compensate for gravity by satisfying the

torque limits of the actuators;
• the static control effort is minimized;
• the manipulability is maximized.

The minimum fully reachable workspace is defined as a
Cartesian region, which is sampled with N elements that
depend on the spacing of a uniform sampling grid. Once a
set of integer variables (individual) DZk

is selected by the
outer loop, the remaining decision variables for the inner
loop are q and DR, resulting in a continuous NLP problem,
formulated as:

f(DZk
) =min

q,DR

N−1∑

i=0

ℓi(qi,DZk
,DR)

s.t. τmin ≤ τ (qi,DZk
,DR) ≤ τmax

G(qi,DR) ≤ 0 ∀i ∈ 0, . . . , N − 1,

(14)

with qi ∈ Rn the generalized position coordinates of the
manipulator at the i-th sample, and τmin, τmax ∈ Rn the
minimum and maximum joint torques, respectively.



The cost function ℓi(qi,DZk
,DR) is defined as:

ℓi(qi,DZk
,DR) = wp ∥p(qi,DZk

,DR)− pi∥22 +
+ wτ ∥τ (qi,DZk

,DR)∥22 +
+ wµ,linµlin(qi,DZk

,DR)+

+ wµ,angµang(qi,DZk
,DR),

(15)

with pi ∈ R3 the i-th position of the sampled element of the
workspace, τ (qi,DZk

,DR) the static torques:

τ (qi,DZk
,DR) = g(qi,DZk

,DR) + JT (qi,DZk
,DR)he,

(16)
with he ∈ R3 the estimated force due to a load
attached to the end-effector, and µlin(qi,DZk

,DR) and
µang(qi,DZk

,DR) the manipulability cost, for the linear
and angular part, respectively. To avoid the computation of
symbolic eigenvalues of the manipulability:

A(qi,DZk
,DR) =

(
J(qi,DZk

,DR)J
T (qi,DZk

,DR)
)−1

,
(17)

we introduce an alternative approach to evaluate the manip-
ulability isotropy. First of all, given the following decompo-
sition of the manipulability A(qi,DZk

,DR)
1:

A =

[
Alin Amix

Amix Aang

]
∈ R6×6, (18)

we consider the linear and angular terms separately, neglect-
ing the mixed ones2. We want to evaluate the manipulability
along a certain number of d directions. As shown in Fig. 3,
the manipulability along a generic direction uj , can be
evaluated as the inverse of the square root of αj :

αj(qi,DZk
,DR) = uT

j A(qi,DZk
,DR)uj . (19)

If all the αj have similar magnitude, the manipulability
is approximately isotropic. Therefore, by minimizing the
sample variance of the set containing all the αj , we can
encourage isotropy of the manipulability:

ᾱ(qi,DZk
,DR) =

1

d

d−1∑

j=0

αj(qi,DZk
,DR),

µ(qi,DZk
,DR) =

d−1∑

j=0

(αj(qi,DZk
,DR)− ᾱ(qi,DZk

,DR))
2,

(20)
with ᾱ the mean. The smaller it is µ, the more isotropic
the robot performance in a given configuration. Finally,
G(qi,DR) ≤ 0 contains other bounds and constraints such
as joint limits, design variables limits, and arm length limit.

IV. CASE STUDY

PAL Robotics has recently developed a new 7-DOF arm
based on Series Elastic Actuators (SEAs) mounted on the
torso of the TIAGo robot [26]. For this project, three distinct
sizes of actuators were available: S+, S-, and XS. Each

1We here drop the dependency on the variables qi, DZk
, and DR

2It is worth noting that the inverse of a 3 × 3 matrix can be expressed
in closed form
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Fig. 3: Plot of the cross-section of a 3D manipulability ellipsoid.

actuator has unique specifications, particularly in terms of
their maximum nominal torque, peak torque, and inertial
properties, reported in Table I. In Fig. 4 and Table III
are reported the initial design of the manipulator with its
original mounting on the Tiago base, together with the
design variables DR and the configuration variables q. In this

TABLE I: Actuators specifications
Size Nominal Torque [Nm] Peak Torque [Nm] Mass [kg]
S+ 45 75 0.71

S- 35 60 0.60

XS 25 40 0.45

section, the proposed method has been used to improve the
initial design of the arm and its mounting on the TIAGo base.
In particular, the NLP problem in (14) has been formulated
using CasADi [27] and solved using the IPOPT solver [28],
and the model was computed using the Pinocchio [29]
library. The main requirement for this robot was the ability
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Fig. 4: Kinematic arrangement of the manipulator on the Tiago
base together with the design variables λ and bTJ0 , and the
configuration variables q.

to reach all the points belonging to a given workspace,
denoted as WS0, with its end-effector. Moreover, it had to be
capable of carrying a payload of up to 2 kg, while respecting
the torque limits imposed by the size of the actuators.
The manipulability needed to be maximized within WS0,
with the origin of the first joint positioned on the sagittal
plane. Additionally, the maximum length of the arm was
constrained to be within ±0.2 m of the original design. Being
all the joint limits of the robot symmetric, we can expect that



two points symmetrically placed w.r.t. the sagittal plane will
have identical, but mirrored, optimal configurations to reach
them. This symmetry is achievable by constraining the Roll
and Yaw mounting angles, as well as the X mounting posi-
tions to zero of the first DOF. We enforce this through bounds
on the corresponding optimization variables, see Table III.
By leveraging this symmetry, we can reduce the size of the
desired reachable workspace considered during optimization
without affecting the actual reachable workspace. This effec-
tively halves the problem size and enables a higher sampling
density within the symmetrical workspace. The main aspects
considered to assess the improvement were the reachability,
the static control effort, and the manipulability, which were
evaluated in the preliminary design of the robot and the
optimized one. Those metrics were weighted and included
in the NLP cost function. Adjusting the weights impacts
the final design, and tuning is left to the designer based on
the strictness of specific requirements. It is crucial then to
carefully balance these parameters to achieve performance
in accordance with the prioritized needs. In this case, since
the reachability and versatility of the design are the highest
priority, the following set of weights are used: wp = 104,
wτ = 10−5, wµlin

= 0.0, and wµang
= 10.0. Considering the

system utilized for running the optimization3, a suitable
compromise regarding the number of optimization poses was
determined to be 150. Given the volume of WSrhs

0 being
approximately 0.9 m3, the sampling density was accordingly
set to 167 samples

m3 .
The GACO algorithm was configured to evolve a popu-

lation of 40 individuals across 10 generations, running for
a total of 3 hours. As illustrated in Fig. 5, the observed
cost trend demonstrates that the cost plateaued after the
initial 5 generations. Concerning the actuators, the initial and
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Fig. 5: Fitness trend of the best element per generation across runs
with different seeds, compared to the initial design.

optimized choices are reported in Table II, with the numbers
reflecting their physical arrangement relative to the robot’s
torso, starting from the shoulder joint and moving towards
the end-effector. The actuators selected by the algorithm
show that bigger actuators have been assigned to the joints

3Intel® Core™ i7-1065G7 CPU @ 1.30GHz × 8, RAM 8GiB

TABLE II: Actuator choice (discrete design params)
Joint 0 1 2 3 4 5 6
Initial
Design S+ S+ S+ S- S- S- XS

Optimized
Design XS S+ S+ S- XS XS XS

TABLE III: Optimized continuous design params
Design Param Opt. (Orig.) Value Lower Lim. Upper Lim.

Roll [rad] 0.0 (0.0) 0.0 0.0

Pitch [rad] -0.13 (0.0) -0.5 0.5

Yaw [rad] 0.0 (0.0) 0.0 0.0

X [m] -0.02 (0.0) -0.2 0.2

Y [m] 0.0 (0.0) 0.0 0.0

Z [m] 0.0 (0.0) 0.0 0.0

λ0 1.5 (1.0) 0.7 1.5

λ1 0.7 (1.0) 0.7 1.5

λ2 0.85 (1.0) 0.7 1.5

λ3 1.3 (1.0) 0.7 1.5

λ4 1.5 (1.0) 0.7 1.5

λ5 1.5 (1.0) 0.7 1.5

closer to the robot base, having to counteract more torque
to overcome gravity and payload. On the other hand, lighter
and less powerful actuators have been selected for the joints
close to the robot’s wrist. The solution chosen by the
optimization offers a dual benefit: it balances the increased
weight from the arm extension by using lighter actuators,
and also helps reduce the overall manufacturing cost of
the arm. Notice that for the first joint, which has its axis
almost perpendicular to gravity, the smallest actuator (XS)
has been selected. Regarding the continuous design variables,
i.e., link length scaling and first joint mounting pose, the
optimized results are reported in Table III. In Fig. 6 are
visualized the position errors before and after optimization
as spheres, directly on WSrhs

0 . The initial design could
not reach every point belonging to WSrhs

0 , as shown in
Fig. 6.a. The average reachability error, computed as the

a) b)

Fig. 6: Distribution of position errors for the initial design, on
the left, and the optimized design, on the right within the desired
reachable workspace. The yellow spheres represent the error in
reaching points within the workspace. The radius and color of each
sphere correspond to the Euclidean norm of the error (red means
larger, and green means smaller).



Euclidean norm of the vector connecting a specific point in
the workspace and the end-effector, was 23.6 mm. Fig. 6.b.
shows that the robot’s capability to reach all the points of
WSrhs

0 has increased considerably. Finally, Fig. 7 illustrates
quantitatively the increase in the number of reachable points,
which has significantly improved compared to the non-
optimized case. Notably, for the optimized design, no points
are associated with a reachability error in the 5 − 500 mm
range, and most points fall within the 0−1 mm range. For the
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Fig. 7: Comparison of the number of points within a given error
range for original and optimized design.

average angular manipulability isotropy, the initial design has
an isotropy index of 1.66, while the optimized design reduces
it to 1.4. It is worth noting that, with the optimal isotropy
value being 1, the optimization achieves a 16% improvement.

Finally, in terms of static control effort, Fig. 8 reports
the maximum and mean torque of each joint computed
in all configurations explored to reach the points in the
workspace WSrhs

0 while carrying the 2 kg payload, for both
the initial and optimized design. It is possible to observe
that the average maximum static torque is near or below
the nominal actuator torque and way below the peak torque
for each actuator. Although the kineto-static formulation
does not allow for the optimization of design parameters
according to dynamic motions, i.e. the inertia matrix scaling
is only computed as a result and is not considered during
optimization, Fig. 8 shows that the actuator torque available
for dynamic motions is largely sufficient. To facilitate a
comparison between the data in Fig. 8, the norm of the
average torque across all joints was computed for both the
original and optimized designs. The results were 9.86 Nm
for the original design and 11. Nm for the optimized design,
resulting in 11.6% increase in average static control effort.
Although, at first glance, it may seem that the optimization
process did not succeed in reducing the control effort, the
result is logical considering its trade-off with manipulability.
Moreover, as shown in Fig. 9, the increase in torque is
explainable by an overall arm length increase of 20%, from
1.07 m to 1.26 m, and by a total weight increase of 10%,
from ≈ 10 kg to ≈ 11 kg.
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Fig. 8: Maximum static torques for the initial (blue) and optimized
(green) designs computed considering all the configurations, in
black the mean torques. The nominal and peak torques for the
selected actuator are represented in orange and red, respectively.
Notice that the last joint, the roll, is not loaded.

1.26 m

1.07 m

Fig. 9: Comparison between original, on the bottom, and optimized,
on the top, Tiago manipulator link lengths.

V. CONCLUSIONS

This work presented a novel kineto-static formulation
for designing manipulators, defining the co-design problem
in terms of reachability region, meaning the area that the
robot’s end-effector is expected to cover, abstracting the
specific task to be performed. The proposed method involves
solving a constrained inverse statics problem for multiple
positions simultaneously, while maximizing manipulability
and minimizing effort, using instances of the robot model
that share the same design variables. These can include
both continuous and discrete design variables leading to a
MI-NLP solved using bi-level optimization. The method’s
effectiveness has been evaluated by co-designing a novel ma-
nipulator mounted on the TIAGo mobile platform developed
by PAL Robotics. The proposed method can be extended
to parallel robots, closed linkages, and floating-base systems
by incorporating design variables, kinematic constraints, and
constraint forces into the formulation, ensuring closure and
handling specific cases such as non-unique forces for certain
contact types. Future work will explore the use of different
outer-loop optimization algorithms, such as Particle Swarm
Optimization or Genetic Algorithms, the use of parallel
computing strategies to enable concurrent fitness evaluations,
and the inclusion self-collision in the optimization problem.
In particular, leveraging parallel computing strategies could



address a major limitation of the proposed approach: its cur-
rent inability to optimize the design accounting for dynamic
motions.
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APPENDIX I
DENSITY-WEIGHTED COVARIANCE MATRIX

The density-weighted covariance matrix J is defined as:

J = ρ

∫∫∫

V

rrT dr, (21)

over the volume V . The diagonal elements of the inertia
matrix I, are related to the diagonal elements of the density-
weighted covariance matrix J through the following equa-
tions: 


Ixx
Iyy
Izz


 =



0 1 1
1 0 1
1 1 0





Jxx
Jyy
Jzz


 (22)

By inverting this system of equations, the diagonal elements
of J can be computed from I. Notice that according to the
inverse of the system in (22) and equation (10), the relation
between J and I can be written also as:

J =
1

2
tr(I)I3×3 − I. (23)

Given the definition (21), we can compute the scaled
density-weighted covariance matrix:

J′ = ρ

∫∫∫

V

r′r
T
dr′ = ρ

∫∫∫

V

(Sxr)(Sxr)
T s dx dy dz =

= ρ

∫∫∫

V

Sx(rr
T )ST

x s dx dy dz = sSxJS
T
x . (24)
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