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Abstract

This paper presents the development and analysis of a second order numerical method tailored for shal-
low water flows in regimes characterized by low Froude numbers. The focus is on modeling oceanic and
coastal dynamics across different scales, with particular attention on the variation of the Froude number
from 1 near the shoreline to significantly lower values offshore. Classical hyperbolic schemes, such as
Riemann solvers, become inefficient in these deep water conditions. To address this challenge, a hybrid
numerical approach is proposed where part of the system is treated implicitly, resulting in an ImEx
(Implicit-Explicit) scheme that allows long time simulation using a CFL condition that is independent
of the Froude number. To minimize the computational cost associated with solving linear systems, a
fully segregated approach is used. In this method, the water height and hybrid mass fluxes are handled
implicitly, while velocities are treated explicitly, thus avoiding large linear system resolutions. While
various Runge-Kutta schemes are available for a second-order time integration, we chose here a Crank-
Nicolson scheme to reduce the number of linear systems required. Spatial discretization is performed
using a second-order MUSCL reconstruction. The novel scheme is demonstrated to be Asymptotic Pre-
serving (AP), ensuring that a consistent discretization of the limit model, known as the “lake equations”
is obtained as the Froude number approaches zero. Through a series of one- and two-dimensional test
cases, the method is shown to achieve second-order accuracy for different Froude numbers. Additionally,
the computational efficiency of the proposed method is compared with that of a fully explicit scheme,
demonstrating significant time savings with the ImEx approach, particularly in scenarios governed by
low Froude numbers.

Keywords: Shallow water equations, Implicit-explicit scheme, Low-Froude number, Crank-Nicolson,
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1. Introduction

The nonlinear shallow water equations (NSWE) aim to describe the behavior of shallow, incom-
pressible, and inviscid fluid flows, playing a key role in simulating oceanic and atmospheric dynamics
across various scales. These equations are widely used in the modeling of physical processes influencing
environmental and geophysical events [13, 25]. Critical physical applications like atmospheric surges,
tidal waves, tsunami propagation and inundation, involve complex multiscale phenomena where advec-
tion and acoustic-gravity waves interact. To describe the flow’s time scale, the Froude number, Fr is
employed. This dimensionless quantity represents the ratio of convective velocity to the speed of gravity
waves.

At low Froude numbers, the NSWE describe flows characterized by slow movement of fluid par-
ticles and fast surface gravity waves propagation. In large-scale oceanic flows, Fr is typically around
10−2 [41, 2]. For example, in oceanic currents with a velocity of U0 ≈ 1 ms−1 and a depth of H0 ≈ 100 m,
Fr is approximately 0.03. It is important to emphasize that solving the shallow water equations in
the zero Froude number limit poses significant difficulties for two main reasons. First, as the Froude
number Fr decreases, the system transitions towards a singular limit, shifting from a hyperbolic to a
mixed hyperbolic-elliptic form, which complicates the solution process due to non-uniform behavior as
Fr → 0. This convergence problem is a well-known mathematical challenge, as explored in previous
studies [17, 38, 39]. Second, low Froude number flows introduce stiffness in the system, making nu-
merical approximations more difficult. To address these multiscale challenges, numerical methods must
incorporate the Asymptotic Preserving (AP) property, enabling them to capture the correct behavior of
the governing equations in the asymptotic limit as Fr → 0. Several AP schemes have been developed for
the shallow water equations; see, for instance [36, 37, 5, 16, 24, 58]. Additionally, several specific models
and AP numerical schemes have been proposed for the congested shallow water equations taking into
account the roof constraint; refer to [27, 28, 49].

In contrast, a non-AP scheme may perform poorly, potentially leading to issues such as incorrect
pressure scaling in the approximation [34] leading to large numerical dissipation becoming predominant
before the physical phenomena [33] or the appearance of artificial oscillations. These oscillations, as
analyzed by Dellacherie in [18], can arise from the loss of consistency for near-incompressible flow.

Conventional explicit solvers, like the Godunov method, struggle to accurately model low Froude
number flows due to the CFL condition required for stability. The stiffness of the equations enforces an
extremely small time step, leading to high computational costs [33, 34]. Consequently, the simulations
are substantially slowed, and the large number of iterations results in excessive numerical diffusion,
regardless of the scheme’s order. This is expected to suppress the water surface elevation. In contrast,
fully implicit time-stepping schemes allow for larger time steps while retaining the accuracy of the
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numerical solution. However, the main disadvantage of such methods lies in the requirement to solve a
system that can become highly nonlinear, primarily due to the convective fluxes present in the governing
equations.

Over the past few decades, numerous efforts have been made in the literature to address these
challenges, with considerable focus placed on semi-implicit discretization techniques [15, 32, 50, 57, 9].
In this framework, advection is treated explicitly while pressure is handled implicitly, leading to a
stability condition governed solely by the main flow velocity, which approaches zero in the low Froude
number regime. As a result, semi-implicit schemes are far more efficient than explicit methods under
these conditions. They also benefit from reduced numerical viscosity and enhanced accuracy, as the
implicit terms do not require additional stabilization. The concept of distinguishing between slow and
fast time scales has been successfully interpreted as a flux splitting method, as noted in [55]. Building
on this idea, significant research has focused on developing numerical methods that handle multiple time
scales [23, 10, 14, 45], commonly referred to as all Mach solvers. A different strategy for handling multiple
time scales involves implicit-explicit (ImEx) schemes. Developing such a scheme involves tackling several
challenges. The primary task is to define the fluxes, which is typically managed using splitting techniques
that differentiate the fast components from the slower ones. The traditional method for performing this
splitting is to handle the acoustic subsystem implicitly, while maintaining an explicit approach for the
transport terms; refer to [1, 6, 8, 48, 35, 20, 5]. A recent and seemingly more adaptable method is
the reference solution (RS) approach. In this technique, the splitting is carried out with respect to a
reference state, which is the solution of a suitably defined sub-system that can be evolved alongside the
main equations. The RS method has been applied to shallow water flows in [58].

The efficient high order time integration is more challenging in the context of ImEx schemes. For
time integration up to second order, a variety of options are available, many of which rely on different
multi-stage or multi-step ImEx formulations [10, 20]. Nevertheless, these methods usually involve solving
a significant number of linear systems. The novelty of this work lies in minimizing the number of linear
systems that need to be solved. More precisely, we extend the first-order Implicit-Explicit Centered
Potential Regularization (ImEx CPR) scheme introduced in [50] to achieve a second order accuracy in
time by using the Crank-Nicolson scheme.

The outline of the paper is as follows. The governing equations in dimensional and non-dimensional
form are presented in section 2. Section 3 presents the numerical scheme and its asymptotic preserv-
ing and well-balanced properties. Section 4 provides numerical verification in one and two horizontal
dimensions, and the concluding remarks are drawn in Section 5.

2. Governing equations

2.1. Dimensionless formulation of the shallow water equations

In this paper, we focus on developing a numerical scheme designed for NSWE in the low Froude
number regime. These equations describe fluid motion over a fixed bottom topography, with a free-
moving surface at the top. They capture the conservation of water height and the balance of the
momentum flux, often referred to as discharge. Let us consider a two-dimensional bounded domain
Ω ∈ R2, which is defined by the space coordinates x = (x, y), and a time interval with the time
coordinate t ∈ R+. The governing system of equations is expressed as: ∂th+∇ . (hU) = 0,

∂t(hU) +∇ . (hU ⊗ U) + g∇
(h2
2

)
= −gh∇z.

(2.1)

with h(t, x) representing the water height and h(t, x)U(t, x) describing the momentum, where U(t, x) =
(u, v)⊤ ∈ R2 is the vertically averaged velocity field. The free surface is represented by ζ(t, x) := h+ z,
where z(x) is the bottom topography, and g is the gravitational constant. These quantities are illustrated
in Figure 1. System (2.1) constitutes a set of hyperbolic balance laws, which can be derived by vertically

integrating the Navier-Stokes equations [26]. For given characteristic scales T0, H0, L0, U0 =
L0

T0
we

apply the standard non-dimensionalisation procedure by rewriting the NSWE (2.1) in the dimensionless
variables

T̃ =
T

T0
, h̃ =

h

H0
, x̃ =

x

L0
, ‹U =

U

U0
, z̃ =

z

H0
. (2.2)

3



Figure 1: Key quantities in the two-dimensional case include the reference water height h0, which is typically chosen to
match the water level at rest.

This yields the following dimensionless form of the NSWE (2.1): ∂th+∇ . (hU) = 0,

∂t(hU) +∇ . (hU ⊗ U) +
1

Fr2
∇
(h2
2

)
= − h

Fr2
∇z,

(2.3)

where we have omitted the tildes for simplicity. Here, Fr represents the Froude number, defined as

Fr =
U0√
gH0

, which measures the ratio of the flow velocity to the speed of gravity waves.

In the vector form, the system (2.3) reads as

∂tV + ∇ . F (V ) = S(V, z), (2.4)

with V = (h, hU)⊤. The flux and source term are defined respectively as

F (V ) =

Å
hU⊤

hU ⊗ U + h2I2/(2Fr
2)

ã
, S(V, z) =

Å
0

−h∇z/Fr2
ã
. (2.5)

The eigenvalues of the system (2.4)-(2.5) in the normal direction n = (nx, ny) are given by

λ1 = U . n−
√
h/Fr, λ2 = U . n+

√
h/Fr, λ3 = U . n. (2.6)

When discretizing the spatial domain Ω with Cartesian grid cells of size ∆x∆y and using an explicit
method to solve the system (2.4)-(2.5), the CFL condition enforces the following time-step restriction:

∆texpl ≤ CFL ·min

Ö
∆x

max
u,h

¶
|u|+ 1

Fr

√
h
© , ∆y

max
v,h

¶
|v|+ 1

Fr

√
h
©è = O(Fr∆min),

where ∆min := min(∆x,∆y) and 0 < CFL ≤ 1. Furthermore, the numerical diffusion in explicit schemes
is typically proportional to Fr−1∆p

max, where ∆max := max(∆x,∆y) and p denotes the scheme’s formal

order. To prevent excessive numerical diffusion, one must select ∆x = O(Fr1/p) and ∆y = O(Fr1/p).

As a result, the stability restriction for the time-step becomes ∆t = O(Fr1+1/p), which accounts for
the significant computational cost associated with explicit methods in low Froude number regime. To
circumvent the severe time step restrictions of explicit schemes, we consider using Implicit-Explicit time
discretization, where slow waves are generally treated explicitly, while fast waves are handled implicitly.

The system defined in (2.3) admits non-trivial steady-state solutions governed by the following
equations: 

∇ · (hU) = 0,

∇ ·
(
hU ⊗ U +

1

2Fr2
h2I2

)
= − 1

Fr2
h∇z.

(2.7)

From these equilibrium conditions, various classes of steady-state solutions can be derived, as discussed
in works such as [47, 52], which assist in evaluating the performance of numerical schemes. An important
example of these solutions is the “lake at rest” state, obtained by assuming

U = 0 and a constant water surface elevation, ζ = ζ0. (2.8)
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Recently, much research has focused on steady-state solutions in shallow water models. Significant
efforts have been made to design numerical schemes that accurately preserve steady-states or at least
a subset of them. These schemes are often referred to as well-balanced methods, or as preserving the
C-property [4, 3, 42, 51]. To achieve the well-balanced property, which ensures that all non-temporal
derivatives cancel out precisely at the discrete level in “lake at rest” steady-states, and to avoid the
complexities of handling stiff source terms, the system (2.3) is reformulated by incorporating part of the
flux terms into the bed-slope source term: ∂th+∇ . (hU) = 0,

∂t(hU) +∇ . (hU ⊗ U) = − h

Fr2
∇ζ. (2.9)

As a result, the new source term expressed in terms of the free surface variable ζ = h + z can be
discretized using a straightforward second-order central difference method, preserving the well-balanced
property.

The rest of this section is focused on discussing the asymptotic behavior of the dimensionless sys-
tem (2.9).

2.2. Limiting system

To investigate the solutions of (2.9) as Fr approaches 0, a common approach [35, 5] is to consider
the following single-scale expansions of the solutions h and U of (2.9), in terms of Fr:{

h(x, t) = h0(x, t) + Fr h1(x, t) + Fr2 h2(x, t) + · · ·

U(x, t) = U0(x, t) + Fr U1(x, t) + Fr2 U2(x, t) + · · ·
(2.10)

Since ζ = h+ z with z = z(x) being time independent, we have

ζ(x, t) = h0(x, t) + z(x) + Fr h1(x, t) + Fr2 h2(x, t) + · · · (2.11)

Substituting (2.10) and (2.11) into (2.9), we isolate terms with same Froude powers. Extracting terms
in Fr−2 yields:

− 1

Fr2
h0∇(h0 + z) = 0 ⇒ h0∇(h0 + z) = 0. (2.12)

From (2.12) we immediately get that h0 + z ≡ H0(t), namely, h0 + z is constant in space. This implies
that, at leading order, the free surface must stay flat in wet areas. Moving forward, we gather the terms
proportional to Fr−1 from the momentum equation in (2.9), leading to:

−h0
Fr

∇h1 −
h1
Fr

∇(h0 + z) = 0 ⇒ h0∇h1 = 0. (2.13)

Assuming no dry area in the domain, namely h(x, t) > 0, the equation (2.13) allows us to conclude
that h1 ≡ H1(t) is also constant in space. Lastly, the terms of order Fr0 extracted from (2.9) yield the
following relations:®

(h0)t +∇. (h0U0) = 0,

(h0U0)t +∇. (h0U0 ⊗ U0) + h2∇(h0 + z) + h1∇h1 + h0∇h2 = 0.
(2.14)

Since the bottom topography z is assumed to be time independent, (2.14) becomes ∇. (h0U0) = −dH0(t)

dt
,

(h0U0)t +∇. (h0U0 ⊗ U0) + h0∇h2 = 0.
(2.15)

Now integrating the 1st equation of (2.15) over the spatial domain Ω, it yields

dH0(t)

dt
= − 1

|Ω|

∫
∂Ω

h0U0. n dσ, (2.16)
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where n is the unit outward normal vector along ∂Ω. For some boundary conditions, e.g. periodic, wall,
open boundary conditions, or under the sublinear growth conditions (U0(x), h0(x) = o(|x|), x → ∞)
cf. [12], the integral cancels. As a consequence, the first equation of (2.15) gives:

dH0(t)

dt
= 0 ⇒ ∇. (h0U0) = 0.

(2.15) and (2.16) form the classical zero Froude number shallow water equations, also known as the
“lake equations” which further reduce to:® ∇. (h0U0) = 0, h0 + z = H0 = cst.

(h0U0)t +∇. (h0U0 ⊗ U0) + h0∇h2 = 0.
(2.17)

A rigorous convergence analysis for the zero Froude limit from (2.9) to (2.17) is very demanding (well
prepared data), see [39] in the low Mach limit.

In the next section, we develop an asymptotic preserving scheme for (2.9), which yields a consistent
approximation of the limiting equations (2.17) as Fr → 0.

3. Numerical scheme

3.1. Implicit-Explicit (ImEx) Crank-Nicolson time discretization

In this section, we develop a second order numerical scheme for the shallow water equations (2.9).
In order to relax the strong stability restriction on the time-step size, we consider an implicit-explicit
(ImEx) approach where the water height and hybrid mass fluxes are handled implicitly, while velocities
are treated explicitly. High-order time integration poses significant challenges when working with ImEx
schemes. For methods up to second order, several works exist in the literature, often employing various
multi-stage or multi-step ImEx strategies, see [10, 20]. However, these approaches typically require
solving a substantial number of linear systems. To address this issue, we opted for a Crank-Nicolson
(CN) scheme, which minimizes the number of linear systems to be solved. To this end, we propose the
following semi-discrete CN formulation of the NSWE (2.9):

hn+1 = hn −∆t∇ . Fn+ 1
2 . (3.1)

where the upper indices n and n + 1 corresponds to the current time level, tn, and the new one,
tn+1 = tn + ∆t where ∆t is the time step at the nth iteration, respectively. The numerical mass flux
Fn+ 1

2 is an approximation of (hU)n+
1
2 up to second order. More precisely, we set

Fn+ 1
2 = (hU)n − ∆t

2
∇ .

(
(”hU)n+

1
2 ⊗ “Un+ 1

2

)
− ∆t

2Fr2
hn+

1
2∇ζn+ 1

2 , (3.2)

where the following extrapolation reconstruction is used

ψ̂n+ 1
2 =

3

2
ψn − 1

2
ψn−1.

The main ingredient of the numerical mass flux is the presence of a regularizing term proportional to
the gradient of the free surface [44, 54, 32, 50] which plays a similar role to the numerical viscosity
introduced in the Lax–Wendroff scheme [40]. The upper index n + 1

2 corresponds to the intermediate

time level tn+
1
2 such that

ψn+ 1
2 :=

ψn + ψn+1

2
.

The nonlinear convective flux term in (3.2) is treated explicitly through extrapolation (Adams–Bashforth
2) which enables the separate resolution of the equations and avoid costly fully implicit time integration
relying on the resolution of a large nonlinear system.

Once the nonlinear system (3.1) is solved, the new water depth hn+1 is known and the flow discharge
is computed as follows:

(hU)n+1 = (hU)n −∆t∇ .
(
(”hU)n+

1
2 ⊗ “Un+ 1

2

)
− ∆t

Fr2
hn+

1
2∇ζn+ 1

2 , (3.3)
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where the advection velocity and the advected discharge of the momentum equation are extrapolated.
In what follows, we show that the proposed semi-discrete scheme (3.1)-(3.3) in the low Froude number

limit provide a consistent approximation of the limiting equations (2.17).

Theorem 1. The semi-discrete scheme (3.1)-(3.3) is a consistent approximation of the low Froude shallow
water system (2.17) at the leading order asymptotic expansion in the asymptotic limit (Fr → 0).

Proof. We consider first the following asymptotic expansions for the unknowns:

hn(x) = hn0 (x) + Fr hn1 (x) + Fr2 hn2 (x) + · · ·
Un(x) = Un

0 (x) + Fr Un
1 (x) + Fr2 Un

2 (x) + · · ·
ζn(x) = hn0 (x) + z(x) + Fr hn1 (x) + Fr2 hn2 (x) + · · ·
hn−1(x) = hn−1

0 (x) + Fr hn−1
1 (x) + Fr2 hn−1

2 (x) + · · ·
Un−1(x) = Un−1

0 (x) + Fr Un−1
1 (x) + Fr2 Un−1

2 (x) + · · ·
ζn−1(x) = hn−1

0 (x) + z(x) + Fr hn−1
1 (x) + Fr2 hn−1

2 (x) + · · ·

(3.4)

which are well-prepared initial data satisfying the low Froude number limits in (2.17) at time level
tn and tn−1 respectively. It is assumed that hn0 (x) = h0 constant in space and time because appro-
priate boundary conditions are assumed (see Section 2.2). We now insert (3.4) into the semi-discrete
scheme (3.1)-(3.3) and retain the like powers of Fr. Inserting (3.4) into (3.3) and retaining the terms
with Fr−2 and Fr−1 give formally

∇(hn+1
0 + z) = ∇hn+1

1 = 0. (3.5)

Now, inserting (3.4) into (3.1) and retaining the terms with Fr0 lead to

∇ .
(
(h0U0)

n − ∆t

2
∇ .

(
(’h0U0)

n+ 1
2 ⊗ Û0

n+ 1
2
)
− ∆t

2
h
n+ 1

2
0 ∇(h

n+ 1
2

2 + z)
)
= 0. (3.6)

Now, inserting (3.4) into (3.3) and retaining the terms with Fr0 lead to

(h0U0)
n+1 = (h0U0)

n −∆t∇ .
(
(’h0U0)

n+ 1
2 ⊗ Û0

n+ 1
2
)
−∆th

n+ 1
2

0 ∇(h
n+ 1

2
2 + z). (3.7)

From (3.7) one can deduce the following:

(h0U0)
n − ∆t

2
∇ .

(
(’h0U0)

n+ 1
2 ⊗ Û0

n+ 1
2
)
− ∆t

2
h
n+ 1

2
0 ∇(h

n+ 1
2

2 + z) =
(h0U0)

n+1 + (h0U0)
n

2
. (3.8)

Hence, using (3.8), (3.6) becomes the following:

∇ .

(
(h0U0)

n+1 + (h0U0)
n

2

)
= 0 ⇒ ∇ . (h0U0)

n+1 = 0. (3.9)

In summary, the proposed semi-discrete numerical scheme yields the discrete limiting equations (3.5), (3.7)
and (3.9) which are consistent approximations of the limiting system (2.17) as Fr → 0.

3.2. Fully-discrete numerical scheme

In what follows, we adopt a numerical strategy based on a finite volume method with cell-centered
variables in order to discretize system (2.9). The domain Ω is divided using a uniform Cartesian grid,
C(Ω). Each cell Ci,j = (xi− 1

2
, xi+ 1

2
) × (yj− 1

2
, yj+ 1

2
), in the grid C(Ω) is rectangular, whose sizes in the

horizontal and vertical directions are respectively ∆x = xi+ 1
2
− xi− 1

2
and ∆y = yj+ 1

2
− yj− 1

2
. The

numerical unknowns are the approximation of the averaged value of the water height hni,j and of the
velocity Un

i,j at the time tn in each cell Ci,j ∈ C(Ω):

ψn
i,j ≈

1

∆x∆y

∫∫
Ci,j

ψ(x, y, tn) dxdy.
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Additionally, we use the following notations at the interface between cells Ci,j and Ci+1,j :

{ψ}i+ 1
2 ,j

=
ψi,j + ψi+1,j

2
and [ψ]i+ 1

2 ,j
= ψi+1,j − ψi,j .

Similarly, we use the following notations at the interface between cells Ci,j and Ci,j+1.

{ψ}i,j+ 1
2
=
ψi,j + ψi,j+1

2
and [ψ]i,j+ 1

2
= ψi,j+1 − ψi,j .

The fully discrete numerical scheme of the water height conservation equation of system (2.9) reads as

hn+1
i,j − hni,j +

∆t

∆x

(
Fn+ 1

2

i+ 1
2 ,j

−Fn+ 1
2

i− 1
2 ,j

)
+

∆t

∆y

(
Fn+ 1

2

i,j+ 1
2

−Fn+ 1
2

i,j− 1
2

)
= 0, (3.10)

with

Fn+ 1
2

i+ 1
2 ,j

= {(hu)n}i+ 1
2 ,j

− ∆t

2∆y

(
{(‘huv)n+ 1

2 }i+ 1
2 ,j+

1
2
− {(‘huv)n+ 1

2 }i+ 1
2 ,j−

1
2

)
− ∆t

2∆x
[(ĥu2)n+

1
2 ]i+ 1

2 ,j
− ∆t

2∆xFr2
{hn+ 1

2 }i+ 1
2 ,j

[ζn+
1
2 ]i+ 1

2 ,j
, (3.11)

and

Fn+ 1
2

i,j+ 1
2

= {(hv)n}i,j+ 1
2
− ∆t

2∆x

(
{(‘huv)n+ 1

2 }i+ 1
2 ,j+

1
2
− {(‘huv)n+ 1

2 }i− 1
2 ,j+

1
2

)
− ∆t

2∆y
[(ĥv2)n+

1
2 ]i,j+ 1

2
− ∆t

2∆yFr2
{hn+ 1

2 }i,j+ 1
2
[ζn+

1
2 ]i,j+ 1

2
, (3.12)

where

{ψ}i+ 1
2 ,j+

1
2
=
ψi,j + ψi+1,j + ψi,j+1 + ψi+1,j+1

4
.

As proposed in [18], we consider here a centred approximation of the free surface in order to maintain
the asymptotic limit. This also ensures the discrete stability of the steady-state at rest. The numerical
scheme involves boundary conditions that vary according to the flow regime. In this study, we do not
focus on the treatment of boundary condition (as it is well-known that handling boundary conditions
for hyperbolic systems can be particularly challenging; for further information, see [22]). The scheme
introduced in (3.10) is implicit and nonlinear with respect to the water height, thus one cannot solve it
directly. To address this issue, the Newton-Raphson method is typically applied, converting the original
nonlinear problem into a sequence of linear ones. Consequently, an iterative Newton process is employed
at each time step to find the solution. Specifically, we define the scheme as Si,j(h

n+1) = 0 with

Si,j(h) = hn+1
i,j − hni,j +

∆t

∆x

(
Fn+ 1

2

i+ 1
2 ,j

−Fn+ 1
2

i− 1
2 ,j

)
+

∆t

∆y

(
Fn+ 1

2

i,j+ 1
2

−Fn+ 1
2

i,j− 1
2

)
,

where the Newton method constructs a sequence (hn,q)q≥0 initialized with hn,0 = hn and proceed as
follows: ®

J (hn,q) δn,qh = S (hn,q) ,

hn,q+1 = hn,q − δn,qh .

In this context, J represents the Jacobian matrix of S(h) = (Si,j(h))Ci,j∈C(Ω). Moreover, hn+1 is defined

as lim
q→∞

hn,q. A similar method based on Newton’s approach is discussed in [11], where numerical results

demonstrate quadratic convergence.
Once the water depth hn+1

i,j is recovered, the momentum balance is computed using the following
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explicit upwind scheme with the extrapolation of the advection velocity:

(hu)n+1
i,j − (hu)ni,j

+
∆t

∆x

(
û
n+ 1

2 ,W

i+ 1
2 ,j

(
{ĥu}n+

1
2

i+ 1
2 ,j

)
+
− û

n+ 1
2 ,E

i+ 1
2 ,j

(
{ĥu}n+

1
2

i+ 1
2 ,j

)
−
− û

n+ 1
2 ,W

i− 1
2 ,j

(
{ĥu}n+

1
2

i− 1
2 ,j

)
+
+ û

n+ 1
2 ,E

i− 1
2 ,j

(
{ĥu}n+

1
2

i− 1
2 ,j

)
−

)

+
∆t

∆y

(
û
n+ 1

2 ,S

i,j+ 1
2

(
{ĥv}n+

1
2

i,j+ 1
2

)
+
− û

n+ 1
2 ,N

i,j+ 1
2

(
{ĥv}n+

1
2

i,j+ 1
2

)
−
− û

n+ 1
2 ,S

i,j− 1
2

(
{ĥv}n+

1
2

i,j− 1
2

)
+
+ û

n+ 1
2 ,N

i,j− 1
2

(
{ĥv}n+

1
2

i,j− 1
2

)
−

)

= −∆t

∆x
h
n+ 1

2
i,j

(
{ζn+ 1

2 }i+ 1
2 ,j

− {ζn+ 1
2 }i− 1

2 ,j

)
, (3.13)

(hv)n+1
i,j − (hv)ni,j

+
∆t

∆y

(
v̂
n+ 1

2 ,S

i,j+ 1
2

(
{ĥv}n+

1
2

i,j+ 1
2

)
+
− v̂

n+ 1
2 ,N

i,j+ 1
2

(
{ĥv}n+

1
2

i,j+ 1
2

)
−
− v̂

n+ 1
2 ,S

i,j− 1
2

(
{ĥv}n+

1
2

i,j− 1
2

)
+
+ v̂

n+ 1
2 ,N

i,j− 1
2

(
{ĥv}n+

1
2

i,j− 1
2

)
−

)

+
∆t

∆x

(
v̂
n+ 1

2 ,W

i+ 1
2 ,j

(
{ĥu}n+

1
2

i+ 1
2 ,j

)
+
− v̂

n+ 1
2 ,E

i+ 1
2 ,j

(
{ĥu}n+

1
2

i+ 1
2 ,j

)
−
− v̂

n+ 1
2 ,W

i− 1
2 ,j

(
{ĥu}n+

1
2

i− 1
2 ,j

)
+
+ v̂

n+ 1
2 ,E

i− 1
2 ,j

(
{ĥu}n+

1
2

i− 1
2 ,j

)
−

)

= −∆t

∆y
h
n+ 1

2
i,j

(
{ζn+ 1

2 }i,j+ 1
2
− {ζn+ 1

2 }i,j− 1
2

)
, (3.14)

with the positive and the negative part functions defined by ψ± =
|ψ| ± ψ

2
≥ 0. In line with [19], a

centred scheme is employed to discretize the free surface ζ for any Fr > 0. To formally achieve the second
order space accuracy, the convective terms are treated using a MUSCL reconstruction [56] supplemented
with a limiter to prevent the emergence of unwanted oscillations near discontinuous regions. For each
cell Ci,j , the reconstructed values at the interfaces are given by:

UW
i+ 1

2 ,j
= Ui,j +

∆x

2
× φ

(
Ui+1,j − Ui,j

∆x
,
Ui,j − Ui−1,j

∆x

)
,

UE
i− 1

2 ,j
= Ui,j −

∆x

2
× φ

(
Ui+1,j − Ui,j

∆x
,
Ui,j − Ui−1,j

∆x

)
,

US
i,j+ 1

2
= Ui,j +

∆y

2
× φ

(
Ui,j+1 − Ui,j

∆y
,
Ui,j − Ui,j−1

∆y

)
,

UN
i,j− 1

2
= Ui,j −

∆y

2
× φ

(
Ui,j+1 − Ui,j

∆y
,
Ui,j − Ui,j−1

∆y

)
,

where φ is a slope limiting function. In practice, we use the minmod limiting function [29] given by:

φ(a, b) = minmod(a, b) =


min(a, b) if a > 0 and b > 0,

max(a, b) if a < 0 and b < 0,

0 otherwise.

The combination of space and time discretization in (3.10), (3.13) and (3.14) gives rise to a second-order
ImEx scheme for the shallow water equations (2.9), referred to as ImEx 2.

In what follows, we provide the proof of the well-balanced property of the proposed ImEx 2 scheme,
which ensures that the “lake at rest” steady-state solutions (2.8) are exactly preserved by the numerical
method.

Theorem 2. The ImEx 2 scheme (3.10) and (3.13)-(3.14) preserves the discrete steady-states at rest
defined by Un

i,j = 0 and ζni,j = ζ0.
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Proof. Assuming the discrete unknowns at the nth time iteration satisfy the steady-state at rest, both
the discharge and free surface variation vanish, i.e., [ζn]i+ 1

2 ,j
= 0 and [ζn]i,j+ 1

2
= 0, hence the flux

approximations (3.11) and (3.12) can be expressed as

Fn+ 1
2

i+ 1
2 ,j

= − ∆t

2∆xFr2
{hn+ 1

2 }i+ 1
2 ,j

[ζn+1]i+ 1
2 ,j
, (3.15)

and

Fn+ 1
2

i,j+ 1
2

= − ∆t

2∆yFr2
{hn+ 1

2 }i,j+ 1
2
[ζn+1]i,j+ 1

2
. (3.16)

The fully discrete equation (3.10) for solving hn+1
i,j is first investigated. Substituting the discretiza-

tions (3.15) and (3.16) into (3.10), and since the free surface variations vanish, [ζn]i+ 1
2 ,j

= [ζn]i,j+ 1
2
= 0,

the scheme can be written as

hn+1
i,j − ∆t2

2∆x2Fr2

(
{hn+ 1

2 }i+ 1
2 ,j

[ζn+1]i+ 1
2 ,j

− {hn+ 1
2 }i− 1

2 ,j
[ζn+1]i− 1

2 ,j

)
− ∆t2

2∆y2Fr2

(
{hn+ 1

2 }i,j+ 1
2
[ζn+1]i,j+ 1

2
− {hn+ 1

2 }i,j− 1
2
[ζn+1]i,j− 1

2

)
= hni,j − ∆t2

2∆x2Fr2

(
{hn+ 1

2 }i+ 1
2 ,j

[ζn]i+ 1
2 ,j

− {hn+ 1
2 }i− 1

2 ,j
[ζn]i− 1

2 ,j

)
− ∆t2

2∆y2Fr2

(
{hn+ 1

2 }i,j+ 1
2
[ζn]i,j+ 1

2
− {hn+ 1

2 }i,j− 1
2
[ζn]i,j− 1

2

)
.

The unique solution is hn+1
i,j = hni,j , which implies ζn+1

i,j = ζ0.

Finally, since ζn+1
i,j = ζni,j = ζ0, the right hand side terms in (3.13) and (3.14) vanish, and thus we

get that:

(hu)n+1
i,j = (hu)ni,j = 0,

(hv)n+1
i,j = (hv)ni,j = 0.

In summary, when considering the “lake at rest” steady-state solutions, the proposed fully discrete
numerical scheme yields Un+1

i,j = 0 and ζn+1
i,j = ζ0, thereby justifying the well-balanced property of the

developed numerical methods.

4. Test cases

This section presents a series of numerical test cases in both one-dimensional and two-dimensional
settings to assess the performance of the proposed ImEx 2 numerical scheme. The one-dimensional tests
begin with demonstrations of the scheme’s second-order accuracy using a moving manufactured solution
and a stationary subcritical solution. This is followed by an evaluation of its shock-capturing capabilities
through the computation of a steady transcritical solution featuring a shock. Next, a classical Riemann
problem is examined, and a low Froude number gravity wave simulation is conducted to highlight the
advantages of the ImEx 2 scheme over the reference second-order explicit scheme from [46], particularly
in low Froude number flows.

In the two-dimensional setting, three numerical experiments are proposed: one steady-state and two
time-dependent cases, involving both flat and uneven bottom topographies. The first test investigates
a 2D cylindrical explosion problem, showcasing the ImEx 2 scheme’s superior performance in capturing
the limit solution in low Froude number flows compared to the reference explicit scheme. The second test
focuses on a specific member of the family of 2D non-trivial steady-state solutions over variable topogra-
phy, demonstrating the robustness of the well-balanced discretization and boundary treatments. Finally,
the third test examines a traveling vortex over a flat topography, verifying the second-order accuracy
of the ImEx 2 scheme in the low Froude number regime and highlighting its significant computational
efficiency relative to the reference explicit scheme.

10



In all numerical simulations, the time step is governed by the CFL condition associated with the
first-order Implicit-Explicit Centered Potential Regularization (ImEx CPR) scheme introduced in [50].
At the interface between cells Ci,j and Ci+1,j , this condition is expressed as follows:(

|{hn+1un}i+ 1
2 ,j

|+ {hn+1}i+ 1
2 ,j

 
γ

4

|[ζn+1]i+ 1
2 ,j

|
Fr2

)
∆t ≤ min(hn+1

i,j , hn+1
i+1,j)

∆x

8
,

where γ is a regularization parameter set to 1. The time step is determined as the minimum value
satisfying this condition across all cell interfaces.

4.1. 1D Numerical tests

4.1.1. Manufactured solution

In this test case, we verify the second-order accuracy of the proposed ImEx 2 scheme using a moving
manufactured solution. To this end, we consider the following one-dimensional non linear shallow water
equations in the flat bottom case (z = 0):®

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x
Ä
hu2 + g h2

2

ä
= Φ.

(4.1)

We construct the source term Φ = Φ(x, t) in order to impose the solution to be equal to
hex(x, t) = h0 + a sech2(κ(x− x0 − ct)) ,

uex(x, t) = c
(
1− h0

hex(x, t)

)
,

κ =

√
3a

2h0
√
h0 + a

, c =
√
g(h0 + a).

(4.2)

Following the classical manufactured solution method, we set

Φ(x, t) = ∂t(hex(x, t)uex(x, t)) + ∂x

(
hex(x, t)u

2
ex(x, t) + g

h2ex(x, t)

2

)
= hex(∂tuex + uex∂xuex + g∂xhex).

The initial condition is given by the exact solution at time t = 0 on the domain Ω = [0, 50] with a = 1.2,
h0 = 1, x0 = 15 and g = 9.81. We set Dirichlet boundary conditions given by the exact solution at the
borders of the domain. In Figure 2, we plot in a log-log scale the L1-errors for h and hu as a function of
the space step ∆x. One can clearly see that the theoretical second-order rate of convergence is validated
numerically.

4.1.2. Moving steady-states

We will now evaluate the scheme’s capacity to maintain steady-states with a nonzero discharge. Two
experiments, based on Goutal and Maurel’s test cases [31], are conducted: one for subcritical flow and
another for transcritical flow with a shock. In the one-dimensional case, the system of equations (2.7)
reduces to the following Bernoulli relation:

q20
2h2

+ g(h+ z) = H (4.3)

where q0 represents the constant discharge and H denotes the total head, which is calculated using
known values from the upstream boundary of the domain. In the case of transcritical flow, a stationary
shock is present; while the discharge remains constant, the total head exhibits a discontinuity at the
shock’s location.
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Figure 2: Manufactured solution: L1-errors of the ImEx 2 scheme for h and hu as a function of ∆x.

Subcritical flow. In this test case, we verify the second-order accuracy of the proposed ImEx 2 scheme
using a stationary subcritical solution. The computational domain is [0, 25], and the topography features
a bump, defined as follows:

z(x) =

ß
0.2− 0.05(x− 10)2 if 8 < x < 12,
0 otherwise.

We use the following initial conditions h(x, 0)+z(x) = 2 and h(x, 0)u(x, 0) = 0. We have h(0, t)u(0, t) =
4.42 and h(25, t) = 2 as boundary conditions. Now, we define a global relative change indicator to
evaluate whether a numerical steady-state solution has been achieved. This indicator, first introduced
in [43], indicates convergence when its value, denoted as R and given by (4.4), falls below a specified
threshold Rc (Rc → 0). For this particular test case, we set Rc = 10−9. It is important to note that
the convergence referenced here pertains to a numerical steady-state rather than a physical one, owing
to the influence of numerical errors.

R =

Ã
N∑
i=1

Ç
hn+1
i − hni
hni

å2

, (4.4)

where N represents the total number of grid cells, and the superscripts n and n+ 1 denote consecutive
time steps. In Figure 3, we present the results obtained using the ImEx 2 scheme with 800 grid cells. A
strong agreement is observed between the numerical solutions and the exact ones obtained using (4.3).
This is further supported by Figure 4, which reports the L1-errors for both h and hu, confirming second-
order accuracy.

Transcritical with shock. This test case is devoted to a transcritical flow with a shock where we analyze
the shock-capturing capability of the proposed ImEx 2 scheme. Using the same simulation domain,
bottom topography, and Rc as those in the previous test case, we consider the following initial data:

h(x, 0) + z(x) = 0.33 and h(x, 0)u(x, 0) = 0.

We impose h(0, t)u(0, t) = 0.18 at the left end of the domain and h(25, t) = 0.33 at the right end.
The domain is discretized using 200 grid cells. The exact solution is obtained using (4.3), where in
the case of a transcritical flow, a stationary shock is present; although the discharge remains constant,
the total head, as described by the Bernoulli equation (4.3), exhibits a discontinuity at the shock’s
location. In Figure 5, we present a comparison between the results from the ImEx 2 scheme and the
first-order Implicit Explicit Centered Potential Regularization (ImEx CPR) scheme developed in [50].
The numerical solutions show a strong agreement with the exact ones. Additionally, it is evident from

12



0 5 10 15 20 25
0

0.5

1

1.5

2

Exact
ImEx 2
Bottom

0 5 10 15 20 25

4.4195

4.42

4.4205

Figure 3: Subcritical solution: comparison of numerical (with N = 800 grid cells) and exact solutions. Top: free surface
elevation, bottom: discharge.
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Figure 4: Subcritical solution: L1-errors of the ImEx 2 scheme for h and hu as a function of ∆x.

the flow discharge figure that the second-order ImEx 2 scheme yields a more accurate solution compared
to the ImEx CPR scheme. It can be noted that the L1−error of the discharge is very low, being of the
order 8.7 × 10−3 while the error of the discharge obtained with the ImEx CPR scheme is three times
larger of the order 2.66× 10−2.

4.1.3. Riemann problem

We now apply the ImEx 2 scheme to a 1D shock tube test case, with a spatial domain defined as
[0, 1]. The initial conditions are given by:

h(x, 0) =

ß
1 + ε if x < 0.5,
1 otherwise;

h(x, 0)u(x, 0) = 1.

Homogeneous Neumann boundary conditions are imposed at both ends of the domain. The exact
solution of this Riemann problem features a leftward-propagating rarefaction wave and a rightward-
moving shock wave. In Figure 6, we compare the performance of the ImEx 2 scheme and the ImEx
CPR scheme for different values of the squared Froude number, ε. The left panel shows the results
for ε = 1 using 50 discretization cells at tf = 0.125 s, while the right panel presents the results for
ε = 10−2 using 125 discretization cells at tf = 2 × 10−2 s. As expected, the first-order CPR scheme
(solid blue line) introduces substantial diffusion, whereas the second-order ImEx 2 scheme (red dashed
line) delivers a more accurate capture of intermediate states. Nonetheless, overshoots and undershoots
appear at the front and rear of the rarefaction wave and around the shock wave when the Froude
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Bottom

Figure 5: Transcritical flow with a shock: comparison of the ImEx 2 and the ImEx CPR schemes.

number decreases. As noted in [21], second-order implicit-explicit time discretizations for this class of
problems face similar challenges as traditional implicit schemes for hyperbolic problems of order higher
than one [30], particularly the loss of the total variation diminishing (TVD) property. The oscillations
in the second-order ImEx 2 scheme arise from the time discretization, indicating the need for a limiter.
However, addressing this issue is beyond the scope of this paper and is left for a future work. One can
see [21] where an increase in precision was achieved by introducing a new paradigm of implicit time
integrator by coupling first-order in time schemes with second-order ones in the same spirit as highly
accurate shock-capturing TVD methods in space.

Figure 6: Riemann problem: comparison of the ImEx 2 and the ImEx CPR schemes. (Left) ε = 1, 50 discretization cells
and tf = 0.125 s; (right) ε = 10−2, 125 discretization cells and tf = 2× 10−2 s.
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4.1.4. Low Froude number gravity wave

One of the main advantages of ImEx schemes over traditional explicit methods is their ability to
accommodate larger time steps, making them particularly efficient for simulating low Froude number
flows. To demonstrate this efficiency, we examine a low Froude number gravity wave simulation inspired
by [23]. The computational domain is Ω = [xL, xR], with initial conditions h(x, 0) = h0 and u(x, 0) = 0.
The bottom is flat (z = 0), and boundary conditions are specified as follows: a no-flux condition
u(xL, t) = 0 on the left boundary, and a periodic water height signal at the right boundary, given by
h(xR, t) = h0+Ah sin

(
2πt
T

)
. For this problem, we use the parameters xL = 0, xR = 100 km, h0 = 100m,

Ah = 5m, and a tidal period T = 12h. Simulations are conducted with the ImEx 2 scheme and the
HLL-MUSCL-RK2 explicit scheme from [46] both using 100 cells. The results are compared to a solution
obtained from [23] using the semi-implicit DG scheme with a polynomial basis of degree 5 and 200 cells.
The final simulation time is t = 96h with results showing the temporal evolution of water height h and
velocity u at x = 25 km, as illustrated in Figure 7. In this simulation, the maximum Froude number is
Frmax = 0.016. Comparatively, the ImEx 2 scheme solution aligns more closely with the semi-implicit
DG solution than the HLL-MUSCL-RK2 solution. Additionally, the ImEx 2 scheme requires only 1.5
seconds of CPU time to complete the simulation up to the final time t = 96h, versus 42.2 seconds for
the explicit HLL-MUSCL-RK2 scheme, underscoring the computational efficiency of the ImEx 2 scheme
in low Froude number flows.
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Figure 7: Low Froude gravity wave: comparison of the ImEx 2 and the HLL-MUSCL-RK2 schemes with the reference
solution at x = 25 km. (Left) water height h ; (right) velocity u.

4.2. 2D Numerical test

4.2.1. 2D cylindrical explosion problem

In this test case, we evaluate the performance of the ImEx 2 scheme on non-steady solutions for small
Froude numbers. Inspired by studies on the 2D cylindrical explosion problem for the isentropic Euler
system in [20, 7], we adapt the test to the homogeneous shallow water equations (2.1). These equations
share a similar mathematical structure with the isentropic Euler equations when the water depth h is
analogous to the gas density ρ, and the equation of state for compressible gas is defined as p(ρ) := 1

2ρ
2.

The computational domain is set to be [−1, 1]× [−1, 1], with an initial water depth defined as:

h(x, y, 0) =

 1 + Fr2, if r2 ≤ 1/4,

0, otherwise,

where r =
√
x2 + y2 denotes the radial distance. The initial velocity components are given by:

u(x, y, 0) = − α(x, y)

h(x, y, 0)

x

r
, v(x, y, 0) = − α(x, y)

h(x, y, 0)

y

r
,

where α(x, y) = max(0, 1− r)(1− exp(−16r2)). For r ≤ 10−15, both u and v are set to zero. The initial
data are represented in Figure 8. Periodic boundary conditions are applied, and the computational grid
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Figure 8: 2D cylindrical explosion, Fr = 1: Initial water depth (left), and two dimensional velocity field (right).

Figure 9: 2D cylindrical explosion, Fr = 1: t = 0.1 (left panel), t = 0.24 (middle panel), and t = 0.4 (right panel). Top
images show the water depth profile for the HLL-MUSCL-RK2 scheme. Bottom images show the water depth profile for
the ImEx 2 scheme.
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Figure 10: 2D cylindrical explosion, Fr = 1: t = 0.1 (left panel), t = 0.24 (middle panel), and t = 0.4 (right panel). Top
images show the velocity field for the HLL-MUSCL-RK2 scheme. Bottom images show the velocity field for the ImEx 2
scheme.
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consists of 100 cells in each direction. We compute the solution for various Froude numbers (Fr = 1 and
Fr = 10−2) using both the ImEx 2 scheme and the HLL-MUSCL-RK2 explicit scheme. Figures 9-10
illustrate the water depth and the velocity field for Fr = 1 at different times t = 0.1, 0.24, 0.4, comparing
results from both schemes. These figures confirm that the ImEx 2 scheme accurately replicates the
numerical behaviour of the explicit scheme at the Froude number Fr = 1. For the low Froude number
case (Fr = 10−2), Figure 11 displays the water depth, velocity field, and divergence of the velocity field
at t = 0.145. The results show that the ImEx 2 scheme effectively captures the limit solution, whereas
the explicit scheme continues to resolve small wave dynamics. Notably, the water depth deviation in
the ImEx 2 scheme is of the order O(Fr2) (approximately 10−4), and the divergence of the velocity field
is around 10−2. These observations confirm the ImEx 2 scheme’s capability to accurately handle low
Froude number flows. From a computational perspective, the ImEx 2 scheme demonstrates significant
efficiency, requiring approximately three times less computational cost than the explicit scheme in our
implementation.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 11: 2D cylindrical explosion, Fr = 10−2 at t = 0.145: water depth profile (left panel), velocity field (middle panel),
and divergence of the velocity field (right panel). Top images for the HLL-MUSCL-RK2 scheme. Bottom images for the
ImEx 2 scheme.

4.2.2. 2D potential solution with variable topography

To assess the well-balanced discretization and the proposed boundary treatment, we examine a
specific case from the family of 2D exact solutions presented in [52], which satisfies non-trivial steady-
state conditions. On the spatial domain [−1, 1] × [−1, 1], we use a solution where the velocity field is
divergence-free and derived from the harmonic function ψ = xy, leading to the velocity components

u =
∂ψ

∂y
= x, v =

∂ψ

∂x
= y. The relative water height is defined as h = α + ψ, while the bed elevation

z(x, y) is calculated from g(h + z(x, y)) = 30 − x2 + y2

2
. For this test case, we set α = 1.5 and use a

gravitational acceleration g = 10. The boundary conditions specify subcritical inlets at the top and
bottom boundaries, and subcritical outlets at the left and right boundaries, since the Froude number
remains below one throughout the domain. Starting from the exact solution, we evolve the system
towards a steady-state using the ImEx 2 scheme. In Figure 12, we provide a three-dimensional repre-
sentation of the steady-state solution, which includes the topography. We also plot the Froude number

Fr =

 
u2 + v2

gh
over the domain. Additionally, we compare the analytical and numerical solutions for

the height h. The numerical results were derived using the ImEx 2 scheme on a 100×100 grid resolution.
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The comparison demonstrates a strong agreement between the numerical and exact solutions across all
state variables.

Now, we repeat the same test case but in a smaller Froude number regime. To this end, we only
change the value of α, we consider α = 150 in the definition of h. As a result, the Froude number does
not exceed 0.0370. In Figure 13, we present the three-dimensional representation of the steady-state
solution for the smaller Froude number regime (with α = 150). The plot includes the water height,
the topography and a visualization of the Froude number across the domain, where values remain
significantly below 0.0370. A comparison between the analytical and numerical solutions for the height
h shows an excellent agreement, demonstrating the robustness of the method in handling low Froude
number flows.
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Figure 12: 2D potential solution, α = 1.5: 3D view (top left), contour plot for h (top right) and Froude number Fr (bottom
left) and free surface level ζ = h+ z (bottom right).

4.2.3. Traveling vortex

In [53], a solution to the two-dimensional shallow water equations is derived for traveling vortex
scenarios. The problem is set within a unit square domain [0, 1]× [0, 1], where periodic boundaries are
enforced along the x-axis, and absorbing boundaries are applied along the y-axis. The initial setup for
this configuration, depicted in Figure 14, is given by the following conditions:

h(x, y, 0) = 10 +


(εΓ
ω

)2
(ϕ(ωrc)− ϕ(π)), if ωrc ≤ π,

0, otherwise,

u(x, y, 0) = 6 +

 Γ(1 + cos(ωrc))(0.5− y), if ωrc ≤ π,

0, otherwise,

v(x, y, 0) =

 Γ(1 + cos(ωrc))(x− 0.5), if ωrc ≤ π,

0, otherwise,
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Figure 13: 2D potential solution, α = 150: water height h (top left), contour plot for h (top right) and Froude number Fr
(bottom left) and bottom topography z (bottom right).

rc = ∥(x, y)− (0.5, 0.5)∥, Γ = 15, ω = 4π,

ϕ(r) = 2 cos(r) + 2rsin(r) +
1

8
cos(2r) +

r

4
sin(2r) +

3

4
r2.

A vortex initially located at (0.5, 0.5) undergoes rotational motion and is repeatedly carried to the right
with a period T = 1/6 by a uniform flow with an advection velocity of Uref = (6, 0). The Froude number

is determined by modifying ε, where Fr =
uref
href

=
6ε√
10

. Figure 15 illustrates a comparison between

results obtained using the ImEx 2 scheme and the second-order explicit scheme (HLL-MUSCL-RK2)
for two Froude numbers: Fr = 1 (top) and Fr = 10−3 (bottom), with a grid resolution of 200 × 200.
The numerical solutions are compared against the exact ones using contour plots of the depth h (left)
and cross-sections at y = 0 (right), at the moment when the vortex returns to its starting location at
time T = 1/6. For Fr = 1, both schemes yield results that are virtually indistinguishable from the exact
solution. However, for the lower Froude number Fr = 10−3, noticeable differences arise between the
two schemes, as seen in the bottom plots of Figure 15. On this grid, the ImEx 2 scheme shows a clear
advantage, with the explicit scheme exhibiting greater numerical diffusion, particularly in low Froude
number scenarios. The results confirm that the ImEx 2 scheme accurately preserves both the vortex’s
position and amplitude across different flow conditions.

Table 1 presents the L1-error measurements for the primitive variables h, hu, and hv, along with
the EOC for the ImEx 2 scheme, using various grid resolutions N × N . The numerical solutions and
exact solutions are obtained at time T = 1/6 for different Froude numbers: Fr = 1, 0.1, 0.01, and 0.001.
The results confirm that the ImEx 2 scheme achieves second-order accuracy across the range of Froude
numbers tested.

In Figure 16, the L1-errors for h are shown for both the explicit HLL-MUSCL-RK2 scheme and the
ImEx 2 scheme, plotted against the grid size on a log-log scale. Additionally, a solid line with a slope
of 2 and a dashed line with a slope of 1 are included for reference. For Fr = 1 (left), the results confirm
that both schemes exhibit second-order convergence as expected. However, when Fr = 10−3 is used,
the explicit scheme experiences a reduction in its convergence order, while the ImEx 2 scheme remains
unaffected by the scaling parameter.

It is useful to compare the CPU times required by the ImEx 2 scheme and the explicit HLL-MUSCL-
RK2 scheme. These timings are presented in Table 2, where significant computational savings for the
ImEx 2 scheme in the low Froude number regime are clearly evident.
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Figure 14: Traveling vortex: initial condition with Fr = 1, computed on the 80× 80 grid.

5. Conclusion

We developed a novel numerical method specifically designed for shallow water flows at low Froude
numbers addressing the scientific challenges in this regime. As the Froude number approaches zero, the
hyperbolic nature of the governing equations changes, introducing stiffness that imposes restrictive CFL
conditions and increases computational cost. To overcome these difficulties, we proposed a second-order
implicit-explicit (ImEx) scheme capable of efficiently handling a full range of Froude numbers. In this
approach, the water height and hybrid mass fluxes are computed implicitly, while the velocity is treated
explicitly. A Crank-Nicolson scheme is employed to achieve second-order accuracy while minimizing the
number of required linear system solutions, thereby enhancing computational efficiency. The developed
scheme is asymptotic preserving in the sense that it provides consistent and stable approximation of the
underlying system in the low Froude number regime and also guarantees the well-balanced property.
The scheme has been validated against various numerical test cases, both in one and two horizontal
dimensions. We proved the accuracy of the model using both steady and unsteady flows and used
numerical test cases on a wide range of Froude numbers which are related with coastal and oceanic
applications. We compared the CPU time of our scheme to that of a classical HLL-MUSCL-RK explicit
scheme using three test cases: a low Froude gravity wave, a 2D cylindrical explosion and a 2D traveling
vortex. Our results show that our method can be more than 20 times faster on large meshes and low
Froude numbers.
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Figure 15: Traveling vortex: comparison of the contour plots for h (left) and at y = 0 (right) at T = 1/6 of the explicit
HLL-MUSCL-RK2 scheme and the ImEx2 scheme with Fr = 1 (top) and Fr = 10−3 (bottom), computed on the 200 ×
200 grid.
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Figure 16: Traveling vortex: comparison of the L1-errors for h of the explicit HLL-MUSCL-RK2 scheme and the ImEx2
scheme with Fr = 1 and Fr = 10−3.
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Fr = 1, T = 1/6

N L1-error in h EOC L1-error in hu EOC L1-error in hv EOC

40 1.262e-02 2.497e-01 4.027e-01

80 3.0520e-03 2.0474 7.070e-02 1.8206 1.259e-01 1.6771

160 7.002e-04 2.1239 1.827e-02 1.9515 3.507e-02 1.8442

320 1.677e-04 2.0614 4.830e-03 1.9201 9.491e-03 1.8857

Fr = 0.1, T = 1/6

N L1-error in h EOC L1-error in hu EOC L1-error in hv EOC

40 1.106e-04 2.614e-01 4.276e-01

80 2.988e-05 1.8889 7.251e-02 1.8501 1.324e-01 1.6906

160 7.283e-06 2.0367 1.882e-02 1.9457 3.658e-02 1.8565

320 1.808e-06 2.0098 4.964e-03 1.9227 9.859e-03 1.8918

Fr = 0.01, T = 1/6

N L1-error in h EOC L1-error in hu EOC L1-error in hv EOC

40 1.445e-06 2.617e-01 4.274e-01

80 3.311e-07 2.1258 7.255e-02 1.8509 1.324e-01 1.6901

160 7.295e-08 2.1825 1.884e-02 1.9450 3.659e-02 1.8560

320 1.756e-08 2.0547 4.971e-03 1.9221 9.864e-03 1.8912

Fr = 0.001, T = 1/6

N L1-error in h EOC L1-error in hu EOC L1-error in hv EOC

40 1.282e-08 2.564e-01 4.182e-01

80 2.850e-09 2.1697 7.029e-02 1.8670 1.283e-01 1.7047

160 7.656e-10 1.8962 1.817e-02 1.9514 3.527e-02 1.8629

320 1.701e-10 2.1698 4.784e-03 1.9255 9.490e-03 1.8941

Table 1: Traveling vortex: L1-errors and EOC for the ImEx 2 scheme for different Froude numbers Fr.

Grid
Fr = 1 Fr = 0.1 Fr = 0.01 Fr = 0.001

ImEx2 Explicit ImEx2 Explicit ImEx2 Explicit ImEx2 Explicit

40 × 40 8.65 0.62 5.02 2.29 4.83 13.89 5.14 138.44
80 × 80 38.36 7.54 39.67 31.79 41.59 278.30 41.89 2,052.39
200 × 200 788.57 41.30 714.20 220.91 715.94 2,133.62 746.72 16,718.47

Table 2: Traveling vortex: CPU times in seconds consumed by the ImEx 2 and HLL-MUSCL-RK2 explicit schemes on
different grids for different values of Fr. The final time is T = 1/6.
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