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ABSTRACT
Fallacies are arguments that seem valid but contain logical flaws.
During the COVID-19 pandemic, they played a role in spread-
ing misinformation, causing confusion and eroding public trust
in health measures. Therefore, there is a critical need for auto-
mated tools to identify fallacies in media, which can help mitigate
harmful narratives in future health crises. We present two key
contributions to address this task. First, we introduce FALCON,
a multi-label, graph-based dataset containing COVID-19-related
tweets. This dataset includes expert annotations for six fallacy
types—loaded language, appeal to fear, appeal to ridicule, hasty gen-
eralization, ad hominem, and false dilemma—and allows for the
detection of multiple fallacies in a single tweet. The dataset’s graph
structure enables analysis of the relationships between fallacies
and their progression in conversations. Second, we evaluate the
performance of language models on this dataset and propose a
dual-transformer architecture that integrates engineered features.
Beyond model ranking, we conduct statistical analyses to assess
the impact of individual features on model performance.

CCS CONCEPTS
• Computing methodologies→ Discourse, dialogue and prag-
matics; • Applied computing→ Annotation.
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1 INTRODUCTION
The COVID-19 pandemic was accompanied by an infodemic—an
overwhelming flood of information, including false or misleading
content, spreading rapidly during a disease outbreak, as defined by
the World Health Organization.1 Within this landscape, fallacies

1https://www.who.int/health-topics/infodemic.
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were a common mechanism for disseminating disinformation, mis-
information, and propaganda. Fueling skepticism about vaccines,
promoting ineffective treatments, and undermining trust in public
health guidelines are just a few examples of how fallacies have been
used to manipulate public opinion and behavior.

A fallacy is an argument that appears valid but contains log-
ical flaws [16, 21]. Fallacies are not necessarily false statements;
rather, they are arguments that fail to provide valid support for
their conclusions [22]. This distinction matters because fallacies
often contain elements of truth, making them particularly chal-
lenging for audiences to detect. In the context of social media, the
fast-paced and information-saturated environment, combined with
algorithms that prioritize engagement over accuracy, can make it
hard for users to evaluate each piece of content critically. Identify-
ing fallacies helps users spot misleading narratives, make informed
decisions, and promote public health.

However, merely detecting the presence or absence of a fallacy
is often insufficient for users. To better understand the flawed logic,
we need to identify the specific type of fallacy present. For ex-
ample, consider the statement: “I saw several people who wore
masks still getting COVID-19, so wearing masks doesn’t work at
all.” This statement commits a hasty generalization by using a small,
anecdotal set of observations to make a broad conclusion about
the effectiveness of masks. While it is not false that some people
who wore masks contracted COVID-19, the conclusion that masks
“don’t work at all” is unwarranted based on this limited evidence.
Knowing the type of fallacy helps users understand the exact na-
ture of the logical flaw. Moreover, different fallacies can co-occur
within the same piece of text. Therefore a multi-label classification
approach, where multiple fallacies can be identified within the same
sequence of text, offers a more comprehensive understanding than
traditional multi-class classification. Most existing approaches to
fallacy detection and classification frame the problem as a multi-
class classification task, where only one fallacy label is assigned to
each data point [2, 3, 15, 16, 19, 25, 34, 36, 38, 40]. This is partly due
to the limitations of many available datasets, which permit only a
single fallacy label per instance. In contrast, we approach it as a
multi-label classification task.

Our contribution is two-fold. First, we present the FALCON (Fal-
lacies in COVID-19 Network-based) dataset, a collection of tweets2
related to the COVID-19 pandemic and politically associated discus-
sions annotated with 6 fallacy categories: loaded language, appeal
to fear, appeal to ridicule, hasty generalization, ad hominem, and
false dilemma. Annotations are provided at the tweet level and in
a multi-label format, meaning that a tweet can be associated with

2When the data was extracted, the platform was called Twitter instead of X. Therefore,
we refer to the posts as tweets.
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more than one fallacy category. The dataset includes an underlin-
ing graph structure that can be used to model the relationships
between the fallacies. To the best of our knowledge, this is the
first dataset to offer multi-label human-expert fallacy annotations
for tweets related to the COVID-19 pandemic. Second, we use our
dataset to evaluate the performance of a set of language models on
the task of multi-label fallacy classification. Among these, we pro-
pose a transformer-based architecture that leverages non-textual
engineered features and context information related to the tweet,
extracted from the graph structure of the dataset.3

2 RELATEDWORKS
Corpora. Several datasets have been developed to study fallacies

in text. For example, Argotario [19] (five fallacy types) is a dataset
derived from the game of the same name. LOGIC and LOGICCLIMATE
[26] (13 fallacy types) include logical fallacies collected from online
educational materials and climate change news articles, respec-
tively. ElecDeb60To20 [15] (six fallacy types) comprises political
debates from United States presidential candidates. Habernal et al.
[20] (only ad hominem) and Sahai et al. [34] (eight fallacy types)
created datasets by mining Reddit. Payandeh et al. [32] proposed a
dataset containing over 5,000 pairs of logical and fallacious argu-
ments from debates generated by Large Language Models (LLMs)
on controversial topics.

Other datasets provide annotations for propaganda techniques,
including certain fallacy types. For example, PTC-SemEval20 [12]
consists of news articles, TWEETSPIN [38] is based on tweets, and the
Reddit-based dataset provided by Balalau and Horincar [4] includes
information from six major political forums in the US and UK.
Closer to our work, Musi et al. [30] present a dataset that compiles
news articles on COVID-19. Finally, datasets like MAFALDA [22] and
the one proposed by Alhindi et al. [2] were created by merging
existing fallacy datasets, with the latter also proposing Climate, a
dataset of climate change articles fact-checked by scientists.

Fallacy Classification. Several studies have addressed fallacy clas-
sification at the text snippet or token level using machine learning
models. Initially, Habernal et al. [19] employed SVM and BiLSTM
models on the Argotario dataset, achieving a macro F1 score of
42.1% (6 classes). Later studies mainly employed transformer-based
models. For example, Da San Martino et al. [12] introduced sev-
eral models in the SemEval-2020 Task 11 challenge for detecting
propaganda techniques, with the 10 best-performing models uti-
lizing a transformer architecture. Many of those combine outputs
from multiple transformers with engineered features, with the best
model achieving a 63.4% macro F1 score (14 classes). Goffredo et al.
[15, 16] proposed transformer-based architectures that integrate
text, argumentative features, and engineered features, achieving
macro F1 scores of 84.0% and 73.9% (7 classes) at the text snippet
and token levels, respectively. Vorakitphan et al. [40] developed
a transformer-based pipeline that, when combined with seman-
tic and argumentative features, achieved a 64.0% macro F1 score
(14 classes). Sahai et al. [34] used a fine-tuned BERT model for
token-level fallacy classification on Reddit comments, achieving
a macro F1 score of 53.4%. Their findings also indicated improved

3Code and data available at https://github.com/m-chaves/falcon-fallacy-classification.

model performance when the conversation context of a post was
included. Sourati et al. [36] combined LLMs with explainable meth-
ods based on prototype reasoning, instance-based reasoning, and
knowledge injection to classify fallacies, achieving macro F1 scores
of 82.7% and 57.3% on the LOGIC and LOGICCLIMATE datasets (13
classes), respectively. Vijayaraghavan and Vosoughi [38] utilized
a transformer-based model incorporating additional features (e.g.
context and relational information) to classify propaganda in tweets,
achieving a 63.7% F1 score (19 classes).

Some approaches focused on transforming text into logical forms
to distill argumentative structures; for instance, Jin et al. [26] pro-
posed a structure-aware classifier based on a pre-trained Natural
Language Inference (NLI) model, achieving macro F1 scores of 58.8%
and 29.4% (13 classes) on the LOGIC and LOGICCLIMATE datasets,
respectively. Similarly, Lalwani et al. [27] translated natural lan-
guage into First-Order Logic (FOL) using LLMs and then applied
Satisfiability Modulo Theory (SMT) solvers to classify fallacies,
achieving F1 scores of 71.0% and 73.0% in two binary classification
tasks (fallacious vs. non-fallacious).

More recently, research has explored the use of transformers
in zero-shot, few-shot, and full-shot scenarios for fallacy classi-
fication. For instance, Helwe et al. [22] used various versions of
Falcon, LLAMA2, Mistral, Vicuna, WizardLM, Zephyr, and GPT-3.5
in zero-shot and few-shot settings on the MAFALDA dataset for bi-
nary classification, three broad fallacy categories, and 23 fallacy
types, achieving F1 scores of 62.7%, 20.1%, and 13.8%, respectively.
Alhindi et al. [2] experimented with different prompts and zero, few,
and full-shot scenarios using the T5 model on the PTC-SemEval20,
LOGIC, Argotario, COVID-19, and Climate datasets, achieving F1
scores of 56%, 66%, 64%, 28%, and 20%, respectively. In subsequent
work, Alhindi et al. [3] improved on this same setting by leveraging
GPT-3.5 to generate examples to increase the representation of rare
classes and incorporate additional contextual information.

In summary, the F1 scores vary significantly across different
datasets, even when the same model architecture is applied. While
some variability can be attributed to different class counts within
the corpora, models can produce vastly different results even with
the same set of fallacies. This highlights how dataset characteristics,
such as text complexity or domain specificity, can influence model
performance. Moreover, most of the models mentioned share com-
mon characteristics: they are predominantly transformer-based,
often enhanced by additional features such as argumentative or
semantic structures, context, and external knowledge.

Challenges of Fallacy Annotation. By their very nature, falla-
cies are challenging for humans to recognize and classify. Helwe
et al. [22] reported that human subjects achieved an F1 score of
35.2% when classifying fallacies into three broad categories, and a
mere 18.6% for identifying 23 finer fallacy types. This complexity
makes fallacy annotation especially costly, often limiting the size
of datasets. The ones listed above contain hundreds or a few thou-
sands of data points, except for TWEETSPIN, which reaches 157,395
entries using automated processes instead of human-expert anno-
tations. Also, the annotation process for fallacies is subjective [22].
To address these challenges, Helwe et al. [22] introduced a scheme
that allows for multiple equally valid annotations for the same text
span. While the dataset produced includes high-quality multi-label

https://github.com/m-chaves/falcon-fallacy-classification
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annotations, the difficulties mentioned above resulted in a rather
reduced count of 203 data points.

Our work extends previous studies on fallacy annotation and
classification. We present the first dataset providing multi-label
expert annotations of fallacies in tweets related to the COVID-19
pandemic. The dataset contains 2,916 tweets, each annotated with
one or more labels from seven categories (including six fallacy types
and a non-fallacious class), substantially increasing the availability
of multi-label fallacy data. The dataset offers a graph-based rep-
resentation, facilitating the linking of data points, extraction of
contextual information, and modeling of relationships between fal-
lacies. Second, while prior studies have advocated for using contex-
tual information and engineered features [12, 15, 16, 34, 38, 39, 39]
to improve fallacy classification, they have largely relied on ranking
models to assess the impact of these features. In contrast, we em-
ploy statistical tests to evaluate their effects on model performance.
Finally, while most existing approaches focus on multi-class classi-
fication, where each snippet or token is limited to a single fallacy
label, we propose transformer-based architectures for multi-label
fallacy classification, allowing each tweet to be associated with
multiple fallacies.

3 DATASET
In this section, we present the FALCON (Fallacies in COVID-19
Network-based) dataset. This is a collection of tweets related to the
COVID-19 pandemic and politically associated discussions anno-
tated with six fallacy categories: loaded language, appeal to fear, ap-
peal to ridicule, hasty generalization, ad hominem, and false dilemma.
Annotations are provided at the tweet level and in a multi-label
format, meaning that a tweet can be associated with more than one
fallacy category.

3.1 Data Collection and Preprocessing
The dataset was created using a collection of tweets web-scraped
by the Barcelona Supercomputing Center [14]4. They collected the
data via the Twitter (X) API from March 25, 2020, to March 25,
2021, and focused on topics related to the COVID-19 pandemic and
politically associated discussions (e.g., army mobilizations during
the pandemic). For example, some of the keywords used for ex-
traction were “covid,” “azithromycin,” “ivermectin,” “bleach,” and
“vaccine.” Some of those keywords are related to conspiracy the-
ories and misinformation about the COVID-19 pandemic. For in-
stance, azithromycin and ivermectin were promoted as treatments
for COVID-19 despite the lack of scientific evidence, leading some
to advocate for the use of these drugs instead of vaccines, masks,
and lockdowns. This made this dataset suitable for studying falla-
cies. From the data collection, we extracted variables related to the
tweet’s text, user (e.g., username, number of followers), engagement
(e.g., number of retweets, replies, and likes), context (e.g., identifiers
that indicate whether a tweet is a reply and allow the retrieval of
the original tweet and its text), hashtags, and mentions.

The main steps for data cleaning included filtering for tweets in
English, removing non-ASCII characters and URLs, and anonymiz-
ing usernames by replacing them with unique IDs. Notably, we
retained emojis as those often convey emotions, so they can help
4This work describes only part of the data collection.

detect fallacies such as loaded language, appeal to fear, and appeal
to ridicule. We also retained regional indicator symbols since those
are used to represent flag emojis and, thus, can assist in identifying
fallacies related to stereotyping, generalization, and national bias.

3.2 Graph-based Processing
3.2.1 Context Information Extraction. Our analysis considered the
context of each tweet because it can be decisive in identifying
fallacies. That is, we considered the conversation or thread in which
the tweet is inserted. More generally, contextual information tends
to improve the accuracy of both human andmachine learning-based
annotations [12, 15, 16, 34]. To properly capture the richness of the
contextual information in the data, we modeled the dataset as a
directed graph. This choice allowed us to effectively handle the
relationships between the data points when further analyzing and
processing the data.

Formally, given a set of vertices (data points) 𝑉 , we consider a
directed graph 𝐺 = (𝑉 ,𝐴) where 𝐴 ⊆ 𝑉 ×𝑉 . Given two vertices
𝑢, 𝑣 ∈ 𝑉 , we say there is an arc from 𝑢 to 𝑣 if and only if the ordered
pair (𝑢, 𝑣) belongs to𝐴. In such a case, we say that𝑢 is a parent, or in-
neighbour, of 𝑣 , and that 𝑣 is a child, or out-neighbour, of 𝑢. Notice
that we employ ordered pairs rather than sets, so (𝑢, 𝑣) ≠ (𝑣,𝑢).

We started with a graph of tweets 𝐺raw = (𝑉raw, 𝐴raw) where
given tweets 𝑢, 𝑣 ∈ 𝑉raw we have an arc from 𝑢 to 𝑣 if and only if 𝑣
replies to, quotes, or retweets 𝑢.

A central issue we faced was that while 𝐺raw has many data
points (|𝑉raw | = 4, 184, 314), many of them are duplicates in that
they contain very similar or identical text. The main reasons for this
are (i) retweets, as those contain the same text as the original tweet
prepended by a string indicating the author of the original tweet; (ii)
tweets that contain more than one of the extraction keywords, as,
for example, a tweet that contains both “covid” and “azithromycin”
in their text would be captured twice by the API; and (iii) repeated
tweets by the same user, sometimes mentioning different users but
keeping the rest of the text identical. To preserve the structural
information of the graph, we resolved duplicates by merging the
information of the tweets instead of simply removing them.

When merging two tweets, we kept the data (namely, the text,
timestamp, and user-related and engagement metrics) of the oldest
one (timestamp-wise) and took the union of their arcs. That is, after
merging duplicate tweets 𝑢 and 𝑢′, those are replaced by a new
vertex 𝑣 containing the attributes of the oldest among 𝑢 and 𝑢′ and
such that 𝑣 has an arc to (from)𝑤 if and only if either 𝑢 or 𝑢′ had
an arc to (from)𝑤 .

The merge of duplicates yields a new graph 𝐺merged =

(𝑉merged, 𝐴merged) with a much reduced number of vertices, namely
|𝑉merged | = 382, 581. On the other hand, the merge process can in-
crease the neighborhood of vertices. While 𝐺merged is still quite
sparse, some vertices can have many neighbors. In particular, ver-
tices associated with popular tweets in 𝐺raw would have many
children, ending up with an even larger neighborhood in 𝐺merged.
Vertices with high connectivity can be problematic in defining an
exact notion of context. Indeed, we captured the context of a tweet
by considering its first and second-degree neighbors: Its children,
grandchildren (children of children), parents, and grandparents
(parents of parents). However, for tweets corresponding to highly
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Fallacy type Definition Example

Loaded
language

The use of words and phrases with strong connotations
(either positive or negative) to influence an audience and
invoke an emotional response [16, 42].

It’s just idiotic to think he meant for people to go out and
buy hypodermics and inject themselves.

Appeal to
fear

Eliciting fear to support a claim [16, 41]. #thegreatreset #Agenda21 all our freedoms are been erased,
loss of private property, do you still think this is all about a
virus??

Appeal to
ridicule

Presenting an opponent’s argument as absurd, ridiculous,
or humorous. Mocking the opponent’s point of view [7].

The COVID guidelines be like “Make sure you touch a coffee
cup with three fingertips when lowering your mask or the
virus will mutate.”

Hasty
generalization

Making a broad statement about a group or population based
on a limited or unrepresentative sample. It usually follows
the form: 𝑋 is true for 𝐴, 𝑋 is also true for 𝐵, therefore, 𝑋
is true for 𝐶 , 𝐷 and 𝐸 [34, 42].

Ivermectin KILLS BAD #COVID-19 IN 2-6 DAYS: my 90-yro
Aunt, on edge of intubation, ICU, got rid of it in 5 days;
feeling better after 1. Get it approved!

False
dilemma

Presenting a situation as having only two alternatives, when
in reality there are more options available. It oversimplifies a
complex issue by reducing it to only two possible outcomes
or choices, often in a way that excludes other possibilities,
nuances, or middle-ground [11, 12, 34].

Don’t let people die in hospitals from COVID-19 when #iver-
mectin is available.

Ad hominem Attacking the person or some aspect of the person making
the argument rather than addressing the argument itself
[20, 41, 42].

What kind of a fool would even consider testing the injec-
tion of disinfectants? Let alone say that it might be interest-
ing to try it. Ignorance abounds in the Chump cult.

Table 1: Fallacy definitions and examples.

connected vertices, this rule can lead to contexts with hundreds of
tweets. We prevented such excessively large contexts by restricting
it to a maximum of six tweets, selected based on their temporal
proximity to the main tweet.

3.2.2 Graph Clustering and Pruning. Despite its advantages, using
context can induce train/test contamination. For instance, naïvely
partitioning the data at the level of individual tweets can give the
model access to test data during training as a train tweet could
end up with test tweets in its context. To avoid such scenarios,
we ensured that all tweets in a conversation or thread were as-
signed to the same part. In terms of the graph structure, this means
that we should split the graph at the level of components, where
a (connected) component is a maximal subgraph in which any
two vertices are connected by a path. 𝐺merged contains 128,661
components, most of them with only a few vertices. However, the
distribution of component sizes is highly skewed as the largest
component contains 23.1% of the vertices while the second-largest
is only 0.4%. Assigning the largest component entirely to one of
the sets could bias the results, so we designed a method to split it.
We remark that naïve approaches, such as the removal of vertices
with the largest degree or at random vertices, destroy too much
information before having any significant impact.

Ideally, we would partition connected components by identifying
good vertex separators5. Alas, this task is known to be difficult to
solve precisely, NP-hard, in fact [1, 8]. Thus, we instead approached
5In graph theory, a subset 𝑆 ∈ 𝑉 is a vertex separator (or vertex cut, separating set)
for non-adjacent vertices 𝑢 and 𝑣 if the removal of 𝑆 from the graph leaves 𝑢 and 𝑣
into distinct connected components.

the problem heuristically, employing graph clustering techniques
to identify communities in the component and pruning the graph to
disconnect the communities found. The pruning method searches
for pairs of nodes that share an arc with nodes outside their com-
munity. Once such a pair is found, the method removes the node
with the smallest neighborhood, the one belonging to the largest
community, at random, in increasing order of priority.

We considered three graph clustering methods: Clauset-
Newman-Moore greedy modularity maximization [9], the fluid
communities algorithm [31], and the Louvain method [6]. The latter
was the most consistent in identifying communities across different
runs. When applied to the largest component of 𝐺merged and com-
bined with the pruning method, the technique split the component
into 809 sub-components while removing only 409 nodes.

Finally, we observed that some components within the dataset
contained mostly tweets unrelated to the COVID-19 pandemic. To
remove these irrelevant components, we employed topic modeling
and Natural Language Processing techniques. Specifically, we used
Latent Dirichlet Allocation (LDA) [5], BERTopic [17], and TF-IDF
[35] to identify key n-grams (up to trigrams) that corresponded to
topics outside our scope of our study. We filtered out components
with high TF-IDF scores on those n-grams. 453 components were
removed using this method.

The processes described above resulted in a graph𝐺∗, containing
273,947 vertices, 144,646 arcs, and 127,689 connected components.
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Fallacy Count Cohen’s Kappa

Hasty generalization 91 (3.12%) 0.46
Appeal to fear 157 (5.38%) 0.81
False dilemma 168 (5.76%) 0.55
Appeal to ridicule 238 (8.16%) 0.77
Ad hominem 259 (8.88%) 0.79
Loaded language 457 (15.67%) 0.56
None of the above 1907 (65.40%) 0.72

Table 2: Per class statistics. The percentage Count is relative
to the size of the full dataset. The Cohen’s Kappa was com-
puted over a sample of 50 tweets.

3.3 Fallacy Annotation
We divided our annotation process into a pilot and a final annota-
tion stage. We randomly sampled five components (containing 325
tweets) for the pilot stage and 1398 components (containing 2916
tweets) for the final stage.

We selected the fallacy types by their relative prevalence in
the existing works of Da San Martino et al. [12], Goffredo et al.
[15], Habernal et al. [18, 20], Jin et al. [26], Musi et al. [30], Sahai
et al. [34], Vijayaraghavan and Vosoughi [38]. Initially, we listed
10 fallacies for the pilot annotation stage. Based on the pilot, we
shortlisted six fallacies for the final annotation process: loaded
language, appeal to fear, appeal to ridicule, hasty generalization, ad
hominem, and false dilemma. Notoriously, while appeal to ridicule
is less explored in previous works, we opted to include it since it is
recurrent in our dataset. Table 1 shows the definitions and examples
of the selected fallacies.

The expert annotators were two members of the research team.
There were two rounds of discussion to establish clear guidelines
and resolve discrepancies. Annotationswere conducted on the Label
Studio platform [37], which presented users with a main tweet and
up to six of its context tweets. They were instructed to identify
fallacies from our predetermined list in the main tweet, or to select
“none of the above” if no fallacy was present.

3.4 Dataset Statistics
The final dataset contains 2,916 tweets, 1,009 of which contain at
least one fallacy. 708 feature a single fallacy, 250 contain two, 42
have three, and 9 include four. Table 2 shows the distribution of
fallacies across the dataset. The dataset was split by components,
with 60% allocated to training, 20% to validation, and 20% to testing.
To assess the co-occurrence of fallacies, we computed the correla-
tion between fallacy types. The values were generally low, with
the highest being 0.21 between loaded language and ad hominem,
based on 103 co-occurrences. Inter-annotator agreement was mea-
sured using Cohen’s Kappa [10]. Table 2 shows the kappa values
for each fallacy category, with an average value of 0.67, indicating
substantial agreement [28].

The graph structure of the dataset allows to analyze the influence
of fallacies over subsequent tweets. Figure 1 shows the likelihood
of different types of fallacies following one another in sequential
tweets. For example, if a tweet contains an ad hominem fallacy, the
following tweet is more likely to contain an ad hominem fallacy
(17.3% of the times) or use loaded language (20.5% of the times),
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Figure 1: Stochastic (Markov) matrix of fallacy transitions.

rather than a false dilemma fallacy which happened only 3.2% of
the times. Notoriously, the last column of the figure indicates that
tweets containing any type of fallacy are more likely to receive a
fallacious reply.

We performed statistical tests to verify if this visual analysis
could be generalized. More specifically, our analysis aimed to an-
swer two key questions: (i) are tweets containing fallacies more
likely to be followed by fallacious replies than those without falla-
cies? (ii) if so, are tweets with certain types of fallacies more prone
to get fallacious replies?

To address the first question, we performed a one-tailed Z-test for
two proportions, comparing the proportion of replies containing a
fallacy between tweets that were fallacious and those that were not.
Tweets containing fallacies were significantly more likely to be fol-
lowed by fallacious replies. For the second question, we conducted a
one-sided Z-test for proportions to evaluate whether the likelihood
of a fallacious reply was greater than random chance (i.e., greater
than 0.5) for each fallacy type. Given the multiple comparisons
involved, we applied the Bonferroni correction. The results were
significant only for tweets containing loaded language, indicating
that such tweets are likely to receive a fallacious reply. However,
there was insufficient evidence to support similar conclusions for
other fallacy types.

4 MULTI-LABEL FALLACY CLASSIFICATION
We evaluate the performance of different language models on the
task of multi-label fallacy classification using the proposed dataset.
We test encoder-based models (e.g., BERT [13]) and a sequence-to-
sequence model (T5) and we also explore the impact of including
additional features, such as context information, hashtags, men-
tions, emojis, and sentiment scores, on the performance of the
models. Our main evaluation metric is the macro F1 score (aver-
aged across three runs), as it is a good measure for imbalanced
datasets.
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Avg.
Model macro F1

score %

Classic microsoft/deberta-v3-base 47.8
Classic roberta-base 47.3
Classic elozano/tweet_emotion_eval 45.1

Dual microsoft/deberta-v3-base 47.2
Dual roberta-base 44.0
Dual elozano/tweet_emotion_eval 44.0

Dual microsoft/deberta-v3-base + sentiment scores 48.8
Dual microsoft/deberta-v3-base + emojis 48.5
Dual microsoft/deberta-v3-base + all engineered features 47.3

T5 (Prompt type: list of fallacies + NotA) 16.0
T5 (Prompt type: list of fallacies) 15.9
T5 (Prompt type: fallacy definitions) 11.4

Table 3: Average (across three runs) macro F1 scores for the
top three performing models of each type. “NotA” indicates
if the prompt instructed the model to return “none of the
above” when no fallacies were detected.

4.1 Models
This subsection describes the 4 groups of models we tested: classic
transformer, dual transformer, dual transformer with engineered
features, and T5 models. Table 3 shows the average macro F1 scores
for the top three performing models of each group.

4.1.1 Classic Transformer Models. We fine-tuned several models
from Hugging Face’s Transformers library [43]. More specifi-
cally, we used the following checkpoints: bert-base-uncased,
distilbert-base-uncased, albert-base-v2, roberta-base,
microsoft/deberta-v3-base, elozano/tweet_emotion_eval,
m-newhauser/distilbert-political-tweets, Kev07/Toxic-
Tweets, and jariasf/bert-tweets-covid. For this class of
models, the input consists of the text of the main tweet, only. The
maximum sequence length was set to 128 as it covers the maximum
length of the tweets in the dataset. The best-performing models
attained an average macro F1 score of 47.8%.

4.1.2 Dual Transformer Models. Besides classic transformers, we
employed dual-transformer architectures, which consist of two
instances of the same type of pre-trained transformers, one for
processing the main tweet and the other for the context information.
Maximum sequence lengths of 128 and 512 were used respectively.
The context data consists of the concatenation of the context tweets
and the main tweet in chronological order. The last hidden states of
the two transformers are concatenated and passed through a classi-
fication head. We fine-tuned the same checkpoints as in the classic
transformer models, with the best-performing model reaching an
average macro F1 score of 47.2%.

4.1.3 Dual Transformer Models with Engineered Features. Despite
the extra resources, the dual-transformer models did not outper-
form the classic ones. To investigate this, we added extra engineered
features to the two dual-transformer models. We concatenated the
additional features with the output of the transformers before feed-
ing them into the classification head. For fine-tuning, we utilized the
microsoft/deberta-v3-base and roberta-base checkpoints, as
these models demonstrated the best performance in our previous

experiments. We experimented with different combinations of the
proposed features, described below.

Emojis, Mentions, and Hashtags. Our descriptive analysis re-
vealed that mentions of certain public figures often involved in
controversial topics were more likely to be linked with ad hominem
attacks. Moreover, emojis can aid in identifying the intention behind
a tweet which is relevant for fallacy categories related to emotions.
For example, various laughing emojis were commonly found in
tweets that contained appeal to ridicule fallacies. To capture those
elements, we considered binary features representing the most fre-
quent hashtags, mentions, and emojis in our dataset. That is, if
the main tweet contains a specific hashtag, mention, or emoji, the
corresponding feature is set to 1; otherwise, it is set to 0.

Sentiment Scores. To assess emotional content, we used two sen-
timent scoring systems: Valence Aware Dictionary and sEntiment
Reasoner (VADER) [24] and the Valence, Arousal, and Dominance
(VAD) lexicon [29] on themain tweet. VADER provides multidimen-
sional sentiment scores at the document (tweet) level and considers
the effect of capital letters, punctuation, and emojis. The VAD lexi-
con provides word-level valence, arousal, and dominance scores,
which we averaged across each tweet.

Part-of-Speech Tags. Part-of-speech (POS) tagging was included
as a feature to provide syntactic information about the text. We
used the spaCy implementation [23] and represented POS tags as
counts of each tag within the main tweet.

In our experiments, using only sentiment scores was the best-
performing combination (average macro F1 score of 48.8%).

4.1.4 T5 Models. We also experimented with the Text-To-Text
Transfer Transformer (T5) model [33] using the t5-large check-
point. Specifically, we used the T5 model settings proposed by
Alhindi et al. [2] since the authors achieved good results in their
fallacy classification task. In contrast to the previous models, when
using the T5 model every task is cast in a text-to-text format. That
is, its input is a text string that includes a specific prompt indicating
the task type, followed by the text to be processed. The output
model is also a text string. As Alhindi et al. [2], we tested prompts
that included the definitions of the fallacies, and prompts that only
listed the names of the fallacies. Additionally, we experimented
with prompts that explicitly indicated the model to return “none
of the above” if no fallacies were detected, and to render multiple
fallacies if appropriate. We used full-shot fine-tuning, evaluating
outputs by converting them into binary vectors indicating which
fallacy types were mentioned in the text. This is a more relaxed
approach than that of Alhindi et al. [2], which uses strict string
matching. The best performing T5 model used the prompt that only
listed the fallacy names (without the definitions) and indicated the
use of “none of the above”, reaching a macro F1 score of 16.0%,
considerably lower than the encoder-based models.

4.2 Ablation Analysis
We conducted statistical tests to compare the macro F1 scores across
different groups of models, evaluating the impact of various engi-
neered features on model performance. First, we compared classic
transformer models against dual transformer models to assess the
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Features Avg.
Context Hashtags Mentions Emojis Sentiment POS Avg. macro

information scores tags F1 score %

✓ ✓ 48.8
✓ ✓ 48.5

47.8
✓ ✓ ✓ ✓ ✓ ✓ 47.3
✓ 47.2
✓ ✓ 46.4
✓ ✓ ✓ ✓ 45.5
✓ ✓ 41.3
✓ ✓ 41.2

Table 4: Average macro F1 scores (in descending order) of
models using the microsoft/deberta-v3-base checkpoint
with different combinations of features. Scores are based
on the average of three runs.

effect of incorporating context information. Next, we compared
models utilizing one of the engineered features against those that
did not use that feature (e.g., models that used sentiment scores
against those that did not). Depending on the data’s normality and
homoscedasticity, we used either a t-test, Welch’s t-test, or Mann-
Whitney U test. In all cases, the results indicated no significant
differences between the groups of models. This suggests that none
of the features individually provided a substantial improvement
in model performance. Therefore, although the best-performing
model incorporated sentiment scores, we cannot conclude that this
feature was the sole reason for its success.

Additionally, Table 4 presents the results obtained from different
combinations of features using microsoft/deberta-v3-base as
the backbone model. Using context information and sentiment
scores together achieved the highest average macro F1 score. The
second best was the combination of context information and emojis.
However, the third-best model used none of the added features and
outperformed the model that used the combination of all features.
This shows additional evidence that the engineered features provide
only marginal improvements in model performance.

4.3 Error Analysis
Table 5 shows the classification report of the best-performingmodel.
The micro and weighted F1 scores indicated reasonably good per-
formance, with values of 73.6% and 71.6%. However, the macro
F1 score (50.3%) reveals that the model’s performance is uneven
across different classes, especially for those with fewer samples like
hasty generalization and false dilemma. Loaded language and none
of the above are predicted reasonably well, with balanced values
in precision and recall. Nevertheless, ad hominem, appeal to fear,
appeal to ridicule, false dilemma, and hasty generalization are likely
to be under-predicted, as indicated by their low recall. Particularly,
the model struggles to predict hasty generalization instances.

It is worth noticing the potential for confounding factors, par-
ticularly in cases of the false dilemma fallacy. In our dataset, this
fallacy frequently appears in the context of debates contrasting
vaccines, lockdowns, and the use of masks with azithromycin, hy-
droxychloroquine, and ivermectin. The model might inadvertently
learn to predict a false dilemma based on the presence of these
specific terms rather than understanding the underlying logical
structure of a false dilemma.

Class Precision % Recall % F1 Score % Support

Ad Hominem 72.7 53.3 61.5 45
Appeal to Fear 61.9 44.8 52.0 29
Appeal to Ridicule 40.9 39.1 40.0 46
False Dilemma 57.1 28.6 38.1 28
Hasty Generalization 50.0 07.7 13.3 26
Loaded Language 59.3 58.7 59.0 92
None of the above 85.6 91.0 88.2 366

Micro avg. 75.8 71.5 73.6 632
Macro avg. 61.1 46.2 50.3 632
Weighted avg. 73.8 71.5 71.6 632
Samples avg. 76.1 75.5 75.0 632

Table 5: Test performance metrics for the best model across
classes: a dual transformer using microsoft/deberta-v3-
base and sentiment scores. Metrics refer to the best of three
runs.

5 CONCLUDING REMARKS
We introduced the FALCON (Fallacies in Covid-19 Network-based)
dataset, consisting of 2,916 tweets related to the COVID-19 pan-
demic and politically associated topics. This dataset provides multi-
label, human-expert annotations for six categories of fallacies. By
modeling the dataset as a graph, we captured the contextual infor-
mation embedded in tweet interactions, offering a richer under-
standing of how fallacies propagate within online discussions.

Our empirical analysis demonstrates that language models can
be utilized for multi-label fallacy classification. Encoder-based ar-
chitectures outperformed sequence-to-sequence models, with the
dual-transformer architecture incorporating context information
and sentiment scores achieving the highest performance. Neverthe-
less, the complexity of the task still poses a challenge for this model,
with an average macro F1 score of 48.8%. The model’s performance
varied by class; it was most effective in identifying the absence of
fallacies, achieving 88.2% macro F1 score in the none of the above
class, and showed reasonable success with the loaded language
(59.0%) and ad hominem (61.5%) fallacies. However, it struggled
with fallacies with fewer examples in the dataset, such as hasty
generalization (13.3%). We conducted statistical tests to evaluate the
impact of features such as sentiment scores and emoji usage. Our
analysis found that neither context information nor engineered
features led to statistically significant improvements in model per-
formance. This indicates that the success of the best-performing
model cannot be solely attributed to these features.

Our findings suggest that tweets containing fallacies are statis-
tically more likely to receive fallacious replies, particularly those
involving loaded language. This highlights how certain fallacies
propagate in online discussions, underscoring the need for more
effective methods to detect fallacious reasoning in social media.
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