SYMPOSIUM - Multi-modal neurofeedback methods for post-stroke rehabilitation

Evaluation of multimodal EEG-fNIRS neurofeedback for motor imagery

Camille Muller¹, Thomas Prampart¹, Elise Bannier^{1,2}, Isabelle Corouge¹, Pierre Maurel¹

IRISA

¹Univ. Rennes, Inria, CNRS, IRISA, Rennes, France ²CHU Rennes, Department of Radiology, Rennes, France.

Inserm

camille.muller@inria.fr

CHU

Introduction	Methods	Results	Discussion
--------------	---------	---------	------------

Multimodal neurofeedback for post-stroke rehabilitation

Context: Post-stroke upper-limb (UL) rehabilitation

Neuroplasticity stimulation

Rehabilitation

<u>Rehabilitation:</u> Counteract ipsilesional hemisphere lack of activation (Floël, 2014; Teo et al., 2016)

Neurofeedback (NF) + Motor imagery* (MI)

- Targeting the lesioned area (Jackson et al., 2003) => Activation of motor areas (Hanakawa, 2008)
- The motor recovery (Le Franc et al., 2022; Bai et al., 2020)

<u>Optimising NF for MI:</u> Neuroimaging methods feasible + as accurate as possible

Multimodal EEG + fNIRS

- Practical for rehabilitation
- Information of brain related activity in post-stroke (Muller et al., 2024; Delorme et al., 2019; Yang et al., 2019)

Introduction	Methods	Results	Discussion
--------------	---------	---------	------------

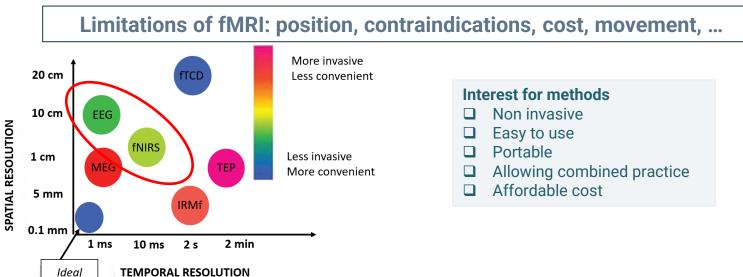
Can multimodal neurofeedback improve its efficiency?

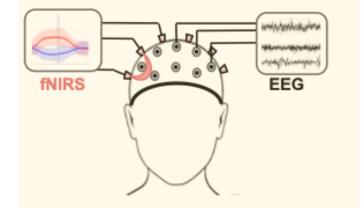
MULTIMODAL IMAGERY FOR NF?

- May enhance brain rehabilitation techniques
- Ciccarelli et al., 2023

fMRI + EEG

- Complementary bio-signals
 - Electric brain activity and BOLD
 - Potential therapeutic effects




Figure adapted from Parasuraman et Caggiano, 2005 ; Mandrick 2013 ; Chiarelli et al., 2018

Introduction	Methods	Results	Discussion	
				_

Multimodal neurofeedback with fNIRS-EEG

ADVANTAGES OF EEG AND FNIRS COMBINATION

- Provide complementary information (Hong et al., 2018)
- Better spatio-temporal mapping
- No signal contamination
- Possibility of an ecological use => improving the clinical application
- Already often combined applications other than NF

Combination feasible and promising for optimizing conventional motor training methods and clinical rehabilitation (*Wang et al., 2023*)

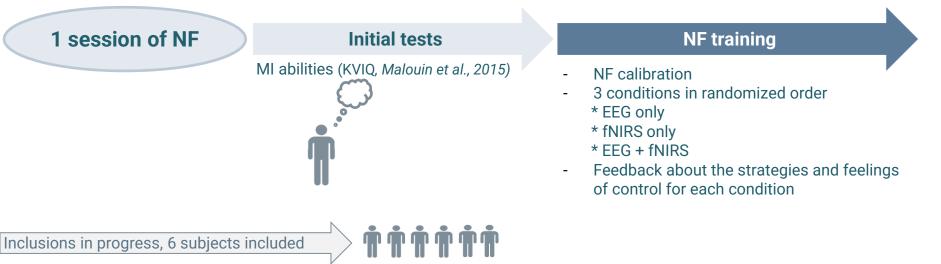
To our knowledge, none study has associated fNIRS + EEG for NF-MI for poststroke UL motor rehabilitation

Introduction	\rightarrow	Methods	Results	\rightarrow	Discussion
			 nultimod motor in		G-fNIRS 'y (MI)
	EE MMMMMMMMMM FNIF AAAAA	MMMMMM		D	

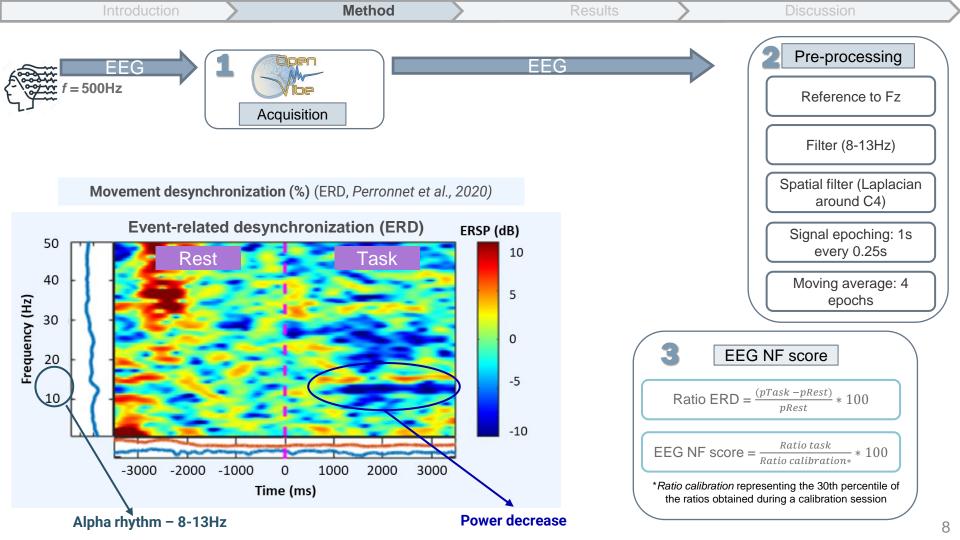
Introduction	$\boldsymbol{\succ}$	Method	Results	Discussion

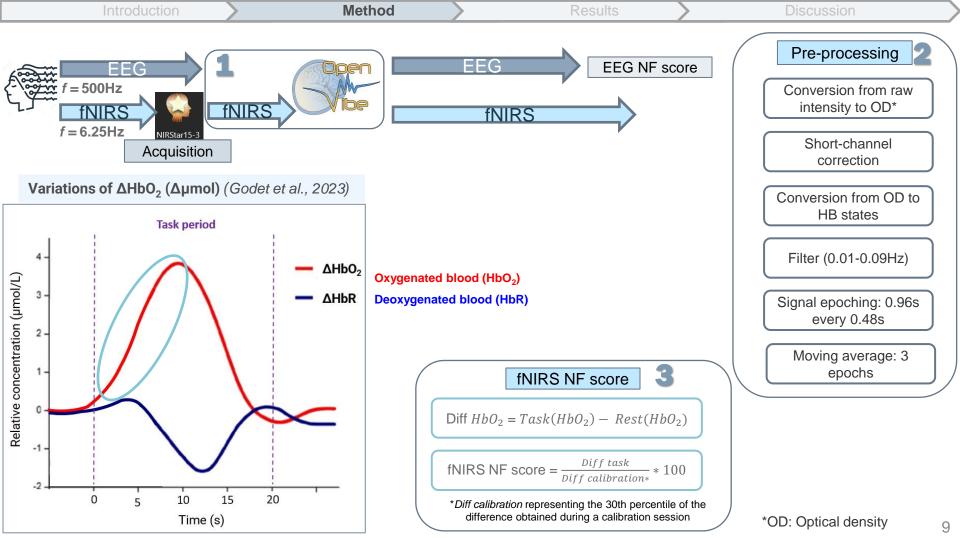
Population

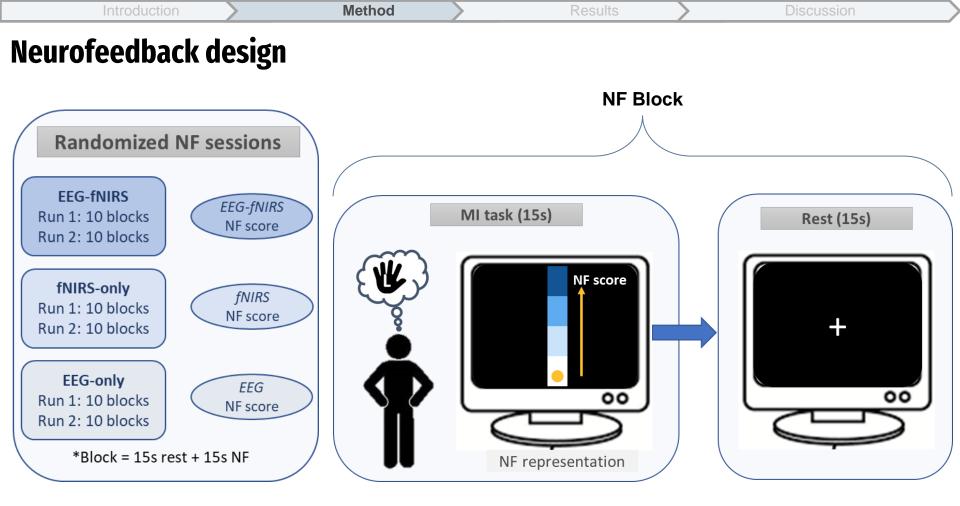
Objective : evaluate the effects of multimodal NF with EEG and fNIRS


Healthy subjects (N = 30)

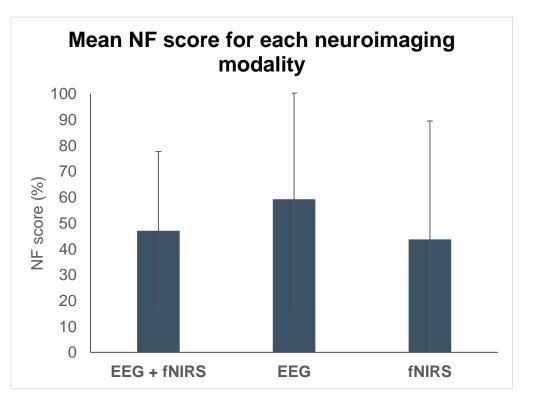
+ 18 yrs.


-

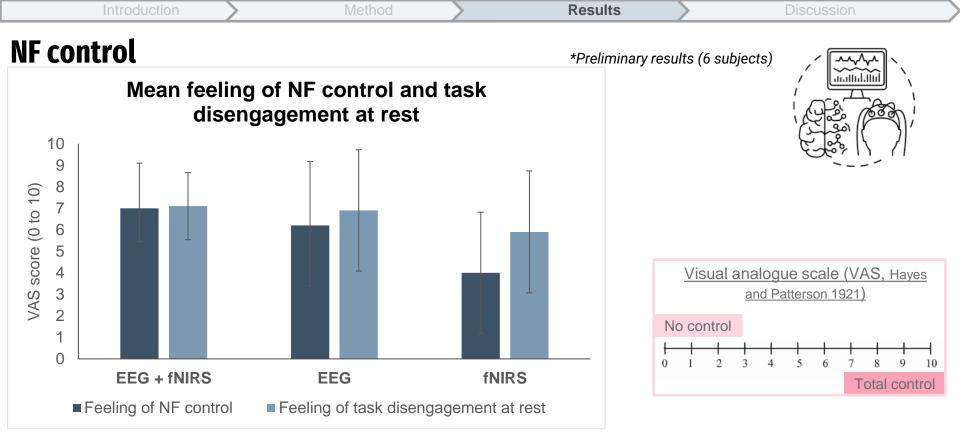

- Right-handed
- No neurological disease
- No UL orthopedic issue



Introduction	Method		Results		Discussion
EEG and fNIRS com	EEG (ActiChamp, Brain Products)	ation	E	EG-fNIRS	
	fNIRS (NIRScout XP, NIRx)		۲	0	
	 32 EEG channels fNIRS 16 sources fNIRS 16 detector fNIRS channels fNIRS short-channel 		© © LPA © ●		
Implementation complexity			0 0	0000	
\checkmark Record the same brain a	reas (NF of right M1)		\odot	00000	0000000
✓ Install all 72 sensors				0	0
✓ Two different sampling r	ates (500 vs 6.25Hz)				lz
\checkmark Extract the brain activity	with the same software		🔶 NF	channels (ab	ove C4, right M1*)
	pen .			*M1: prin	nary motor cortex

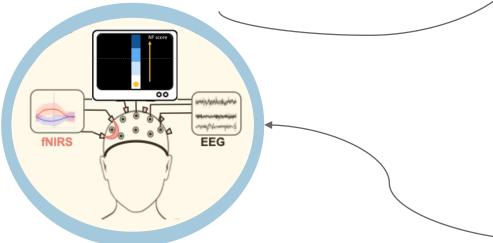


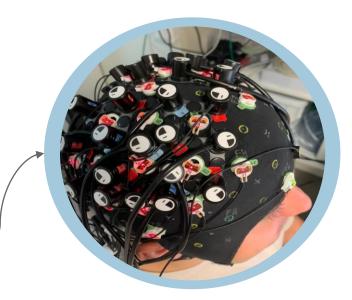
Online brain activation


Gauge controlled in every condition for all participants*

*Preliminary results (6 subjects)

- EEG-NF score higher than two other conditions (fNIRS-alone and EEG-fNIRS)
- EEG-fNIRS-NF score higher than fNIRS-NF alone


EEG + fNIRS NF condition:


• Feeling of control of the ball movement higher and feeling of ability to disengage from the MI task during rest periods higher

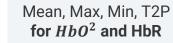
Multimodal NF with fNIRS and EEG

Feasability

- EEG-fNIRS-NF platform dealing with real-time signals with a dedicated software (OpenViBE)
- Joint recording of EEG and fNIRS of same brain regions (Yang et al., 2019; Fazli et al., 2016)
- Timing of installation and online quality of signals
- Successful NF in every condition for each subject (Buccino et al., 2016)

Benefits of the combination

- Preliminary results
- Feeling of NF control in favor of combined feedback
- Hypothesis : smoother feedback


	Introduction	>	Method		Results		Discussion
Ongoi	ng part						
Inclusio	DN						
	lusion of the c althy subjects:	•	cohort				
	Nz płacow optodesion.						
		ew 					
0		00	Offline analys	ies			
LPA 🗇 🅚		🔴 🕚 RPA		•	in activity rela naging modal		NF session in
00		00			•••	•	(left and right)

- Extraction of brain activity (M1, SM1, PM, SMA, left and right)

EEG

- Parameters extracted

fNIRS

Discussion

٢

SYMPOSIUM - Multi-modal neurofeedback methods for post-stroke rehabilitation

Evaluation of multimodal EEG-fNIRS neurofeedback for motor imagery

Camille Muller¹, Thomas Prampart¹, Elise Bannier^{1,2}, Isabelle Corouge¹, Pierre Maurel¹

IRISA

¹Univ. Rennes, Inria, CNRS, IRISA, Rennes, France ²CHU Rennes, Department of Radiology, Rennes, France.

Inserm

camille.muller@inria.fr

CHL

