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Abstract

Physics-based Digital Twins, particularly those using the finite element method
to solve the underlying partial differential equation, accurately simulate organ
behaviors but are computationally intensive, especially for hyper-elastic tissues.
Recently, approaches have leveraged neural-network-based surrogate models to
accelerate computation time. However, these models are limited by the accu-
rate knowledge of patient-specific characteristics, such as material properties and
boundary conditions, at training time. This paper introduces a novel methodology
for patient-specific characteristics estimation from live observations during medi-
cal interventions. To retain the benefits of neural network-based surrogate models,
we propose a hypernetwork architecture that conditions the surrogate models
on patient-specific characteristics, thus maintaining accuracy over a predefined
distribution of these characteristics. Using the trained network, we perform a
gradient-based optimization process to determine the patient characteristics given
an intraoperative observation. We demonstrate the flexibility and efficiency of our
approach through experiments with varying geometries, complex physics laws,
and various patient characteristics.
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1 Introduction

Digital twins can play a major role in healthcare by leveraging real-time data inte-
gration and virtual simulations to enhance patient care, enable predictive analytics,
optimize medical devices, and facilitate planning and intraoperative guidance [24]. Sev-
eral studies have demonstrated the benefits of physics-based digital twins (PBDTs) [9,
15, 5] for their accuracy and predictive ability over sparse and noisy data. PBDT's rely
on computational models that simulate the behavior of physical systems using fun-
damental principles from physics (e.g., elasticity, thermodynamics), where the finite
element method (FEM) is often employed to solve the underlying partial differen-
tial equations (PDEs) [9]. It is essential to prioritize their accuracy and real-time
responsiveness to fully benefit from the advantages of PBDTs in computer-assisted
interventions. Accurate models ensure the simulations reflect true-to-life scenarios,
leading to more reliable and effective outcomes. Meanwhile, real-time capabilities
allow these digital twins to provide immediate feedback and adjustments during
interventions, enhancing their practical utility in dynamic and critical environments.

1.1 Accuracy

The accuracy of PBDTs relies on patient-specific characteristics. These characteristics,
which are model-dependent, include a range of properties such as density, stiffness,
thermal conductivity, and other parameters essential for simulating the behavior of
an organ or system [24]. Additionally, boundary conditions (BCs) are critical for the
accuracy of PBDTs, as they define the interactions between the organ and its envi-
ronment, significantly influencing the simulation outcomes. Despite their importance,
obtaining precise measurements of these model parameters is challenging. Traditional
imaging and other non-invasive techniques often fall short of accurately capturing the
necessary details of these properties. For instance, properties like tissue stiffness or
thermal conductivity are not readily measurable through standard imaging modali-
ties. Similarly, accurately defining boundary conditions involving complex interactions
between tissues and their surrounding environment is often infeasible without invasive
procedures.

1.1.1 Material properties

Hyperelastic formulations are commonly employed in the literature to describe the
behavior of soft tissues that experience deformations. St. Venant-Kirchhoff, Neo-
Hookean [18], and Mooney-Rivlin [22] are among Hyperelastic models that have been
used to characterize soft-tissue. Traditionally, parameter sets for various models are
determined through uniaxial tests, where researchers identify the parameters that
align with the experimentally observed stress-strain relationship according to their
strain energy model [26]. This method, while effective, can be limited by its reliance on
straightforward experimental setups. To address these limitations, a more advanced
approach involving iterative parameter identification using inverse finite element anal-
ysis has recently been proposed [1]. This method enhances accuracy by refining
parameter estimates through successive approximations. For instance, Mehrabian et



al. [14] utilized this technique to estimate tissue parameters modeled with the Veronda-
Westmann model. Additionally, Han et al. [8] applied this approach to develop a
patient-specific biomechanical model of the breast, demonstrating its potential for cre-
ating highly personalized and accurate tissue models. However, the iterative nature of
these methods means that numerous simulations must be performed to converge on
a precise set of patient-specific characteristics. Each simulation can be computation-
ally intensive, especially when modeling complex, nonlinear behaviors typical of soft
tissues. Consequently, the time required to reach a solution can hinder the practical
application of these methods in dynamic and time-sensitive scenarios, such as surgical
procedures or real-time diagnostics.

1.1.2 Boundary conditions

Boundary conditions (BCs) are crucial for the accuracy of PBDTs as they define the
interactions between an organ and its surrounding environment. In the literature, zero-
displacement boundary conditions are often characterized using priors. For instance,
in the case of the liver, the points of attachment with the ligaments are usually consid-
ered [15, 5]. However, only a few studies have tackled the challenge of estimating these
conditions from intraoperative data. Plantefeve et al. [20] used a statistical atlas to
estimate liver-ligament connectivity, but their method lacks robustness due to inter-
patient variations. Another study estimated BCs by registering two preoperative scans
under different deformations. While effective, this approach does not align with clini-
cal settings or real-time requirements. Tagliablue et al. [25] proposed a pipeline that
estimates BCs from intraoperative point clouds of the visible surface. Nikolaev et al.
[16] introduced a reduced-order unscented Kalman filter for BC estimation, but their
approach is computationally expensive and requires multiple intraoperative samples.
These various methods highlight the ongoing challenge of accurately and efficiently
estimating boundary conditions from intraoperative data, with each approach offering
different trade-offs in terms of robustness and real-time applicability.

1.2 Computational Speed

Significant efforts are being directed toward optimizing PBDTs to enhance their
computational speed. Various trade-offs between the speed and accuracy of PBDTs
have been proposed [9, 17, 15]. Haouchine et al. [9] suggested using a co-rotational
model to handle large deformations with small strain. Yet, their approach significantly
loses accuracy when advanced biomechanical laws are considered. Depending on the
acceptable level of accuracy loss, reducing the model’s degrees of freedom is a viable
strategy to meet real-time constraints. Methods such as Proper Orthogonal Decompo-
sition (POD) [17] and Proper Generalized Decomposition (PGD) have been proposed
for this purpose. Another category of methods leverages the high number of cores
available in Graphics Processing Units (GPUs) for parallel computing, which enables
significant speedups in handling computationally intensive problems [10]. Deep neural
network architectures have recently demonstrated strong capabilities in learning com-
plex, high-level nonlinear relationships between diverse input-output data [11]. One of
the strengths of these networks is their ability to perform inference in real-time when



trained with sufficient data accurately. Several works have proposed to train deep neu-
ral networks on simulated (using FEM) data [23, 15, 5], aiming to learn the behavior
of PBDTs. U-Mesh, introduced by Mendizabal et al. [15], stands out as a simple yet
effective solution. U-Mesh is a data-driven approach based on a U-Net architecture,
designed to approximate the nonlinear relationship between forces and displacement
fields. It is trained in a patient-specific manner using simulated data generated by
Finite Element Method (FEM) and achieves real-time performance during inference.
U-Mesh [15] has shown strong performance on real-world data, making it a promising
approach in terms of both accuracy and speed. However, U-Mesh is designed assuming
that patient-specific characteristics, such as material properties and domain boundary
conditions, are known before the intervention. This assumption limits its application
in computer-assisted interventions, as these characteristics, when available, are typ-
ically only accessible during the interventions. To address this limitation, we have
proposed HyperU-Mesh [3] in previous work, an extension of U-Mesh that integrates a
Hypernetwork [7] to condition U-Mesh [15] based on the prior distribution of patient
characteristics. Thus, HyperU-Mesh [3] assumes material characteristics are always
known at the time of the intervention.

1.3 Contributions and outlines

In this work, we build on HyperU-Mesh [3] and introduce a novel approach to
enhance the precision of PBDTs by accurately estimating patient-specific characteris-
tics, including material properties and domain boundary conditions. Our contributions
are as follows:

® Flexible Method: We develop a method adaptable to unknown variables and
dynamically adjusts to the underlying physics model.

e Hypernetwork Architecture: We employ a neural network conditioned on
patient-specific characteristics through a hypernetwork architecture, allowing the
network to adapt to patient characteristics automatically.

® Training on Simulation Data: The neural network is trained on simulation data
generated using an accurate biomechanical model. This enables it to learn complex
relationships between applied forces and the associated displacement fields.

® Robust and Fast Optimization Process: After training, given an intraoperative
observation, we identify the real patient-specific characteristics through a robust and
fast gradient-based optimization process that leverages the neural network’s learned
representations. The architecture incorporates dimensionality reduction for high-
dimensional unknown patient-specific characteristics by optimizing over a latent
space representation, thereby accelerating the optimization process.

e Fast and accurate surrogate model Once estimated, the patient-specific char-
acteristics are injected through the hypernetwork, allowing for a fast and accurate
surrogate model of the PBDT.

After describing our method in Section 2, we illustrate our approach in Section 3
by demonstrating its effectiveness across various scenarios involving different physics
models, geometries, and patient characteristics. Finally, we discuss our findings in
Section 4 and conclude in Section 5.



2 Method

Without loss of generality, we consider the case where a patient-specific PBDT of an
organ is needed to assist in surgery. The geometry of the organ can be segmented
from a preoperative CT or MRI scan, while the patient-specific properties, denoted
by A, are unknown. These properties, A, could include material properties and bound-
ary conditions of the geometry. Let f) represent the patient-specific PBDT of the
organ for a given set of properties A. For a set of applied forces to the organ, we have
denoted F', the relative displacement field is given by u = f)(F'). Our method con-
sists of three steps. First, we build a biomechanical PBDT by employing the Finite
Element Method (FEM), denoted as f} M. Then, using this biomechanical model, we
generate a dataset comprising pairs of forces and displacements, considering a range of
distributions for the patient-specific parameters A. This dataset is used to build a sur-
rogate model, denoted f;\\IN, which corresponds to an approximation of ffEM with a
neural network-based model. We use a hypernetwork to condition the neural network
on the patient-specific parameters A\. The network is trained on the dataset generated
with the biomechanical model. After training, leveraging the gradient flow of the neu-
ral network and its real-time capabilities, we use an optimization process to estimate
the patient-specific parameters A based on given observations, denoted y.

2.1 Biomechanical model

We formulate a boundary value problem to compute the deformation of an elastic
material under both Dirichlet and Neumann boundary conditions. The geometry of
the organ, known a priori, occupies a volume {2 with boundary I'. The Dirichlet and
Neumann boundary conditions are on I'p and I'y, two subsets of I'. See illustration
in Figure 1. The elastic properties of soft tissues can be characterized using principles
from continuum mechanics.

Fig. 1: Illustration of a domain 2 with boundary I'

By employing the Lagrangian formulation, the relationship between the deformed
(x) and undeformed (X) states, at each point along the geometry can be expressed
as: x = X + u. Where u is the displacement field. The deformation gradient tensor
F =1+ Vxu, provides a local description of the deformation and the Green-Lagrange



strain tensor E € R3*? as expressed following the equation E = %(C — I). Where
C = FTF is called the right Cauchy-Green deformation tensor and I the identity
matrix. Hyperelastic material is often employed to describe the behavior of soft tis-
sues that undergo large deformations. According to the chosen hyperelastic material,
the strain-energy density function, noted W, can be expressed using a set of parame-
ters that describe the material stiffness. The stress-strain relationship, also known as
constitutive law, is obtained by differentiating W with respect to C as follows:

oW
With S being the second Piola-Kirchhoff stress tensor. The boundary value problem
is then formulated as in equation 2, where g represents the body forces, n the unit
normal to Iy, and ¢ the traction forces applied on I'y domain.

V(FS)=g on
u(X)=0 on TI'p (2)
(FS)n=t on Iy
The weak form of Equation 2, brings forward the boundary term and is expressed
following Equation 3.

/(FS):éEdQ:/bndQ—l—/ tn dT 3)
Q Q I'n

where 6E = £(FTVn + VTnF) is the variation of the strain, and n = {n €
H'Y () | n = 0 on I'p} is any vector-valued test function in an Hilbert space

HY(Q).

2.2 Finite Element solution

For a given set of loads, which could include traction forces ¢t and body force g, the
equation 3 is solved using a finite element simulation to retrieve the relative displace-
ment field u, based on a set of patient-specific parameters A that describe the material
properties or the location of Dirichlet boundary conditions. The domain € is dis-
cretized either using triangle elements or with an Immersed Boundary method (IBM)
as shown in the left and right images of Figure 2 respectively. Using an IBM on a reg-
ular grid makes it compatible with the inputs and outputs of CNN architectures (See
section 2.3). Given the equation’s nonlinearity, a nonlinear system of equations must
be solved to approximate the unknown displacement. Starting from an initial displace-
ment u”, an iterative Newton-Raphson method is employed to find a correction 57
after n iterations, which satisfies the linearized set of equations, see Equation 4.

K160 = r(u® 4+ 6771 + b (4)
In this context, K represents the tangent stiffness matrix, while r denotes the internal
elastic force vector. At each iteration, it is necessary to compute both K and r and
solve the resulting linear system. The Newton-Raphson method converges effectively
only when the initial displacement u° is close to the actual solution. Therefore, large
loads must be applied incrementally in small steps, which can necessitate a significant
number of iterations to achieve convergence.
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Fig. 2: Left: Discretization of the domain 2 using triangle elements. Right: Dis-
cretization of € using an Immersed Boundary Method, the geometry is discretized
using regular elements, and the yellow cells are selected as part of the 2.

2.3 Surrogate model

This section describes the proposed neural network for learning the PBDT, also called
the surrogate model. Our approach involves learning a nonlinear function, denoted
f/I\\IN, to map the applied forces F' to the displacement field u with respect to a set of
patient-specific parameters A. To achieve this, we rely on a hypernetwork architecture.
Hypernetworks are a class of neural networks that generate the weights of another neu-
ral network (usually called target, main, or primary network). They have emerged as
a way to enhance the flexibility and performance of deep neural networks [2]. Besides
their added adaptability, we are primarily interested in the specific gradient flow of
such an architecture since both networks are trained in an end-to-end differentiable
manner [7]. Training hypernetworks is often challenging, mainly due to the propor-
tionality between input and output magnitudes, which leads to very slow convergence.
Ortiz et al. [19] identified and resolved this issue by treating the predicted weights as
additive changes for the primary network. For a given training iteration n, the weights
df,, predicted by the Hypernetwork h are used to update the weights of the primary
network (fNV) following the equation: 6,, = 69 + d@,,. With 6, the initial weights of
the fy. Unlike traditional hypernetworks [7], the weights g are also trainable parame-
ters (See Figure 3). The weights df,, influence the predictions of f{'~ by incorporating
knowledge of the characteristics A. This strategy permits a better initialization of the
primary network weights, which leads to a fast and efficient training of fY~. Typi-
cally, the training time of our hypernetwork is comparable to the training time of the
primary network on its own.

Figure 3 illustrates the proposed method for learning a PBDT conditioned on
patient-specific parameters A. The dimension of the unknown parameters A can vary:
it may be low, such as for stiffness parameters, or very high, such as when determin-
ing the Dirichlet boundary condition location on the organ, in which case A would
have a dimension equal to the number of nodes on the organ’s mesh. Depending on
the dimensionality of A, we propose two architectures. For low-dimensional A\ (left-
most architecture in Figure 3), it is directly input into the hypernetwork to generate
the additive weights for the primary network fY™ (the surrogate model). For high-
dimensional A (rightmost architecture in Figure 3), an encoder F is used to reduce the



dimensionality to z. The reduced representation z is then input into the hypernetwork
h to generate the additive weights and decoded by D to retrieve the patient parameters
. The role of dimensionality reduction is significant, as it accelerates the optimization
process described in 2.4. The following subsections detail the architecture.

Data

Weights

- -

F F

¥ 2 d o -- v

v q A v
u U
Fig. 3: Overview of the proposed architecture for learning a PBDT conditioned on
patient-specific parameters \. Depending on the dimensionality of A, we propose two
architectures. Left: For low-dimensional A, it is directly input into the hypernet-
work h to generate the additive weights for the primary network fNN. Right: For
high-dimensional A\, an encoder F is used to reduce the dimensionality. The reduced
representation z is then input into the hypernetwork h to generate the additive weights
and decoded by D to retrieve the patient parameters A\. Reducing the dimensionality
of A speeds up the optimization process for finding A. In both architectures, the pri-
mary network is U-Mesh [15], which takes the applied forces as input and predicts the
relative displacement field. h, E and D are multi-layer perceptions.

2.3.1 Primary network

U-Mesh, a Convolutional Neural Network (CNN), proposed by Mendizabal et al. [15],
has shown strong performance in learning Physics-based biomechanical models on
real-world data, making it a promising approach in terms of both accuracy and speed.
However, U-Mesh is trained on a single value of material properties and Dirichlet
boundary conditions. Hence, its accuracy at inference time depends on precise knowl-
edge of patient-specific parameters during training. In this work, by using U-Mesh
as a primary network, we provide the knowledge of the patient-specific parameters
A through the hypernetwork h. U-Mesh takes as input the applied forces as a tensor
of size 3 X n, X ny X n,, where n,, n, and n, are the number of nodes in the FEM
mesh along the axes z, y and z, respectively. The forces are encoded at each node as
a tensor of dimension 3. The network outputs the relative displacement field of the
same size. The encoding and decoding paths of the U-Net consist of 3 and 4 layers,
respectively. A layer includes a 3 x 3 x 3 convolution filter followed by a 2 x 2 x 2 max
pooling operation and ReLU activation function. The number of channels is [8, 16, 32]
and [32,16, 8, 3] for the encoding and decoding paths respectively.



2.3.2 Other networks

The hypernetwork h is a Multi-layer perception of 4 layers. The last layer is of dimen-
sion equal to the number of weights in the U-Mesh, while the first layer’s dimension
is equal to A’s when A is for low dimension; otherwise, the input dimension of h is
equal to the dimension of \’s latent representation z. A ReLU activation function fol-
lows each of h’s layers. E and D are also MLPs of four layers each, and they serve
as an autoencoder for A when it has a high dimensionality. A ReLU activation func-
tion follows each of their layers. The dimension of the latent space z is experimentally
determined based on \’s dimension.

2.3.3 Training

The networks f/I\\”\I7 h, E and D are trained end-to-end and supervised using data
generated with the physics-based biomechanical model ff EM explained in Sections 2.1.
We utilize an Immersed Boundary Method (IBM) to discretize the domain, resulting
in a regular grid, as shown in the right-hand image of Figure 2. This approach is
chosen due to its favorable convergence characteristics and regular structure, making
it compatible with CNN’s architecture chosen for the primary network f}\\IN. Using
f EM e build a dataset of distinct (F, u, \) triples, where F represents the applied
forces on the organ, u the relative displacement field, and A the chosen patient-specific
parameters. Since A corresponds to physical quantities (such as soft tissue stiffness or
boundary condition location) in our physics-based problem, we often have statistical
data on these parameters from the literature. This knowledge is utilized during dataset
generation when available, and otherwise, we choose a range of A values to encompass
its variability, thereby capturing diverse patient characteristics. Section 3 presents
detailed examples.
The weights of fy, F, D and h are optimized by minimizing the loss £ defined in
following in Equation 5:

L=|lu—al3+Ly . (5)
In this loss, the first term represents the mean square error between the prediction
of the surrogate model v = f{'V(F) and the ground truth @ = f'¥M(F) computed
with the biomechanical model. The second term L) corresponds to a measure of
error between A and D(E())) and is included only for the architecture shown in the
rightmost image of Figure 3, which applies when A is of high dimensionality.

2.4 Patient-specific parameter estimation

Once trained, the surrogate model f;\\IN can predict the displacement field of the organ
given the applied forces F' and the patient-specific parameters A. However, A is usually
unknown. In this section, we propose using an optimization process that relies on
the trained model f;\\IN to estimate the patient-specific parameters A. Consider a case
where the applied forces are known through an appropriate sensor, typically when
using surgical robots like the Da Vinci robot. An observation y of the deformation can
also be obtained through an intraoperative (imaging) sensor. For instance, laparoscopic



camera, LiDar, ultrasound, or CBCT. The observation y may be full or partial imaging
of the organ.

Given the observation y of the deformation, we rely on advanced segmentation
and reconstruction techniques [27, 4] to reconstruct the surface of the observation. For
instance, point clouds serve as a common representation of any intraoperative observa-
tion from the imaging modalities mentioned above. Alongside the applied forces F', the
observation y is used to solve an optimization problem to determine the patient-specific
parameters A. This optimization process leverages the trained networks ( f}\\IN7 h, B
and D) and a gradient-based optimizer, such as Stochastic Gradient Descent (SGD),
to identify the optimal value A* that minimizes an objective function J (described in
Equation 6 and 7), hence maximizing the accuracy of the surrogate model f/{v N on
matching the observation .

A" = argmin, J (6)

J=p(gou,y) with w= f'V(F) (7)

In equation 7, g is the preoperative geometry, u the predicted displacement field for

a given value of A and F', y is the point cloud observed intraoperatively, and p denotes

the Euclidean distance between the observed point cloud and the deformed organ.

Figure 4 illustrates the Euclidean distance p between an observation y of the ground

truth deformed geometry G and the deformation G computed with the surrogate model

when A is incorrectly estimated. For each point in y, its projection on the surface of
G is measured to compute the Euclidean distance.

G

Fig. 4: Nlustration of the distance measure p described in Equation 7. Here, y repre-
sents an observation of the deformation G, while G denotes the prediction from the
surrogate model when A is misestimated. The objective function is computed as the
mean Euclidean distance () between the observed points (y) and the surface of G.

Algorithm 1 shows the optimization process aiming to find the parameters A that
minimizes the objective function in equation 7. We begin by setting an initial guess for
A by sampling from a uniform distribution P, the same distribution used for training.
During each iteration, the estimation of A and the applied forces F' are used to predict
the displacement field u. This displacement field is used to compute G, a deformation of

10



Algorithm 1: Optimization Process

Input : The preoperative geometry g, the applied forces F', the
intraoperative observation y, and a prior distribution P
Output: An estimation of A
A~U(P)
optimizer < SGD(\, Ir)
J « inf
while J > threshold do
u « [N (F)
G <+ gouy
J < w(G,y)
A < optimizer(.J)
end

© N o A W N =

the preoperative geometry g. Therefore, the objected function, defined as the Euclidean
distance between G and y, is minimized to estimate the optimal A. The gradient
computation is possible thanks to the chain rule described in equation 8 and the
automatic differentiation of neural networks. This gradient is the dot product of two
terms: (1), which represents the gradient of J with respect to fN weights, and (2),
which corresponds to the gradient of h with respect to its input, note that the first
term is identical to the gradient used during training.

oJ oJ 00 0J 0(p+do) 0oJ 0(df) 8
G\ 06 on o8 on 00 0N ®)
= =
1) (2)

In equation 8, the initial weights 6y of Y vanish from the second term as they are
independent of the parameters A. This proposed gradient computation remains robust
to any initial guess of A, as gradient computation is consistently feasible due to the
automatic differentiation property of neural networks.

When A has high dimensionality, we use the architecture on the right-hand side
of Figure 3. In this scenario, the optimization is performed over the latent-space vec-
tor z, which has a lower dimension, thereby reducing the problem’s complexity and
accelerating the convergence of the optimization algorithm. Upon convergence, the
parameter vector \* = D(z*) is estimated using the trained decoder D.

3 Experiments and results

To evaluate our method, we conducted two experiments to estimate parameters
across various scenarios. All experiments involved implementing the neural network
and optimization processes using PyTorch. We utilized the Adam optimizer for the
neural network training and the optimization process. The FEM simulations were per-
formed using the SOFA Framework [6] with the SOniCS [13] plugin for soft-tissue
biomechanics. Computation was carried out using an Nvidia Titan RTX GPU.

11



3.1 Experiment 1: Estimation of soft-tissue characteristics

Accurately identifying the material properties is crucial for developing a precise PBDT
model. One of the most challenging aspects is determining the stiffness of the tissue,
which is often difficult to acquire and can introduce significant errors in physics-based
models. This is due to the inherent variability in biological tissues and the complexity
of capturing their mechanical behavior accurately. In this first experiment, we aim
to estimate the stiffness of an ex-vivo human liver. By accurately determining the
liver’s stiffness, we aim to improve the fidelity of the PBDT model, leading to better
predictions of tissue deformation under various conditions.

3.1.1 Experimental data

An ex-vivo human liver was used for this experiment. Two CT scans were acquired
from the liver under two different deformations. As illustrated in Figure 5, the first
configuration corresponds to a rest state of the organ, while in the second configura-
tion, a force of 5.1 N was applied on the left lobe. The force was measured with a force
sensor and maintained at a constant level during the acquisition by attaching the left
lobe to a support. The stiffness of the liver was estimated in average at 7 kPa using
the FibroScan® technique. Additionally, a LIDAR camera captured a partial surface
point cloud of the organ in the second configuration.

Fig. 5: Rest and deformed states of the ex-vivo human liver.

3.1.2 Biomechanical model (fj*M)

We follow the boundary value formulation described in Section 2.1 to build ff®M. The
geometry was manually segmented from the CT scan, representing the ex-vivo organ’s
rest configuration. The liver occupies a volume €2 with boundary I". The Dirichlet and
Neumann boundary conditions are on I'p and I'y. Figure 8 illustrates the simulation
domain. The Dirichlet boundary conditions are assumed to be known and fixed at
the interface between the parenchyma and the portal vein. The material behavior is
approximated with a Saint-Venant Kirchhoff model, with the strain-energy density
function expressed following Equation 9, with E' and v being respectively the Young
Modulus and the Poisson ratio. We recall that E is the Green-Lagrange strain tensor.

12
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Fig. 6: The liver occupies a volume €2 with boundary I'. The Dirichlet and Neumann
boundary conditions are on I'p and I' y. We use an IBM to discretize the domain; this
is motivated by its compatibility with U-Mesh’s CNN architecture.

3.1.3 Data Generation

Using the biomechanical model, denoted fFEM, we generated 3,000 synthetic defor-

mations of the organ. For each deformation, we randomly selected a location on the
liver surface to apply traction forces, sampled from a uniform distribution over [2 N,
10 NJ]. Moreover, Young’s modulus was sampled from a uniform distribution over [5
kPa, 12 kPa], and the Poisson ratio was set at 0.49 for each generated sample. Conse-
quently, a sample from the dataset includes the applied forces F' as input for f}\\IN, the
chosen Young’s modulus as the input A of the hypernetwork h, and the relative dis-
placement field obtained through ff=M which serves as the ground truth to supervise
N5 prediction w.

3.1.4 Network training

In this experiment, the unknown parameter A = F is a scalar representing the mate-
rial’s stiffness. Given the low dimensionality of A, we use the simpler architecture shown
on the left-hand side of Figure 3. The first layer of h is of size 1, h predicts the additive
weights df for fiN. These additive weights provide fNN with information about the
stiffness. The networks were trained end-to-end on 3,000 generated samples during
400 epochs with a batch size of 1. This batch size was chosen for its ease in training
the hypernetwork. The training optimizer is Adam, with a learning rate of 10~4. The
loss function is the mean square error (MSE) between the displacement field predicted
by the surrogate model (YY) and the one computed with the biomechanical model

f EM as expressed in Equation 5. Note that this experiment has no reconstruction
loss L as A is of dimension 1. Hence, no need for dimensionality reduction.

13



3.1.5 Network results

After training, we evaluated the performance of f;\\IN by applying forces of 5.1 N to
the left lobe and comparing the predicted deformation with the ground truth value
of the Young’s Modulus. We assessed the obtained deformation in terms of Hausdorff
distance, and the results are summarized in Table 1. We use the Hausdorff distance
because it enables the comparison of meshes (the deformation generated with f;\\IN and
the ground truth deformation from Mazier et al. [12]) with differing topologies (number
of nodes). Additionally, we reported the Relative Hausdorff distance, which represents
the percentage error relative to the deformation amplitude. Our results were compared
with those from fFEM and U-Mesh [15], where U-Mesh was trained with a constant
stiffness value. The comparison shows that the surrogate model, ff\\IN, achieves com-
parable accuracy to both methods while being faster than f}\:EM and accommodating
a range of stiffness values, unlike U-Mesh. Figure 7 (left image) displays the deforma-
tion predicted by the surrogate model f/I\\IN superimposed on an image of the actual
deformation. To further assess the robustness of our method, we compared the pre-
dictions of f}\\IN with the solutions of f} EM i 100 synthetic deformations, yielding a
Mean Absolute Error (MAE) of 1.77 mm =+ 0.82 mm. Here, we use a MAE metric as
the meshes (deformations generated with ff\v N and with I EM) have the same num-
ber of nodes (topology). The rightmost image of Figure 7 shows a comparison between
the predictions of the surrogate (fY~) and biomechanical (fFEM) models for a given
applied forces and a value of A\. The heatmap represents the error at each location in
the geometry.

Fig. 7: Left: In the wireframe visualization, the prediction of f\N is shown when
applying to the rest state (left image of Figure 5) the same loads that produced the
deformed state (right image of Figure 5). The predicted result is superimposed over
the ground truth deformation image for comparison. Right: The wireframe illustrates
the liver’s rest shape. The surface mesh represents a f}\\IN prediction when specific
loads are applied to this rest shape. The heatmap shows the errors of f}\\IN compared
to the ff EM>g solution under the same loads.
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Hausdorff (mm) | Relative Hausdorff (%) | Time (ms)
fFEM 15.1 11.6 500
U-Mesh 16.6 12.7 4
SN 16.5 12.6 4

Table 1: Results of the liver experiments compare the predictions
of standard FEM, U-Mesh, and f;\\IN against the ground truth defor-
mation. /I\\IN achieves results comparable to both state-of-the-art
methods while being significantly times faster than standard FEM
and more versatile than U-Mesh [15] in handling a range of material
properties.

3.1.6 Optimization results

In this section, we evaluate the optimization method for estimating the stiffness of the
ex-vivo liver. Given the applied forces at the left lobe, a point cloud of the liver surface
was captured using LiDAR. This point cloud is the observation y in the optimization
method described in Section 2.4. The Adam optimizer of learning rate of 2.9 efficiently
converged after 10 iterations, with an average computation time of 46 ms per iteration.
The estimated stiffness value obtained was A = 6.8 kPa, leading to an error within 3%
of the ground truth value (equals 7 kPa). This result demonstrates the effectiveness
of our optimization approach in accurately estimating material properties. The Adam
optimizer’s efficiency and the estimated value’s accuracy underscore our method’s
robustness in handling real-world data and providing reliable parameter estimation.

3.2 Experiment 2: Boundary condition estimation for soft
tissue biomechanics

The boundary conditions (BCs) play a crucial role in the PBDT accuracy as they
define the interactions between the organ and its environment. The problem of estimat-
ing zero-displacement boundary conditions is challenging since it requires identifying
which nodes of the finite element model are constrained. Consequently, the vector A,
over which the optimization takes place, is very large and can contain tens of thou-
sands of unknowns depending on the mesh’s size. In such a case, many optimization
methods would fail or be time-consuming. In this section, we propose to estimate the
zero-displacement boundary conditions using the proposed method.

3.2.1 Experimental data

: For this experiment, we use data from Mazier et al. [12]. The dataset consists of a
cylinder PolyDiMethylSiloxane (PDMS) beam that deforms under gravity with its left
extremity fixed to a vertical support. The non-deformed geometry is provided, and
the material behavior is approximated by a nearly incompressible Mooney-Rivlin [12]
model with parameters Cy; = 101 kPa and C1o = 151 kPa. This approximation was
performed by Mazier et al. using the Mach-1™ mechanical testing system (Biomomen-
tum, Canada). Additionally, an image of the deformation was captured, as illustrated
in the left-hand image of Figure 9.
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3.2.2 Mechanical model (ffFM)

We follow the boundary value formulation in 2.1 to build the biomechanical PBDT,
denoted f{ ™M, for the PDMS beam. The beam occupies a volume €2 with boundary
I'. The Dirichlet and Neumann boundary conditions are on I'p and I'y, two subsets
of I'. I'p is the unknown to be determined. Figure 8 illustrates these domains.

Fig. 8: The beam occupies a volume €2 with boundary I'. The Dirichlet and Neumann
boundary conditions are I'p and T'y.

The strain-energy density function W for a nearly incompressible Mooney-Rivlin
[12] is expressed as:

In(J)

2D,
With Cy1, C1p and D; being the material parameters, J is the jacobian matrix,
while I¢ = tr(C) and Il = £ ((tr(C))? — tr (C?)) are the classic invariants.

W = Co1(J™31c — 3) + C1o(J™51I¢ — 3) + (10)

3.2.3 Data generation

We generated 6,000 training samples using the finite element simulation described
earlier. For each sample, body forces, denoted F, were selected from a uniform distri-
bution over [7 N, 15 N], and a section of the cylinder was randomly chosen to represent
I'p. The relative displacement field is u = ffEM(F), with A a discrete representa-
tion of I'p over the beam’s mesh. This representation is a vector where the dimension
equals the number of nodes in the FEM mesh (1088 in our case). Each element of the
vector is set to 1 if the corresponding node is in the I'p domain, and 0 otherwise.

3.2.4 Network training

In the case of this experiment, the parameter A\ is a discrete representation of the
Dirichlet boundary condition over the beam’s mesh, resulting in a high dimensional-
ity of 1088. Therefore, we use the architecture shown on the right-hand side of Figure
3, which includes a dimensionality reduction of A. The input size of E' and the out-
put size of D equal 1088, the latent space representation z having a dimension of 3

16



Hausdorff (mm) | Relative Hausdorff (%) | Time (ms)
fFEM 5.8 4.4 3000
U-Mesh 6.2 4.7 4
SN 6.4 4.9 4

Table 2: Results from the beam experiments, shows comparisons
between predictions made by the biomechanical model (fFEM), U-
Mesh, and the surrogate model ( /I\\IN) against the ground truth
deformation. ;\\IN achieves results comparable to both state-of-the-
art methods while operating 750 times faster than the biomechanical
model and offering greater flexibility than U-Mesh [15] in handling

diverse patient characteristics.

(experimentally chosen). The networks were trained end-to-end during 400 epochs on
the 6,000 generated samples, with a batch size of 1. We used a Binary Cross Entropy
for the reconstruction loss of A, denoted as £ in equation 5.

3.2.5 Network results

Aiming for comparison with real data, upon training, we have evaluated the surrogate
model ( ;\\IN) when the body forces are the gravity and the Dirichlet domain is on
the left extremity of the beam. The resulting deformation was compared with the
real deformation from Mazier et al. [12] and is illustrated in the right-hand image of
Figure 9. Similar to the previous experience, we use Hausdorff metrics to compare the
predictions and the ground truth geometries. Table 2 presents the numerical results of

/I\\IN, and we also report the performances of the biomechanical model ffEM and U-
Mesh [15] both compared with the ground truth deformation from Mazier et al. [12].
Here, U-Mesh was trained on constant Dirichlet boundary conditions. Results show
that f}\\IN achieves comparable results with both ffEM and U-mesh, while operative
750 times faster than fi M and being more generic than U-Mesh, which is trained for
a single value of Dirichlet boundary condition.

To further assess the robustness of fY~, we have compared its results with f} “M
over 100 deformations with various locations of Dirichlet boundary conditions. Results
achieved a Mean Absolute Error (MAE) of 0.67 + 0.57mm with a maximum and
minimum MAE of 2.7mm and 0.12mm, respectively. We illustrate in Fig. 10 three
results, where we compare the prediction of f /\F EM and f /I\\I N on cases where the Dirichlet
boundary conditions are fixed on the left, middle, and right cross sections respectively.

3.2.6 Optimization results

An important contribution of this work is the ability to leverage the surrogate model
( }\\IN) to determine the parameters A that best fit an observation y. In this experiment,
we used the image of the deformation shown in Figure 9 (left image) as an observation.
Mazier et al. [12] reconstructed and scaled the deformed geometry from this image.
We used a point cloud of the visible surface as an observation y for the optimization
process described in Section 2.4. This point cloud is a constraint for the deformation
predicted by f}\\IN during the optimization process. Optimization over z is performed
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Fig. 9: Left: the observed deformation of the beam, fixed on the left side and deform-
ing under gravity. Right: prediction of f;\\IN (in green) overlaid onto the ground truth
beam.
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Fig. 10: Comparison of the surrogate (fN) and biomechanical (fFEM)
models under various deformations and different Dirichlet boundary con-
ditions: In gray, the non-deformed shape of the geometry, the errors between fIFM
and fYN are displayed on the deformed beam. Two examples are illustrated. Left:
The Dirichlet boundary conditions are on the left extremity. Right: The Dirichlet

boundary conditions are on a cross-section in the middle of the geometry.

using the Adam optimizer with a learning rate of 2.9 and a random initial guess of z.
Convergence was achieved after 10 iterations, resulting in estimations z* decoded using
D to estimate A. This estimation was input into E and used to predict the deformation
of the beam under gravity. Comparison with ground truth resulted in a Hausdorff of
5.8 mm. The optimization over the trained neural network takes, on average, 49 ms
per iteration (40 ms for the forward step and 9 ms for the backward step).
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3.3 Ablation study
3.3.1 Dimensionality reduction

In cases where the characteristics of the patient A have a high dimension, we use
an autoencoder (which consists of the encoder E and the decoder D) to reduce the
dimension to a latent representation z. This approach was applied in Experiment 1.
The optimization is then performed on the latent representation z, accelerating the
convergence of the optimization algorithm. To justify this, we performed the optimiza-
tion process in Experiment 2 on the native vector A without dimensionality reduction,
where A had a dimension of 1088. In this scenario, the optimization algorithm con-
verged after 150 iterations, compared to just 10 iterations when the dimensionality
reduction was used. Each iteration takes 49 ms. Thus, the total time for estimating
the boundary conditions without dimensionality reduction is 7350 ms, whereas it is
only 490ms when optimization is performed on the latent representation.

3.3.2 HyperNetwork architecture

The proposed architecture uses a special type of Hypernetworks, as explained in
Section 2.3. Unlike traditional Hypernetworks [7], where the predicted weights com-
pletely replace the primary network’s weights, our approach uses the predicted weights
as additive adjustments to the primary network’s weights. This strategy enables faster
and more stable training. To support this, we conducted Experiment 1 using both
approaches and reported the training losses in Figure 11.
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Fig. 11: Comparison of training losses using two hypernetwork strategies. In orange,
the traditional hypernetwork strategy is employed, where the hypernetwork fully pre-
dicts the primary network’s weights. In blue, the hypernetwork predicts additive
changes to the primary network’s weights.
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4 Discussion

Results show that the proposed method is effective in scenarios involving multi-
ple material properties and anatomical structures. The experiments demonstrated
that the surrogate model f;\\IN achieves comparable accuracy to both biomechanical
model f}TEM and U-Mesh while operating significantly faster than the biomechanical
model ffEM. Moreover, unlike U-Mesh, which assumes knowledge of patient charac-
teristics before training, FN demonstrates versatility over a distribution of patient
characteristics. This flexibility allows f;\\IN to adapt to patient-specific characteristics
intraoperatively, enhancing its robustness and reliability in clinical applications where
such variations are prevalent.

The optimization process was effective across both scenarios tested, showcasing its
ability to identify patient-specific characteristics that improve the surrogate model’s
predictive accuracy. Since our primary goal is to ensure the surrogate model’s preci-
sion, we validated the optimization process based on its ability to find characteristics
that yield accurate predictions when used in the surrogate model. This validation con-
firmed that the proposed approach maintains high accuracy and offers a robust and
efficient solution for real-time, patient-specific modeling in clinical settings. Moreover,
We utilized point cloud data as intraoperative observations. However, in some scenar-
ios, point clouds may not fully capture the deformation of a 3D geometry, as they only
describe the surface of the geometry. We could explore using 3D data from advanced
imaging modalities like ultrasound for more comprehensive representation. These in-
depth modalities could provide more detailed insights into the internal deformations
and characteristics, potentially enhancing the accuracy of the optimization process
and, hence, providing more accurate patient characteristics for the surrogate model.

It is worth noting that our architecture is not limited to a specific choice of primary
network. While we have chosen U-Mesh for its efficiency, we have also explored other
architectures, including Physics-Informed Neural Networks (PINNs) [21], and found
them to integrate well as a primary network within the proposed framework. This
demonstrates that our method’s flexibility extends beyond a specific choice of the pri-
mary network, making it adaptable to various neural network architectures suited for
different clinical applications. Traditional methods for determining material proper-
ties often involve using an optimization process over a biomechanical model to identify
the parameters that best fit observed data. In our approach, we replace the biome-
chanical model with a surrogate model based on a neural network, which significantly
accelerates the optimization process. While the biomechanical model itself is only an
approximation of the real physical system, the surrogate model serves a similar role.
The parameters obtained through the surrogate model do not need to match those
derived from the biomechanical model exactly. Instead, they should be the parameters
that allow the surrogate model to most accurately represent the real-world behavior.

5 Conclusion

In this work, we present a novel method to improve the accuracy of physics-based
digital twins by precisely estimating patient-specific characteristics based on intraop-
erative observations. Our approach utilizes a hypernetwork architecture to condition
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neural network-based surrogate models on patient-specific properties, including mate-
rial characteristics and boundary conditions. Initially, the network is trained using
simulation data from a biomechanical model, accommodating a range of patient char-
acteristics. After training, we employ a gradient-based optimization process to refine
the surrogate model, thereby determining the optimal patient-specific parameters that
align with the given intraoperative observation. The proposed optimization algorithm
converges in real-time, a crucial feature for effective integration into clinical settings.
Future work will leverage the hypernetwork to condition surrogate models based on
patient anatomical variations. This will enable the development of surrogate models
that can adapt in real-time to different patient geometries, material properties, and
boundary conditions.
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