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BERRY-ESSEEN’S BOUND, MODERATE DEVIATIONS AND
HARMONIC MOMENTS FOR FIXED TYPE POPULATION OF A

SUPERCRITICAL MULTI-TYPE BRANCHING PROCESS IN A
RANDOM ENVIRONMENT

QUANSHENG LIU AND THI TRANG NGUYEN

Abstract. Let Zin = (Zin(1), · · · , Zin(d)), n > 0, be a d-type supercritical branching
process in an independent and identically distributed random environment ξ = (ξ0, ξ1, · · · ),
starting with one initial particle of type i ∈ {1, · · · , d}. We study asymptotic properties
of Zin(j), the j-type population size of generation n, for each j ∈ {1, · · · , d}, as n goes to
infinity. For Zin(j) we establish a Berry-Esseen type bound for the rate of convergence in
the central limit theorem and a moderate deviation principle. As an important ingredient
of the proofs, we also demonstrate the existence of the harmonic moments (which is of
independent interest) of the normalized population size Zin(j)/EξZin(j), uniformly in n > 1,
where Eξ stands for the conditional expectation given the environment ξ.

1. Introduction

A branching process in a random environment (BPRE) is a natural and important gen-
eralisation of the Galton-Watson process, where the reproduction law varies according to a
random environment indexed by time. It was introduced in Smith and Wilkinson [20] to
model the growth of a population in an unknown exogenous environment. This process has
attracted the attention of many authors in the last two decades, see for example the recent
book by Kersting and Vatutin [18] and many references therein. The interest of study of
such processes is growing in recent years, thanks to a large number of applications and
interactions to other scientific fields.

A fundamental result in probability theory is the Central Limit Theorem (CLT), which
provides the asymptotic normality of appropriately scaled sums of random variables. In
the context of branching processes, the CLT describes the asymptotic distribution of the
population size after a large number of generations. The Berry-Esseen bound goes further
by providing a quantitative bound on the rate of convergence to the normal distribution.
This bound measures how closely the distribution of the population size approximates a
Gaussian distribution as the number of generations increases.

For a single-type supercritical branching process (Zn) in a random environment, the law
of large numbers on logZn has been established by Tanny [21]. The central limit theorem
and the rate of convergence in the Gaussian approximation have been studied in [17], [14],
and [4]. Large and moderate deviations have been investigated in [17, 3, 14, 5], among
others. We also refer to [17] and [8] for the study of harmonic moments which play an
important role in the study of limit theorems, particularly when comparing the branching
process with the associated random walk.

For a multitype supercritical branching process (Zin) in a random environment, starting
with one initial particle of type i, Grama, Liu and Pin [9, 13] established the Berry-Esseen’s
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bound, harmonic moments and Cramér type moderate deviation expansion for a suitable
norming of ‖Zin‖, the total population size of generation n.

In this work, we will establish a Berry-Esseen type bound and a moderate deviation
principle for Zin(j), the j-type population size of generation n. As a central element of
the proofs, we will prove the existence of harmonic moments of the normalized population
size Zin(j)/EξZin(j), uniformly in n, where Eξ denotes the conditional expectation given the
environment ξ.

Let us give a quick presentation of the results. For an integer d > 1, consider a d-
type branching process Zn = (Zn(1), · · · , Zn(d)), n > 0, in an independent and identically
distributed (i.i.d.) random environment ξ = (ξ0, ξ1, · · · ). We will write Zin for Zn when
the process starts with one initial particle of type i, that is, when Z0 = ei, where ei is the
vector in Rd with 1 in the i-th place and 0 elsewhere. Let Mn be the random matrix of the
conditioned means of the offspring distribution of n-th generation given the environment,
that is

Mn(i, j) = Eξ[Zn+1(j) | Zn = ei], 1 6 i, j 6 d,
where Eξ denotes the conditional expectation given the environment ξ. Define the product
matrix M0,n = M0 · · ·Mn, and the associated Lyapunov exponent

γ := lim
n→+∞

1
n
E log ‖M0,n−1‖,

where ‖M0,n−1‖ is the operator norm of the matrix M0,n−1 associated with the L1 norm of
Rd.

Recently, the asymptotic behavior of (Zin) in the supercritical case γ > 0 has been studied
in [12], where a strong law of large numbers is proved: under appropriate conditions, it holds
that on the explosion event {‖Zin‖ → +∞},

lim
n→+∞

1
n

logZin(j) = γ a.s. ∀i, j = 1, · · · , d. (1.1)

The first objective in this paper is to establish a Berry-Esseen type theorem on the rate of
convergence in the central limit theorem for logZin(j): we will show that

sup
x∈R

∣∣∣∣P( logZin(j)− nγ
σ
√
n

6 x
)
− Φ(x)

∣∣∣∣ 6 C√
n
, (1.2)

where Φ(x) = 1√
2π
∫ x
−∞ e

−t2/2dt is the standard normal distribution function,

σ2 = lim
n→+∞

1
n
E[(log ‖xM0,n−1‖ − nγ)2]

is the asymptotic variance which is independent of x and C > 0 is a constant.
The second objective of this paper is to establish a moderate deviation principle for Zin(j).

Let {an}n>1 be a sequence of positive numbers satisfying
an
n
→ 0 and an√

n
→∞ as n→∞.

Under suitable conditions, we will show that, for any measurable subset B of R,

− inf
x∈Bo

x2

2σ2 6 lim inf
n→∞

n

a2
n

logP
( logZin(j)− nγ

an
∈ B

)
6 lim sup

n→∞

n

a2
n

logP
( logZin(j)− nγ

an
∈ B

)
6 − inf

x∈B̄

x2

2σ2 ,

(1.3)

where Bo denotes the interior of B, and B̄ its closure.
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An important ingredient in our proofs is the existence of harmonic moments of the nor-
malized population size Z̄in(j) := Zin(j)/M0,n−1(i, j), uniformly in n: that is, for some a > 0,
supn>1 E[(Z̄in(j))−a] <∞. Proving this is the third objective of the paper. The result is of
independent interest, and can be useful in establishing other limit theorems, especially on
moderate and large deviations.

The uniform result for the existence of harmonic moments of Z̄in(j) allows us to do
a precise comparison between Zin(j) and the entries M0,n−1(i, j) of products of random
matrices. Its proof is based on a recurrence relation satisfied by the quenched Laplace
transform of Z̄in(j).

2. Notation and main results

For d > 1, let Rd be the d-dimensional space of vectors. We equip Rd with the scalar
product and the L1-norm respectively defined by

〈x, y〉 :=
d∑
i=1

x(i) y(i) and ‖x‖ :=
d∑
i=1
|x(i)|, x, y ∈ Rd.

Recall that Rd+ is the non-negative quadrant. Let S = {x ∈ Rd+ : ‖x‖ = 1}. For each
1 6 i 6 d, ei will be the d-dimensional vector with 1 in the i-th place and 0 elsewhere. Let
0 = (0, · · · , 0) ∈ Rd be the vector with all coordinates equal to 0. Denote by N = {0, 1, · · · }
the set of non-negative integers. Set 1A for the indicator of an event A.

We denote by G the multiplicative semigroup of d×d matrices with non-negative entries.
The subsemigroup of G with strictly positive matrices is denoted by G◦. For M ∈ G, we
define the operator norm with respect to L1 vectorial norm by

‖M‖ := sup
x∈S
‖xM‖ = max

16i6d

∑
16j6d

M(i, j) = max
16i6d

‖eiM‖, M ∈Md(R),

whereM(i, j) denotes the (i, j)-th entry ofM . (As the vectors x ∈ Rd are represented in the
row form, the action of a matrix M on x is denoted xM , to be consistent with the matrix
multiplication; the operator norm ‖M‖ defined here corresponds to the induced L1-norm
of the transpose MT defined with column vectors, since sup

‖x‖=1
‖xM‖ = sup

‖x‖=1
‖MTxT ‖ =

sup
‖y‖=1

‖MT y‖.) In addition we equip Rd andMd(R) with the L∞-norms:

‖x‖∞ := max
16i6d

|x(i)|, x ∈ Rd;

‖M‖∞ := sup
‖x‖∞=1

‖xM‖∞ = max
16j6d

∑
16i6d

M(i, j) = ‖MT ‖, M ∈Md(R).

For a matrix or a vector X, we write X > 0 when all the entries of X are strictly positive.
Now we give a precise definition of the multi-type branching process in random environ-

ment (MBPRE). The environment ξ = (ξn)n>0 is a sequence of independent and identically
distributed (i.i.d.) random variables taking values in an abstract space X. To each re-
alization of ξn correspond d probability distributions on Nd identified by the probability
generating functions

f rn(s) =
∞∑

k1,··· ,kd=0
prk1,··· ,kd(ξn)sk1

1 · · · s
kd
d , s = (s1, . . . , sd) ∈ [0, 1]d, (2.1)
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where 1 6 r 6 d. The d-type branching process Zn = (Zn(1), · · · , Zn(d)), n > 0, in the
random environment ξ is a process with values in Nd such that for all n > 0,

Zn+1 =
d∑
r=1

Zn(r)∑
l=1

N r
l,n. (2.2)

where N r
l,n = (N r

l,n(1), · · · , N r
l,n(d)) is a random vector whose j-th component N r

l,n(j) rep-
resents the offspring of type j at time n + 1 of the l-th particle of type r in generation n,
and Zn(j) is the total number of particles of type j in generation n. Conditioned on the
environment ξ, the random vectors Z0 and N r

l,n indexed by l > 1, n > 0 and 1 6 r 6 d, are
all independent of each other, and each N r

l,n has the same law pr(ξn) = {prk(ξn) : k ∈ Nd}
whose probability generating function is f rn. In the sequel, we write Zin for Zn when Z0 = ei,
that is, when the process starts with one initial particle of type i.

Denote by Pξ the quenched law, i.e. the probability under which the process is defined
when the environment ξ is given. Let τ be the law of ξ. The total probability P of (Zn),
usually called annealed law, is defined by P(dx, dξ) = Pξ(dx)τ(dξ). Denote by Eξ and E the
corresponding expectation with respect to Pξ and P. With our notation,

f rn(s) = Eξ
( d∏
j=1

s
Nr
l,n(j)

j

)
, s = (s1, . . . , sd) ∈ [0, 1]d

is the quenched probability generating function of N r
l,n. Let

fn = (f1
n, · · · , fdn). (2.3)

For n > 0, letMn be the d×d random matrix whose (i, j)-th entryMn(i, j) is the conditioned
mean of the number of children of type j produced by a particle of type i at time n:

Mn(i, j) := ∂f in
∂sj

(1) = Eξ
[
Zn+1(j)

∣∣Zn = ei
]
,

where ∂f
∂sj

(1) denotes the left derivative at 1 of a d-dimensional probability generating
function f with respect to sj . Since the sequence of the environments (ξn) is i.i.d., the
sequence of the mean matrices (Mn) is also i.i.d.. For 0 6 k 6 n, denote by

Mk,n := Mk · · ·Mn,

the product of the mean matrices Mk, . . . ,Mn; by convention Mk,n denotes the identity
matrix when k > n. It follows that, for n > 0 and 1 6 i, j 6 d,

EξZin(j) = M0,n−1(i, j). (2.4)

For 0 6 k 6 n, let ρk,n be the spectral radius of Mk,n. By the Perron-Frobenius theorem,
ρk,n is an eigenvalue of Mk,n, and there exists a non negative eigenvector uk,n associated to
ρk,n with ‖uk,n‖ = 1. Under conditions, the limit

uk := lim
n→∞

uk,n (2.5)

exists a.s., with uk > 0 and ‖uk‖ = 1; moreover the sequence (uk) satisfies the relation

uk+1M
T
k = λkuk, (2.6)

where λk = ‖uk+1M
T
k ‖ are positive random scalars called the pseudo-spectral radii of the

random matrices (Mk). Set λk,n = λk · · ·λn. By iteration of (2.6), we obtain

un+1M
T
k,n = λk,nuk, n, k > 0, with MT

k,n = (Mk,n)T . (2.7)
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Then the following sequence constitues a martingale:

W i
0 = 1, W i

n = 〈Zin, un〉
λ0,n−1u0(i) = 〈Zin, un〉

〈eiM0,n−1, un〉
, n > 1. (2.8)

Throughout the paper, we assume that M0 is allowable (every row and column contains a
strictly positive element), and that the following positivity property holds:

P
(
∃n > 1 such that M0,n−1 > 0

)
> 0. (2.9)

By the results of Hennion, under condition (2.9) there exists the random vectors uk and
the random scalars λk defined by (2.5) and (2.6), which satisfy the relation (2.7) and that
(uk) and (λk) are stationary ergodic; moreover, we know that the sequence (W i

n) defined in
(2.8) is a non-negative martingale under the measure Pξ and P, w.r.t. the filtration

F0 = σ(ξ), Fn = σ
(
ξ,N r

l,k(j), 0 6 k 6 n− 1, 1 6 r, j 6 d, l > 1
)
for n > 1.

Let W i := limn→+∞W
i
n be the a.s. limit of the martingale (W i

n).
It is well known that, under the following moment condition

E log+ ‖M0‖ < +∞, (2.10)
the Lyapunov exponent γ of the sequence of matrices (Mn)n>0 exists, with

γ := lim
n→+∞

1
n
E log ‖M0,n−1‖ = inf

n>1

1
n
E log ‖M0,n−1‖.

Moreover, Furstenberg and Kesten established a strong law of large numbers for log ‖M0,n−1‖:

lim
n→+∞

1
n

log ‖M0,n−1‖ = γ P-a.s.

According to the values of the Lyapunov exponent γ, we have the following classification:
a MBPRE is supercritical if γ > 0, critical if γ = 0, and subcritical if γ < 0. In this article,
the process (Zn) is assumed to be supercritical, i.e. γ > 0.

Under the supercritical condition γ > 0, we know by [10, Theorem 2.6 and Corollary 2.8]
that the condition

E
(

Zi1(j)
M0(i, j) log+ Zi1(j)

M0(i, j)

)
< +∞ ∀1 6 i, j 6 d (2.11)

is sufficient for the non-degeneracy of each W i (in the sense that P(W i > 0) > 0), with
EξW i = 1 and Pξ(W i > 0) = Pξ

(
‖Zin‖ →n→∞∞

)
= 1− qi(ξ) > 0, a.s. (2.12)

where qi(ξ) = Pξ(Zin → 0) is the quenched probability of extinction of the process (Zin). By
Sheffé’s theorem, the property that EW i = 1 is equivalent to the L1-convergence of W i

n.
Denote

Z̄in(j) := Zin(j)
EξZin(j) = Zin(j)

M0,n−1(i, j) .

For n > 0, define the row vector p0(ξn) and the matrix P1(ξn), whose components are

p0(ξn)(i) = f in(0) and P1(ξn)(i, j) = ∂f in
∂sj

(0), 1 6 i, j 6 d. (2.13)

Then, for 1 6 i, j 6 d,
p0(ξn)(i) = PTnξ(‖Zi1‖ = 0) and P1(ξn)(i, j) = PTnξ(Zi1 = ej),

where Tn is the n-fold iteration of the translation T defined as
Tξ = (ξ1, ξ2, · · · ) if ξ = (ξ0, ξ1, · · · ).
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Throughout the paper, we will assume the following condition:
H1. The vector p0(ξ0) = (f1

0 (0), . . . , fd0 (0)) satisfies
p0(ξ0) = 0 P-a.s. (2.14)

The condition H1 means that each individual of the population gives birth to at least
one child, so that qi(ξ) = 0 a.s. When (2.12) holds, this implies that ‖Zin‖ → +∞ a.s. as
n → +∞. When H1 holds, the process (Zin) is called increasing since in this case ‖Zin‖ is
increasing a.s.

We introduce the following condition introduced by Furstenberg and Kesten [7].
H2. There exists a constant D > 1 such that P-a.s.,

1 6 max16i,j6dM0(i, j)
min16i,j6dM0(i, j) 6 D.

We introduce the following assumption :
H3. There exist constants p ∈ (1, 2], A > A1 > 1 and A2 > 0 such that for any 1 6 i, j 6 d,
P-a.s.

A2 6M0(i, j), A1 6 ‖M0(i, ·)‖ and Eξ(Zi1(j)p) 6 Ap.
It is clear that H3 implies the conditions (2.9), (2.10), (2.11) and γ > 0. From H3 we

have also that for all 1 6 i, j 6 d,
M0(i, j) 6 A P-a.s. (2.15)

Under the condition H3, it implies that

1 6 max16i,j6dM0(i, j)
min16i,j6dM0(i, j) 6

A

A2
. (2.16)

Therefore, H3 implies H2 with D = A
A2

.
Now we study the existence of harmonic moments for Z̄in(j) under the boundedness

condition H3. We shall also use the following condition:
H4. There exist a constant a0 > 0 such that E

[
(Zi1(j))−a0

]
< +∞ for all 1 6 i, j 6 d.

The following theorem concerns the existence of harmonic moments of Z̄in(j) uniformly
in n, which is quite useful in applications. It will be used in the proofs of the Berry-Esseen
bound and moderate deviations for logZin(j).
Theorem 2.1 (Harmonic moments). Assume conditions H1, H3, H4 and γ > 0. Then
there exists a > 0 such that supn>1 E(Z̄in(j))−a < +∞ for all 1 6 i, j 6 d.

Notice that H4 is necessary since supn>1 E(Z̄in(j))−a < +∞ implies E(Z̄i1(j))−a < +∞.
Notice also that, since Z̄in(j)) → W i a.s., by Fatou’s lemma, supn>1 E(Z̄in(j))−a < +∞
implies E(W i)−a < ∞. For the harmonic moments of W i, sufficient conditions have been
given in [9]. We mention that the uniform finiteness of the harmonic moments of Z̄in(j) is
more delicate compared with that of the martingaleW i

n where each type particle contributes.
Now we formulate a Berry-Esseen type theorem for logZin(j), for all 1 6 i, j 6 d. It

has been proved in [22, Proposition 3.15] that if for some ε > 0 and all i, j ∈ {1, · · · , d},
EM0(i, j)ε + EM0(i, j)−ε <∞, then the asymptotic variance σ2

σ2 = lim
n→+∞

1
n
E[(log〈xM0,n−1, ei〉 − nγ)2]

exists with value in [0,∞), uniformly in x ∈ S (in fact this was proved in [22] under weaker
conditions). For the rate of convergence we need the following assumption :
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H5. The asymptotic variance σ2 satisfies
σ2 > 0.

Theorem 2.2 (Berry-Esseen bound). Assume conditions H1, H3, H4, γ > 0 and H5.
Then there exists a constant C > 0 such that for all n > 1, x ∈ R and 1 6 i, j 6 d,∣∣∣∣P( logZin(j)− nγ

σ
√
n

6 x
)
− Φ(x)

∣∣∣∣ 6 C√
n
,

where Φ(x) = 1√
2π
∫ x
−∞ e

−t2/2dt is the standard normal distribution function.

A similar result for the norm ‖Zin‖ has been established in [9].
Our last result is a moderate deviation principle for logZin(j).

Theorem 2.3 (Moderate Deviation Principle). Assume conditions H1, H3, H4 and γ > 0
and H5. Let {an}n>1 be a sequence of positive numbers satisfying

an
n
→ 0 and an√

n
→∞ as n→∞.

Then for any measurable subset B of R,

− inf
x∈Bo

x2

2σ2 6 lim inf
n→∞

n

a2
n

logP
( logZin(j)− nγ

an
∈ B

)
6 lim sup

n→∞

n

a2
n

logP
( logZin(j)− nγ

an
∈ B

)
6 − inf

x∈B̄

x2

2σ2 ,

(2.17)

where Bo denotes the interior of B, and B̄ its closure.

3. Harmonic moments of Z̄in(j)

3.1. Auxiliary results.

Lemma 3.1. ([9, Lemma 3.1]) Assume condition (2.11) and γ > 0. Then for all n > 0,
1 6 i 6 d and any convex function φ : R+ → R+,

lim
n→+∞

Eξφ(W i
n) = sup

n>0
Eξφ(W i

n) = Eξφ(W i), (3.1)

and
lim

n→+∞
Eφ(W i

n) = sup
n>0

Eφ(W i
n) = Eφ(W i). (3.2)

Lemma 3.2. ([19, Lemma 4.4]) Let X be a positive random variable, and a > 0. We have
the following assertions:

(1) if EX−a < +∞ then Ee−tX = Ot→+∞(t−a);
(2) if Ee−tX = Ot→+∞(t−a) then EX−b < +∞ for all b ∈ (0, a);
(3) Ee−tX = Ot→+∞(t−a) if and only if P(X 6 x) = Ox→0(xa).

For all n > 0, 1 6 i, j 6 d, let

φi,jξ,n(t) = Eξe−tZ̄
i
n(j) and φi,jn (t) = Eφi,jξ,n(t) = Ee−tZ̄

i
n(j), t > 0,

be respectively the quenched and annealed Laplace transform of Z̄in(j). Denote by
φξ,n(t) = (φ1

ξ,n(t), · · · , φdξ,n(t)) and φn(t) = (φ1
n(t), · · · , φdn(t)), t > 0.

Let T be the shift operator of the environment sequence:
Tξ = (ξ1, ξ2, · · · ) if ξ = (ξ0, ξ1, · · · ),

and let Tn be its n-fold iteration.
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The following lemma gives the functional equations and inequalities that the quenched
Laplace transforms φi,jξ,n satisfy. For a matrix M , we denote its i-th row by M(i, ·), that is,
M(i, ·) = eiM .

Lemma 3.3. Assume condition H2. Then for all n > 1, i, j = 1, · · · , d, the quenched
Laplace transform φi,jξ,n of Z̄in(j) satisfies, for all t > 0,

φi,jξ,n+1(t) = f i0

(
φ1,j
T ξ,n

(
t
M1,n(1, j)
M0,n(i, j)

)
, · · · , φd,jTξ,n

(
t
M1,n(d, j)
M0,n(i, j)

))
(3.3)

6 f i0

(
φ1,j
T ξ,n

(
t

D‖M0(1, ·)‖

)
, · · · , φd,jTξ,n

(
t

D‖M0(d, ·)‖

))
(3.4)

6 f i0

(
φ1,j
T ξ,n

(
t

D‖M0‖

)
, · · · , φd,jTξ,n

(
t

D‖M0‖

))
. (3.5)

Proof. Conditioned on the environment ξ, the random vectorsN r
l,n,k = (N r

l,n,k(1), · · · , N r
l,n,k(d)),

with N r
l,n,k(j) denoting the offspring of type j at time n + k of the l-th r-type parti-

cle of generation n, are independent and have the same probability generating function
f rn ◦fn+1 ◦ · · · ◦fn+k−1, where f rn and fn are defined in (2.1) and (2.3). The process (Zn)n>0
satisfies the following relation

Zn+k =
d∑
r=1

Zn(r)∑
l=1

N r
l,n,k, n > 0, k > 1. (3.6)

From (3.6) and Furstenberg-Kesten condition H2, we get that for all n > 1 and 1 6 i, j 6 d,

Z̄in+1(j) =
d∑
r=1

Zi1(r)∑
l=1

N r
l,1,n(j)

M0,n(i, j)

=
d∑
r=1

Zi1(r)∑
l=1

N r
l,1,n(j)

M1,n(r, j)
M1,n(r, j)
M0,n(i, j)

=
d∑
r=1

Zi1(r)∑
l=1

Z̄rl,1,n(j) M1,n(r, j)∑d
l=1M0(i, l)M1,n(l, j)

>
d∑
r=1

Zi1(r)∑
l=1

Z̄rl,1,n(j) 1
D‖M0(i, ·)‖ . (3.7)

Taking the Laplace transform and using the independence under Pξ of the random variables
Z̄rl,1,n(j) and Zi1(r) for l > 0 and 1 6 r 6 d, we get that for all n > 1 and 1 6 i, j 6 d, t > 0,

φi,jξ,n+1(t) 6 Eξ
[ d∏
r=1

Zi1(r)∏
l=1

Eξ
[
e
− t
D‖M0(i,·)‖ Z̄

r
l,1,n(j)]]

= Eξ
[ d∏
r=1

(
φr,jT ξ,n

( t

D‖M0(i, ·)‖
))Zi1(r)]

= f i0

(
φ1,j
T ξ,n

(
t

D‖M0(1, ·)‖

)
, · · · , φd,jTξ,n

(
t

D‖M0(d, ·)‖

))
. (3.8)

Since max16r6d ‖M0(r, ·)‖ = ‖M0‖, this gives the conclusion of the lemma. �
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Lemma 3.4. Let (Xk)k∈N∗ be a sequence of i.i.d. random centered variables. Then for all
n ∈ N∗ and p > 1 :

E
∣∣∣∣ n∑
k=1

Xk

∣∣∣∣p 6
{

(Bp)pE|Xk|pn, if 1 < p 6 2,
(Bp)pE|Xk|pn

p
2 , if p > 2,

where Bp = 2 min{k1/2 : k ∈ N, k > p
2}.

3.2. Existence of the annealed harmonic moments E(Z̄in(j))−a. The aim of this sec-
tion is to prove Theorem 2.1 which gives the existence of the harmonic moments E(Z̄in(j))−a
for a small a > 0, under the boundedness condition H3. We will prove the following theo-
rem.

Theorem 3.5. Assume conditions H1, H3, H4 and γ > 0. Then there exist two constants
a > 0 and C > 0 such that for all n > 1, 1 6 i, j 6 d, t > 0, and x > 0,

φi,jn (t) 6 C

ta
. (3.9)

P(Z̄in(j) 6 x) 6 Cxa and E(Z̄in(j))−a 6 C. (3.10)

Clearly Theorem 2.1 follows from Theorem 3.5.
For the proof of Theorem 3.5, we shall need the following technical lemma about the

decay late of functions which satisfy a recurrent relation.

Lemma 3.6. Consider a sequence of functions ψn : (0,∞) → [0,∞), n > 0. Assume that
there exist a random variable A > 0 and some constants α ∈ (0, 1), C > 0, a > 0 such that
for all n > 0, and all t > 0,

ψn+1(t) 6 αEψn(At) + C

ta
. (3.11)

(1) If αEA−a < 1 and ψ0 is bounded on (0,∞), then for all t > 0,

lim sup
n→∞

ψn(t) 6 C1
ta
, where C1 = C

1− αE(A−a) .

(2) If αEA−a < 1 and ψ0(t) 6 C0
ta for some constant C0 > 0 and all t > 0, then for all

t > 0,
sup
n>0

ψn(t) 6 C2
ta
, where C2 = C0 + C

1− αE(A−a) .

Proof. Let {Ai}i>0 be independent copies of A. By induction, for all n > 1 and all t > 0,

ψn(t) 6 αnEψ0(t
n−1∏
k=0

Ak) + C
[
1 +

n−1∑
k=0

(αE(A−a))k
]
t−a. (3.12)

Therefore taking the limsup as n → ∞, or taking the supremum on n > 1, we get the
desired results. �

For the proof of Theorem 3.5, we will need the following preliminary result about the
quenched moments Eξ(Z̄in(j))p and the control of the quenched Laplace transform φi,jξ,n(t) =
Eξe−tZ̄

i
n(j), for all n > 1 and 1 6 i, j 6 d. For all k > 0 and p > 1, let

θk(p) = θk(p, ξ) = θ(p, ξk) = max
16r,j6d

Eξ
∣∣∣∣ N r

1,k(j)
Mk(r, j)

− 1
∣∣∣∣p (3.13)

(recall that N r
1,k has law pr(ξk) under Pξ). Then θ0(p, ξ) = max

16r,j6d
Eξ
∣∣ Zr1 (j)
M0(r,j) − 1

∣∣p and

θk(p, ξ) = θ0(p, T kξ).
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Lemma 3.7.
(1) Assume Furstenberg-Kesten condition H2. Then P-a.s., for all n > 1 and 1 6 i, j 6

d, with θk(p) defined in (3.13),(
Eξ(Z̄in(j))p

)1/p
6 dD2

(
1 +Bp

n−1∑
k=0

θk(p)
1
p max

16r6d
M0,k−1(i, r)

1−p
p

)
. (3.14)

(2) Assume conditions H1 and H3. Then there exist two constants β ∈ (0, 1) and t0 > 0
such that for all n > 1, 1 6 i, j 6 d and t > t0,

φi,jξ,n(t) 6 β P-a.s. (3.15)

Proof. We first prove (3.14). Recall that (see (2.7)) for n > 1, unMT
0,n−1 = λ0,n−1u0. Under

H2, by [11, (4.5)], we know that for all n > 1 and 1 6 i, j 6 d,
1

dD2 6
M0,n−1(i, j)un(j)

λ0,n−1u0(i) 6 1 P-a.s.

Therefore we obtain that for all n > 1 and 1 6 i, j 6 d,

Z̄in(j) = Zin(j)
M0,n−1(i, j) 6 dD

2M0,n−1(i, j)un(j)
λ0,n−1u0(i)

Zin(j)
M0,n−1(i, j)

= dD2Z
i
n(j)un(j)

λ0,n−1u0(i) 6 dD
2W i

n. (3.16)

Using the decompositionW i
n =

∑n−1
k=0(W i

k+1−W i
k) and the triangular inequality in Lp under

Pξ, we see that for all n > 1,(
Eξ[(W i

n)p]
)1/p

6
(
1 +

n−1∑
k=0

(
Eξ|W i

k+1 −W i
k|p
)1/p)

. (3.17)

By [9, (3.8)] we have for all k > 0 and 1 6 i 6 d, P-a.s., with θk(p) defined in (3.13),
Eξ|W i

k+1 −W i
k|p 6 Bp

pθk(p) max
16j6d

(M0,k−1(i, j))1−p. (3.18)

Combining (3.16), (3.17) and (3.18), we obtain (3.14).
Now, we assume conditions H1 and H3. We prove the second part of the lemma. We

know that H3 implies H2, then under H3, we also have (3.14). Using the triangular
inequality in Lp under Pξ and condition H3, for n > 0 we have

θn(p) 6 max
16r,j6d

(
[Eξ(N r

1,n(j))p]1/p

Mn(i, j) + 1
)p
6
( A
A2

+ 1
)p

P-a.s. (3.19)

Using [9, (3.11)] that M0,n−1(i, r) > A2A
n−1
1 and (3.19), we obtain that for all 1 6 i, j 6 d

and n > 0, (
Eξ(Z̄in(j))p

)1/p
6 C. (3.20)

Since x→ (e−x−1+x)/xp is a positive bounded function on R∗+, it follows that there exists
a constant C1 > 0 such that for all x > 0,

e−x 6 1− x+ C1x
p.

Combining this with (3.20), we see that for all 1 6 i, j 6 d and n > 1, and t > 0, P-a.s.,

φi,jξ,n(t) = Eξe−tZ̄
i
n(j) 6 Eξ

(
1− tZ̄in(j) + C1t

p(Z̄in(j))p
)

6 1− Ct+ CC1t
p. (3.21)
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Let h(t) = 1− Ct+ CC1t
p, t > 0. We observe that the minimal value of h(t) is β = h(t0),

where t0 := (pC1)1/(1−p), and we have

β = 1− C(pC1)1/(1−p) + C

p
(pC1)1/(1−p) = 1−

(
1− 1

p

)
Ct0. (3.22)

So β ∈ (0, 1). Since the quenched Laplace transform φi,jξ,n is decreasing on R+, we conclude
from (3.21) that for all n > 1, 1 6 i, j 6 d, t > t0,

φi,jξ,n(t) 6 φi,jξ,n(t0) 6 h(t0) = β P-a.s. (3.23)

This concludes the proof of Lemma 3.7. �

We begin with the following result for the existence of the harmonic moments E(Z̄in(j))−a
for each n > 1.

Proposition 3.8. Assume H2. Let a > 0 be such that E
[
‖M0‖a

]
<∞ and E

[
(Z̄i1(j))−a

]
<

∞ for all i, j ∈ {1, · · · , d}. Then for all n > 1 and 1 6 i, j 6 d,

E
(
Z̄in(j)

)−a
< +∞. (3.24)

Proof. We will prove (3.24) by induction on n > 1. For n = 1, (3.24) holds under the given
condition on Z̄i1(j). Assume that (3.24) holds for some n > 1 and all 1 6 i, j 6 d. We will
prove that (3.24) also holds for n + 1. By (3.7), we have the following decomposition: for
n > 1 and i, j ∈ {1, · · · , d},

Z̄in+1(j) =
d∑
r=1

Zi1(r)∑
l=1

N r
l,1,n(j)

M1,n(r, j)
M1,n(r, j)
M0,n(i, j)

>
d∑
r=1

Zi1(r)∑
l=1

N r
l,1,n(j)

M1,n(r, j)
1

D‖M0‖
. (3.25)

Notice that from the condition on Z̄i1(j), we have Zi1(j) > 0 a.s. for all i, j ∈ {1, · · · , d}.
Therefore, from (3.25) we get that for all n > 1, i, r ∈ {1, · · · , d}, and a > 0,

E
(
Z̄in+1(j)

)−a
6 DaE

[( N r
1,1,n(j)

M1,n(r, j)
)−a
‖M0‖a

]
= DaE

[(
Z̄rn(j)

)−a] E[‖M0‖a
]
. (3.26)

So by the recurrence hypothesis and the condition on Z̄i1(j), we see that (3.24) still holds
for n + 1 and all i, j ∈ {1, · · · , d}. Therefore, by induction, (3.24) holds for all n > 1 and
i, j ∈ {1, · · · , d}.

�

We now prove the uniform finiteness of the harmonic moments of Z̄in(j), that is, the
existence of some a > 0 such that supn>1 E(Z̄in(j))−a < ∞, which is much more delicate
than for a fixed n > 1.

Proof of Theorem 3.5. We first notice that the implication (3.9)⇒ (3.10) holds by Lemma
3.2. Therefore, it remains to show (3.9) under the given conditions. Assume conditions H1,
H3, H4 and γ > 0. For every environment ξ and every integer n > 0 and j = 1, · · · , d, set

φ·,jξ,n(t) = (φ1,j
ξ,n(t), · · · , φd,jξ,n(t)), with φi,jξ,n(t) = Eξe−tZ̄

i
n(j), i = 1, · · · , d, t > 0.

(3.27)
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Let φjn be the function on R+ defined by

φjn(t) = E‖φ·,jξ,n(t)‖∞ = E max
16r6d

φr,jξ,n(t), t > 0. (3.28)

Notice that for all t > 0,

‖φ·,jn (t)‖∞ = ‖Eφ·,jξ,n(t)‖∞ 6 E‖φ·,jξ,n(t)‖∞ = φjn(t).

Therefore (3.9) holds if we prove that there exist constants C, a > 0 such that for all n > 1
and t > 0,

φjn(t) 6 Ct−a. (3.29)

Now we prove (3.29). In the following, for all statements involving the environment ξ, the
validity is for almost every environment, though this is not explicitly stated for simplicity.

From Lemma 3.3 we obtain that φ·,jξ,n(t) satisfies the following equation: for all n > 0,
1 6 j 6 d and t > 0,

φ·,jξ,n+1(t) 6 f0

(
φ·,jT ξ,n

(
t

D‖M0‖

))
. (3.30)

For n > 0, denote by Q1(ξn) the positive random matrix whose entries are, for 1 6 i, j 6 d,

Q1(ξn)(i, j) = Pξ
(
‖Zn+1‖ > 2, Zn+1(j) > 1, Zn+1(r) = 0, r < j

∣∣Zn = ei
)
.

It is clear that for n > 0, Q1(ξn) depends only of ξn and that the events {Zn+1(j) >
1, Zn+1(r) = 0 ∀r < j}, 1 6 j 6 d, constitute a partition of {‖Zn+1‖ > 1}. Hence

‖Q1(ξn)(i, ·)‖ =
d∑
j=1

Q1(ξn)(i, j) = Pξ
(
‖Zn+1‖ > 2

∣∣Zn = ei
)
∀1 6 i 6 d.

By H1 and the fact that ‖P1(ξn)(i, ·)‖ = Pξ
(
‖Zn+1‖ = 1

∣∣Zn = ei
)
, we get that for all n > 0

and 1 6 i 6 d,

‖P1(ξn)(i, ·) +Q1(ξn)(i, ·)‖ = 1, (3.31)

which means that P1(ξn) + Q1(ξn) is a stochastic matrix, and ‖P1(ξn) + Q1(ξn)‖ = 1.
Then, by definition of the matrix Q1(ξ0) and using again H1 and the partition {Zn+1(j) >
1, Zn+1(r) = 0 ∀r < j} (1 6 j 6 d) of {‖Zn+1‖ > 1}, we see that for all s = (s1, · · · , sd) ∈
[0, 1]d and 1 6 i 6 d, we have

f i0(s) =
d∑
j=1

Pξ(Zi1 = ej)sj +
∑

k∈Nd,‖k‖>2
Pξ(Zi1 = k)sk(1)

1 · · · sk(d)
d

6
d∑
j=1

P1(ξ0)(i, j)sj + ‖s‖∞
d∑
j=1

Q1(ξ0)(i, j)sj

=
〈
s
([
P1(ξ0) + ‖s‖∞Q1(ξ0)

])T
, ei
〉
.

In terms of the vector form, it reads for all s = (s1, · · · , sd) ∈ [0, 1]d,

f0(s) 6 s
([
P1(ξ0) + ‖s‖∞Q1(ξ0)

])T
. (3.32)

This, together with (3.30), implies that for all n > 0, 1 6 j 6 d and t > 0,

φ·,jξ,n+1(t) 6 φ·,jT ξ,n
(

t

D‖M0‖

)(
P1(ξ0) +

∥∥∥φ·,jT ξ,n( t

D‖M0‖

)∥∥∥
∞
Q1(ξ0)

)T
. (3.33)
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Taking the norm in (3.33), we get for all n > 0 and t > 0,

‖φ·,jξ,n+1(t)‖∞ 6
∥∥∥φ·,jT ξ,n( t

D‖M0‖

)(
P1(ξ0) +

∥∥∥φ·,jT ξ,n( t

D‖M0‖

)∥∥∥
∞
Q1(ξ0)

)T ∥∥∥
∞
. (3.34)

Now, by Lemma 3.7, we know that there exist two constants β ∈ (0, 1) and t0 > 0 such
that ‖φ·,jξ,n(t)‖∞ 6 β for all t > t0. Using the condition ‖M0‖ 6 (dA), this implies that for
all n > 1, 1 6 j 6 d, ∥∥∥φ·,jT ξ,n( t

D‖M0‖

)∥∥∥
∞
6 β, ∀t > t0(dDA). (3.35)

From (3.35), (3.34), and the condition that the sequence (ξn) is i.i.d., we see that for all
n > 1 and t > t0(dDA),

φjn+1(t) = E
[
‖φ·,jξ,n+1(t)‖∞

]
6 E

[∥∥∥φ·,jT ξ,n( t

D‖M0‖

)(
P1(ξ0) + βQ1(ξ0)

)T ∥∥∥
∞

]
6 E

{∥∥∥(P1(ξ0) + βQ1(ξ0)
)T ∥∥∥
∞
E
[∥∥∥φ·,jT ξ,n( t

D‖M0‖

)∥∥∥
∞

∣∣ ξ0
]}

= E
[∥∥∥P1(ξ0) + βQ1(ξ0)

∥∥∥
∞
φjn

(
t

D‖M0‖

)]
. (3.36)

We will write this inequality in the form (3.11) in order to use Lemma 3.6. Set

α := E
[∥∥∥P1(ξ0) + βQ1(ξ0)

∥∥∥],
and let A be a positive random variable whose distribution is determined by the following
expectation: for all measurable functions h: R+ → R+,

Eh(A) = 1
α
E
[∥∥∥P1(ξ0) + βQ1(ξ0)

∥∥∥h( 1
D‖M0‖

)]
.

Then we can rewrite (3.36) as follows: for all n > 1 and t > t0(dDA),

φjn+1(t) 6 αE
[
φjn(At)

]
. (3.37)

Let a > 0 and C = (t0(dDA))a. Since φjn+1(t) 6 1, it follows that for all n > 1 and t > 0,

φjn+1(t) 6 αE
[
φjn(At)

]
+ C

ta
. (3.38)

We will prove that
α < 1 and αEA−a < 1 (3.39)

for some a > 0. For the proof of (3.39), recall that from the condition on Z̄i1(j), we have
Zi1(j) > 1 a.s. for all i, j ∈ {1, · · · , d}, so that ‖Zi1‖ > d a.s. Thus

‖P1(ξ0)‖ = max
16i6d

‖P1(ξ0)(i, ·)‖ = max
16i6d

Pξ(‖Zi1‖ = 1) = 0.

Since ‖P1(ξ0) +Q1(ξ0)‖ = 1, it follows that

α = E
[∥∥∥P1(ξ0) + βQ1(ξ0)

∥∥∥] = E
[
β
(
P1(ξ0) +Q1(ξ0)

)
+ (1− β)P1(ξ0)

]
6 β + (1− β)E‖P1(ξ0)‖ = β < 1. (3.40)

By the definition of A, we have

αEA−a = E
[
(D‖M0‖)a

∥∥P1(ξ0) + βQ1(ξ0)
∥∥].
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Recall that ‖M0‖ 6 dA. So by the dominated convergence theorem we get that
lim
a→0

αEA−a = α < 1.

Therefore for some a1 > 0 and all a ∈ (0, a1], we have αEA−a < 1. This ends the proof of
(3.39).

Letting a = min(a0, a1), with a0 defined in condition H4, we see that for some constant
C1 > 0 and all t > 0, φj1(t) 6 C1/t

a. Using this together with (3.38), (3.39) and Lemma
3.6, we see that for all t > 0,

sup
n>1

φn(t) 6 C2
ta
, where C2 = C1 + C

1− αE(A−a) .

This ends the proof of Theorem 3.5. �

4. Berry-Esseen bound for logZin(j).

In this section, we prove Theorem 2.2 which gives a Berry-Esseen bound for the logarithm
of logZin(j), for any 1 6 i, j 6 d.

First, we formulate the following lemma giving the convergence in L1 of log Z̄in(j) to
logW i with an exponential rate, for all 1 6 i, j 6 d.

Lemma 4.1. Assume the conditions H1, H3, H4 and γ > 0. Then there exists two
constants C > 0 and δ ∈ (0, 1) such that for all n > 1 and 1 6 i, j 6 d,

E| log Z̄in(j)− logW i| 6 C.δn. (4.1)

Proof. For any n > 1 and 1 6 i, j 6 d, set

Ri,jn := Z̄in(j)
W i

− 1.

Then, for all n > 1 and 1 6 i, j 6 d we have
log Z̄in(j)− logW i = log(1 +Ri,jn ). (4.2)

Let K ∈ (0, 1) be a constant. From (4.2) we get that for all n > 1 and 1 6 i, j 6 d,
E| log Z̄in(j)− logW i| = E| log(1 +Ri,jn )1{Ri,jn >−K}|+ E| log(1 +Ri,jn )1{Ri,jn <−K}|

:= I1(n) + I2(n). (4.3)
Now we control the two terms I1(n) and I2(n).
Control of I1(n). Let ε ∈ (0, 1], the function x 7→ |x|−ε log(1+x) is bounded on [−K,+∞),

so for all n > 1, ε = a and 1 6 i, j 6 d we get
I1(n) = E| log(1 +Ri,jn )1{Ri,jn >−K}| 6 CE|R

i,j
n |a. (4.4)

We see that

E|Ri,jn |a = E
∣∣∣ Z̄in(j)
W i

− 1
∣∣∣a 6 E

∣∣∣Z̄in(j)−W i
∣∣∣aE(W i)−a. (4.5)

By applying the result from [11] for p > 1, there exist two constants C > 0 and δ ∈ (0, 1)
such that

E
∣∣∣Z̄in(j)−W i

∣∣∣a 6 E
∣∣∣Z̄in(j)−W i

∣∣∣ 6 (E∣∣∣Z̄in(j)−W i
∣∣∣p)1/p

6 Cδn. (4.6)

Combining this with E(W i)−a 6 C, we get
E|Ri,jn |a 6 Cδn. (4.7)

Therefore, I1(n) 6 Cδn.
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Control of I2(n). Using the inequality | log x|2 6 C(x+ x−a) for x > 0 and Theorem 2.1,
we have for all n > 1, 1 6 i, j 6 d,

sup
n>0

(
E| log(1 +Ri,jn )|2

)1/2
= sup

n>0

(
E| log Z̄in(j)− logW i

n|2
)1/2

6 sup
n>0

(
E| log Z̄in(j)|2

)1/2
+ sup

n>0

(
E| logW i

n|2
)1/2

6 C sup
n>0

(
E(Z̄in(j)) + E(Z̄in(j))−a

)
+ C sup

n>0

(
E(W i

n) + E(W i
n)−a

)
< +∞. (4.8)

Applying Cauchy-Schwarz’s inequality, Markov’s inequality and combining with (4.7)-
(4.8), we get that for all n > 1, 1 6 i, j 6 d,

I2(n) = E| log(1 +Ri,jn )1{Ri,jn <−K}|

6
(
E| log(1 +Ri,jn )|2

)1/2(
E1{Ri,jn <−K}

)1/2

6
[

sup
k>0

(
E| log(1 +Ri,jk )|2

)1/2][
P
(
|Ri,jn | > K

)]1/2
6 C

(
E|Ri,jn |a

)1/2
6 Cδn/2. (4.9)

Thus, we conclude that that there exist two constants C > 0 and δ ∈ (0, 1) such that

E| log Z̄in(j)− logW i| 6 C.δn.

�

Below we recall the Berry-Esseen bound for log〈yM0,n−1, ej〉, for any y ∈ S and 1 6 j 6 d,
established in [22, Theorem 2.1]. It will be used in proving the Berry-Esseen theorem for
logZin(j), for any 1 6 i, j 6 d.

Lemma 4.2. [22] Assume that for some ε > 0 and all i, j ∈ {1, · · · , d}, EM0(i, j)ε +
EM0(i, j)−ε < ∞ and assume also H5. Then there exists a constant C > 0 such that for
all n > 1, y ∈ S and x ∈ R,∣∣∣∣P( log〈yM0,n−1, ej〉 − nγ

σ
√
n

6 x
)
− Φ(x)

∣∣∣∣ 6 C√
n
.

The following lemma provides inequalities concerning the concentration of the joint distri-
bution of

(
logZin(j), logM0,n−1(i, j)

)
. It reveals that logZin(j) and logM0,n−1(i, j) behave

similarly with large probability.

Lemma 4.3. Assume conditions H1, H3, H4, γ > 0 and H5. Then there exists a constant
C > 0 such that for all x ∈ R,

P
(

logZin(j)− nγ
σ
√
n

6 x,
logM0,n−1(i, j)− nγ

σ
√
n

> x

)
6

C√
n

(4.10)

and

P
(

logZin(j)− nγ
σ
√
n

> x,
logM0,n−1(i, j)− nγ

σ
√
n

6 x

)
6

C√
n

(4.11)
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Proof. We will only give a proof of (4.10), since the other inequality (4.11) can be proved
by similar arguments. For n > 1, 0 6 m 6 n and y, z ∈ Rd+ \ {0} and 1 6 i, j 6 d, set

Sy,zm,n := log〈yMm,n−1, z〉 − (n−m)γ
σ
√
n

and Lim,n := logW i
m

σ
√
n
, Li,jn,n := log Z̄in(j)

σ
√
n

.

In the following we take m := m(n) = b
√
nc, where bxc is the integer part of x; C > 0 will

be a constant which may depend on p and η, and which may differ from line to line. By
Markov’s inequality, we get that there exist constants δ1, δ2 ∈ (0, 1) such that for all n > 1
and 1 6 i, j 6 d,

P
(
|Li,jn,n − Lim,n| >

1√
n

)
6
√
nE
∣∣Li,jn,n − Lim,n∣∣

= 1
σ
E| log Z̄in(j)− logW i

m|

6
1
σ
E| log Z̄in(j)− logW i|+ 1

σ
E| logW i

m − logW i| 6 C(δn1 + δm2 ),

the last step holds by using [9, Lemma 5.1] and Lemma 4.1.
Since δn1 + δm2 = o( 1√

n
) as n→ +∞, this implies that for all n > 1 and 1 6 i, j 6 d,

P
(
|Li,jn,n − Lim,n| >

1√
n

)
6

C√
n
. (4.12)

Thus we obtain that for all n > 1, x ∈ R and 1 6 i, j 6 d,

P
( logZin(j)− nγ

σ
√
n

6 x,
logM0,n−1(i, j)− nγ

σ
√
n

> x

)
= P

(
S
ei,ej
0,n + Li,jn,n 6 x, S

ei,ej
0,n > x

)
6 P

(
S
ei,ej
0,n + Lim,n 6 x+ 1√

n
, S

ei,ej
0,n > x

)
+P

(
|Li,jn,n − Lim,n| >

1√
n

)
6 P

(
S
ei,ej
0,n + Lim,n 6 x+ 1√

n
, S

ei,ej
0,n > x

)
+ C√

n
. (4.13)

Recall that for y ∈ S and M ∈ G◦, we denote by y ·M := yM
‖yM‖ the projective action of M

on G◦. Then, for y ∈ S the process
Xy

0 = y, and Xy
n = y ·M0,n−1, n > 1,

is a Markov chain on S. Notice that for all n > 1 and 1 6 i, j 6 d, we have the decomposition

S
ei,ej
0,n = log〈(eiM0,m)Mm+1,n−1, ej〉 − nγ

σ
√
n

= log ‖eiM0,m‖+ log〈(ei ·M0,m)Mm+1,n−1, ej〉 − nγ
σ
√
n

=
√
m+ 1
n

Sei,10,m+1 + S
X
ei
m+1,ej

m+1,n . (4.14)

Moreover, by (2.6) we have that for all n > 0,

1 > min
16r6d

un(r) = min
16r6d

〈Mn(r, ·), un+1〉
‖un+1MT

n ‖
> min

16r,u6d

Mn(r, u)
‖Mn‖

. (4.15)
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We have the two following inequalities: for all n > 1 and 1 6 i, j 6 d, P-a.s.,

log ‖Zin‖ 6 log ‖M0,n−1(i, ·)‖+ logW i
n − min

16r6d
log un(r), (4.16)

log ‖Zin‖ > log ‖M0,n−1(i, ·)‖+ logW i
n + min

16r6d
log un(r). (4.17)

Therefore, putting together the relations (4.13)-(4.16), we obtain that for all n > 1, x ∈ R
and 1 6 i, j 6 d,

P
( logZin(j)− nγ

σ
√
n

6 x,
logM0,n−1(i, j)− nγ

σ
√
n

> x

)
6 P

(√
m+ 1
n

Sei,10,m+1 + S
X
ei
m+1,ej

m+1,n +Bi
m,n 6 x+ 1√

n
,√

m+ 1
n

Sei,10,m+1 + S
X
ei
m+1,ej

m+1,n > x

)
+ C√

n
, (4.18)

with

Bi
m,n : = 1

σ
√
n

log ‖Zim‖
‖M0,m−1(i, ·)‖ + 1

σ
√
n

min
16r,u6d

log Mm(r, u)
‖Mm‖

.

Denote by νim,n the joint law of
(
Xei
m+1,

√
m+1
n Sei,10,m+1, B

i
m,n

)
on S ×R×R. For y ∈ S and

x ∈ R, set

G
y,ej
m,n(x) = P(Sy,ejm,n 6 x).

Since Sy,ejm+1,n is independent of Xei
m+1, S

ei,1
0,m+1 and Bi

m,n for any y ∈ S, we obtain from
(4.18) that for all n > 1, x ∈ R and 1 6 i, j 6 d,

P
( logZin(j)− nγ

σ
√
n

6 x,
logM0,n−1(i, j)− nγ

σ
√
n

> x

)
6

∫
P
(
S
y,ej
m+1,n + s+ t 6 x+ 1√

n
, S

y,ej
m+1,n + s > x

)
νim,n(dy, ds, dt) + C√

n

=
∫
1{t6 1√

n
}

[
G
y,ej
m+1,n

(
x− s− t+ 1√

n

)
−Gy,ejm+1,n(x− s)

]
νim,n(dy, ds, dt)

+ C√
n
. (4.19)

The random matrices Mn, n > 0, are i.i.d., so for n > 1, y ∈ S and x ∈ R we have

G
y,ej
m+1,n(x) = P

( log〈yM0,n−m−1, ej〉 − (n−m− 1)γ
σ
√
n

6 x
)

= G
y,ej
0,n−m−1(anx),

with an =
√

n
n−m−1 . Notice that an = (1− m+1

n )−1/2 = 1+O(mn ) = 1+O( 1√
n

) as n→ +∞.
Therefore, applying the Berry-Esseen bound of Lemma 4.2, we get that for all n > 1, y ∈ S
and x ∈ R, ∣∣Gy,ejm+1,n(x)− Φ(anx)

∣∣ =
∣∣Gy,ej0,n−m−1(anx)− Φ(anx)

∣∣
6

C√
n−m− 1

= Can√
n
6

C√
n
. (4.20)
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Moreover, using the mean value theorem on the function t 7→ Φ(tx) with t > 1, we obtain
that for all n > 1 and x ∈ R,

|Φ(anx)− Φ(x)| 6 |an − 1| sup
t>1
|xΦ′(tx)| 6 C√

n
sup
z∈R
|zΦ′(z)|. (4.21)

It is clear that z 7→ |zΦ′(z)| is a bounded function on R. Combining this with the inequalities
(4.19)-(4.21), we deduce that for all n > 1, x ∈ R and 1 6 i 6 d,

P
( logZin(j)− nγ

σ
√
n

6 x,
logM0,n−1(i, j)− nγ

σ
√
n

> x

)
6

∫
1{t6 1√

n
}

∣∣∣Φ(x− s− t+ 1√
n

)
− Φ(x− s)

∣∣∣νim,n(dy, ds, dt) + C√
n
.

(4.22)

By the mean value theorem and the fact that supx∈R |Φ′(x)| 6 1, for all x, z ∈ R we have

|Φ(x+ z)− Φ(x)| 6 |z|.

This, together with (4.22), implies that for all n > 1, x ∈ R and 1 6 i, j 6 d,

P
( logZin(j)− nγ

σ
√
n

6 x,
logM0,n−1(i, j)− nγ

σ
√
n

> x

)
6

∫
1{t6 1√

n
}

∣∣∣ 1√
n
− t
∣∣∣νim,n(dy, ds, dt) + C√

n

6
∫
|t|νim,n(dy, ds, dt) + C√

n

= E|Bi
m,n|+

C√
n
. (4.23)

By definition of Bi
m,n, combining with (4.15)-(4.16), we get that for all n > 1 and 1 6 i 6 d,

P-a.s.,

σ
√
n|Bi

m,n| 6
∣∣∣∣ log ‖Zim‖

‖M0,m−1(i, ·)‖

∣∣∣∣+ min
16r,u6d

| logMm(r, u)|+ | log ‖Mm‖|

6 | logW i
m|+ | log ‖Mm‖|+ max

16r,u6d

(
| log um(u)|+ | logMm(r, u)|

)
6 | logW i

m|+ 2| log ‖Mm‖|+ 2 max
16r,u6d

| logMm(r, u)|. (4.24)

By [9, Lemma 5.1] we have supn>0 E| logW i
n| < +∞ for any 1 6 i 6 d. Moreover, from

condition H3 and the inequality | log x| 6 C(xη+x−η) for x > 0, it holds that E| log ‖M0‖| <
+∞ and E| logM0(r, u)| < +∞, 1 6 r, u 6 d. Therefore, taking expectation in (4.24), this
implies that for all n > 1 and 1 6 i 6 d,

E|Bi
m,n| 6

C√
n
. (4.25)

Hence, (4.10) follows from (4.23) and (4.25). This concludes the proof of Lemma 4.3. �
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Proof of Theorem 2.2. For x ∈ R we write

P
( logZin(j)− nγ

σ
√
n

6 x
)

= P
( logZin(j)− nγ

σ
√
n

6 x,
logM0,n−1(i, j)− nγ

σ
√
n

6 x
)

+P
( logZin(j)− nγ

σ
√
n

6 x,
logM0,n−1(i, j)− nγ

σ
√
n

> x

)
= P

( logM0,n−1(i, j)− nγ
σ
√
n

6 x
)

−P
( logZin(j)− nγ

σ
√
n

> x,
logM0,n−1(i, j)− nγ

σ
√
n

6 x
)

+P
( logZin(j)− nγ

σ
√
n

6 x,
logM0,n−1(i, j)− nγ

σ
√
n

> x

)
.

By Lemma 4.3, we get that there exists a constant C > 0 such that for all x ∈ R ,∣∣∣∣P( logZin(j)− nγ
σ
√
n

6 x
)
− P

( logM0,n−1(i, j)− nγ
σ
√
n

6 x
)∣∣∣∣ 6 C√

n
. (4.26)

Combining (4.26) with Lemma 4.2, we obtain the Berry-Esseen bound for logZin(j). This
concludes the proof of Theorem 2.2. �

5. Moderate deviation principle for logZin(j)

In this section we prove the moderate deviation principle (MDP) for logZin(j), using
Theorem 2.1 about the uniform finiteness of the harmonic moments of Z̄in(j) and the MDP
for the products of random matrices established in [23].

Proof of Theorem 2.3. From the moderate deviation principle for logM0,n−1(i, j) estab-
lished in [23, Theorem 2.7], we know that Theorem 2.3 holds if we can prove the following
exponential equivalence (see Theorem 4.2.13 in [6]): for any δ > 0,

lim
n→∞

n

a2
n

logP
( | logZin(j)− logM0,n−1(i, j)|

an
> δ

)
= −∞. (5.1)

To see this, we take a ∈ (0, 1] such that C = supn E(Z̄in(j))−a < ∞ (this is possible by
Theorem 2.1), and use and the elementary inequality that ea| log x| 6 xa + x−a for x > 0.
Thus, by the Markov inequality, we have for any δ > 0,

lim sup
n→∞

n

a2
n

logP
( | logZin(j)− logM0,n−1(i, j)|

an
> δ

)
= lim sup

n→∞

n

a2
n

logP
( | log Z̄in(j)|

an
> δ

)
= lim sup

n→∞

n

a2
n

logP
(
ea| log Z̄in(j)| > eaδan

)
6 lim sup

n→∞

n

a2
n

log
(
e−anaδE(Z̄in(j)a + Z̄in(j)−a

))
6 lim sup

n→∞

−naδ
an

+ lim sup
n→∞

n

a2
n

log(1 + C), (5.2)
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where the last step holds since EZ̄in(j) = 1 and E(Z̄in(j))−a 6 C. In (5.2), the first lim sup
is −∞ due to the condition that n/an → ∞; the second lim sup is equal to 0 because
n/a2

n → 0. Therefore (5.1) follows from (5.2). This ends the proof of Theorem 2.3.
�
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