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ABSTRACT

This paper introduces Deform Any Liver (DAL), a real-
time surrogate model designed to accurately predict any liver
deformation, given a set of applied forces. DAL leverages a
hypernetwork to condition a U-Net architecture on the liver
shape, with the U-Net receiving the applied external forces as
input to predict the resulting displacement field. This design
enables the model to generalize across various patient geome-
tries, overcoming the limitations of existing patient-specific
approaches. The DAL model is trained, validated, and tested
using real human liver geometries, employing finite element
method (FEM) simulations to generate realistic deformation
data. Our results demonstrate the model’s effectiveness and
adaptability in accurately predicting the deformation of vari-
ous liver shapes.

Index Terms— HyperNetworks, Liver geometric varia-
tion, Real-time simulation.

1. INTRODUCTION

Soft-tissue simulations can advance healthcare in various crit-
ical areas, including preoperative planning, medical training,
and intraoperative guidance [1, 2]. Simulations enable sur-
geons and medical trainees to visualize, manipulate, and an-
ticipate tissue behavior in a controlled environment by provid-
ing a realistic and dynamic representation of soft tissues. Nu-
merous studies have highlighted the advantages of physics-
based simulations due to their accuracy and predictive ca-
pacity when dealing with sparse or noisy intraoperative data
[3, 4]. These simulations typically rely on continuum me-
chanics principles and frequently use finite element methods
(FEM) to solve numerical systems that describe the physi-
cal behavior of organs. Although these models enable highly
accurate simulations of organ and tissue dynamics, their com-
putational demands often lead to prolonged calculation times,
mainly when modeling the hyper-elastic behavior character-
istic of soft tissues [4]. This limits their applicability in sce-
narios requiring real-time processing, such as intraoperative
guidance, where delays can impact the precision and effec-
tiveness of surgical interventions.

Several works have proposed a trade-off between accu-
racy and computational expense, balancing the degree of ac-
curacy loss to suit specific application needs. One strategy is
model order reduction (MOR) [5], which simplifies simula-
tions by approximating the solution space and thus accelerates
computations. MOR methods include proper orthogonal de-
composition (POD) [6] and Proper Generalized Decomposi-
tion (PGD) [7] reduced basis approaches, often used in FEM-
based simulations. These snapshot-based methods, however,
come at the price of long preprocessing times and their ac-
curacy is generally inversely proportional to their computa-
tion time. Deep neural network architectures have shown re-
markable effectiveness in capturing complex, nonlinear rela-
tionships between diverse sets of input and output data. A
key advantage of these networks is their capacity for accurate
real-time inference once trained with sufficient data. Build-
ing on this strength, numerous studies have proposed neural
network-based surrogate models trained on FEM simulation
data [8, 9, 10]. These models replicate complex FEM behav-
iors while reducing computational demands, enabling fast, ac-
curate predictions suitable for real-time applications.

Various neural network architectures have been explored
for FEM-based surrogate modeling, where the goal is to
predict a dense volumetric displacement field given a set of
external forces while incorporating the hyperelastic behav-
ior of materials as prior knowledge. To cite a few, Odot et
al. [11] proposed a multi-layer perceptron for this purpose.
However, their approach loses spatial information between
finite element mesh nodes. To address this limitation, Men-
dizabal et al. [8] introduced U-Mesh, a U-Net architecture
designed around a structured finite-element mesh to align
with the CNN architecture. Yet, structured meshes can intro-
duce errors when applied to complex geometries like the liver.
To overcome this, Deshpande et al. [9] proposed MagNet, a
U-Net architecture based on Graph Neural Networks, which
preserves the unstructured nature of the geometry mesh. El
Hadramy et al. [12] extended Mendizabal’s approach with
HyperU-Mesh, which uses a hypernetwork to condition the
U-Mesh on patient-specific material properties, making it
possible to predict over a range of material properties. While
each method shows promising results, they all share a lim-
itation: they are patient-specific, meaning they are trained



on the exact geometry intended for use at inference. This
limits flexibility and transferability to new patients, as each
geometry requires a separate and time-intensive training.

In this work, we propose the Deform Any Liver (DAL)
model, which builds upon the HyperU-Mesh [12] framework
by conditioning the U-Mesh architecture on liver geometry.
This geometric conditioning enables the network to general-
ize across different liver shapes, accurately predicting defor-
mations for various liver geometries. By directly incorporat-
ing the liver shape into the model, DAL overcomes the limita-
tions of patient-specific approaches, offering a more flexible
and efficient solution to handle anatomical variations.

2. METHOD

We aim to provide a versatile surrogate model capable of de-
forming any liver geometry given any set of external forces.
The core of our method is a HyperNetwork architecture,
where the primary network, a U-Net, receives the applied
forces as input and predicts the resulting displacement field
(see Fig. 1). The U-Net weights are dynamically updated
by the hypernetwork, which takes as input a 3D mask rep-
resenting the liver shape in its rest state. This conditioning
mechanism allows the model to adapt to different liver ge-
ometries, enabling accurate deformation predictions across
varying anatomical shapes.

Fig. 1: Overview of Deform Any Liver (DAL). The model
uses a U-Net architecture that inputs external forces (F ) and
predicts the displacement field (u). It is conditioned on liver
geometries provided as a 3D mask which is fed into a hyper-
network. The hypernetwork computes additive weights (dθ)
for the U-Net. DAL is trained, validated, and tested using real
human liver geometries, with FEM simulations used to gen-
erate the corresponding deformations.

2.1. DAL architecture

2.1.1. Main network

The architecture of the main network in the DAL model builds
upon the U-Mesh framework proposed by Mendizabal et al.
[8], with specific optimizations that reduce model complexity

without compromising performance. By adjusting the num-
ber of convolutional layers and channels, we reduced the to-
tal weight count to 167563 parameters, significantly lower
than the million order weights in the original U-Mesh. This
weights optimization ensures that the hypernetwork h can ef-
ficiently predict the weights of the U-Net, making the model
more computationally feasible. Like U-Mesh, the DAL net-
work operates on a regular grid constructed from the liver
shape axis-aligned bounding box. Applied forces are encoded
at the regular grid nodes nearest to the force application points
on the liver’s surface, and the network predicts the displace-
ment field in this same structured format. For further details
on U-Mesh, see Mendizabal et al. [8].

2.1.2. Hypernetwork

The hypernetwork in the DAL model is composed of a CNN
followed by an MLP. It inputs a 3D liver segmentation mask
to condition the main network according to the specific liver
geometry. The mask undergoes processing through three 3D
convolutional layers, featuring channel sizes of [1, 4, 4] and a
kernel size of 3, with ReLU activation functions applied after
each convolutional layer. A max-pooling layer follows each
convolutional layer to reduce the spatial dimensions. The out-
put from the final convolutional layer is then flattened and
fed into a fully connected layer, which produces a vector of
size 167563, corresponding to the number of weights needed
for the main network. We employ the hypernetwork strat-
egy from Ortiz et al. [13], which treats the predicted weights
as additive modifications to the trainable weights of the main
network. This approach enhances model flexibility and stabil-
ity, leading to faster convergence of the loss function during
training while improving performance in predicting liver de-
formations. We employ the hypernetwork strategy from Ortiz
et al. [13], which processes the predicted weights as additive
changes to the trainable weights of the main network. This
allows for fast and stable training.

2.2. Liver geometries dataset

To obtain a diverse range of liver shapes, we collected a
dataset of liver geometries from two public datasets. The first
source is the Liver Tumor Segmentation (LiTS) [14] chal-
lenge from MICCAI 2017 and ISBI 2017, which includes 92
labeled liver segmentations. The closed-surface meshes were
automatically extracted from the 3D segmentation masks us-
ing the Marching Cubes algorithm [15]. The resulting meshes
were then automatically cleaned and uniformly resampled to
guarantee a uniform distribution of the vertices on the sur-
face. Our dataset comprises 92 liver meshes, enabling robust
training and validation for our model. We use 78 geometries
for training and 14 for testing. In Figure 2, we illustrate five
shapes from the dataset.



Fig. 2: Five arbitrarily chosen examples of liver shapes from the dataset, showing variations in local geometry, particularly in
the size of the left lobe.

2.3. Data generation

The training of the DAL model necessitates the acquisition
of applied forces as inputs for each liver shape, along with
the corresponding ground truth displacement field for super-
vision. To obtain these quantities, we utilize physics simu-
lations that accurately model the mechanical behavior of the
liver based on its real anatomical shapes. By simulating the
effects of various applied forces, we generate the required dis-
placement fields, which serve as the ground truth for train-
ing the main network. For a given liver shape, we formu-
late a boundary value problem to compute the deformation
of a hyperelastic material under both Dirichlet and Neumann
boundary conditions. The liver occupies a volume Ω, and the
Dirichlet boundary conditions, denoted ΓD, are applied to a
manually selected region of each liver shape, specifically tar-
geting the posterior part of the liver, which corresponds to the
parenchyma’s connection with the inferior vena cava. While
Neuman boundary conditions, denoted ΓN , are everywhere
else on the liver surface. The material behavior is approx-
imated with a Saint-Venant Kirchhoff model with a Young
modulus of 7 kPa. The boundary value problem is formulated
as follows:  ∇(FS) = b on Ω

u(X) = 0 on ΓD

(FS) · n = t on ΓN

(1)

Where F represents the deformation gradient tensor and S is
the second Piola-Kirchoff stress tensor. b is the body forces, n
the unit normal to ΓN , u the displacement field and X is the
material coordinates. The weak form of Equation 1 brings
forward the boundary term and is expressed as:

∫
Ω

(FS) : δE dΩ =

∫
Ω

bη dΩ+

∫
ΓN

tη dΓ (2)

Where δE = 1
2 (F

T∇η + ∇TηF ) is the variation of
the strain, and η = {η ∈ H1(Ω) | η = 0 on ΓD} is
any vector-valued test function in an Hilbert space H1(Ω).
Equation 2 is solved by employing the finite element method
with the domain Ω discretized using an Immersed Boundary
method (IBM) [16]. This allows for a regular structure of the

liver shape, which makes it compatible with the inputs and
outputs of the CNN-based U-Net architectures. We have gen-
erated 8, 000 deformations from the 78 training geometries.
To create each deformation, four traction forces are sampled
from a uniform distribution ranging from 1 N to 8 N for
their magnitudes, with their application locations randomly
selected on the liver surface. This process is illustrated in
Figure 3, where the gray liver represents the initial state, the
blue spheres indicate the areas where the forces are applied,
and the red liver depicts the resulting deformation. More-
over, we have generated 1000 deformations from the 14 test
geometries. These samples are used for network testing.

Fig. 3: Example of a training set generation sample. Spheres
(in blue) centers are randomly chosen on the surface’s initial
state (gray). Forces are applied at their intersection with the
surface. In red, the resulting deformation is shown.

2.4. DAL training

The network was supervised during 400 epochs with a batch
size of 1 using 8, 000 training samples. Each sample com-
prises the applied forces, the corresponding liver geometry
mask, and the ground truth displacement field. During train-
ing, we optimize the network’s weights by minimizing the
mean squared error (MSE) between the predicted and the
ground truth displacement fields, allowing it to learn the re-
lationship between the input forces and the resulting liver
deformations for any liver geometry expressed as a mask,
input to the hypernetwork.

3. RESULTS

3.1. Implementation details

In this section, we present the results of our method across
two scenarios. We evaluate DAL by deforming the 14 ge-



ometries from our testing dataset, which were not seen during
training. We compare the deformation results with those ob-
tained from finite element method (FEM) solutions. Next,
we show that DAL can be fine-tuned rapidly on a specific
liver shape to become patient-specific. The implementation
of DAL is carried out in Python using the PyTorch1 library,
while the simulations used for data generation and testing are
implemented within the SOFA framework [17, 18].

3.2. Evaluation over the test set

We evaluated DAL on 14 liver shapes from the test set, which
were not seen during training. Each liver was subjected to 100
deformations, resulting from external forces randomly sam-
pled from a uniform distribution between 1 and 8 N and ap-
plied on the liver surface at random locations. We compared
DAL’s deformation results to those obtained with FEM, using
the mean absolute error (MAE) between the node positions in
the DAL and FEM-deformed livers. DAL achieved an aver-
age MAE of 5.9 ± 2.7 mm across the 14 shapes. The shape
with the lowest error had an MAE of 3.8± 1.8 mm, while the
shape with the highest error reached an MAE of 9.3±4.4 mm.
Moreover, DAL’s prediction takes 4 ms, compared to 3000
ms, when computing the deformation with the FEM. We have
observed a high correlation between the errors on test shapes
and their distance from the distribution of liver shapes used
during training. Specifically, after visual inspection, we ob-
served that the liver shape with the highest errors (red liver in
Figure 4) differs significantly from all training shapes in size
and overall geometry. Conversely, the shape with the low-
est errors (green in Figure 4) is visually similar to those seen
during training.

Fig. 4: DAL’s performance on two test liver shapes. The
shape with the highest error is shown in red (worst result),
while the shape with the lowest error is depicted in green (best
result). This illustrates the variability in DAL’s accuracy de-
pending on the similarity of test shapes to the training dataset.

3.3. Patient-specific DAL

Since DAL is trained on a diverse dataset of liver geome-
tries and has already learned the general force-displacement
field relationship for various liver shapes, this foundational
knowledge can be effectively transferred through additional,

1https://pytorch.org/

shape-specific training. Fine-tuning DAL on a complex liver
shape, like the one associated with the worst results, would
enable DAL to adapt to unique anatomical variations, enhanc-
ing its performance for individualized, patient-specific appli-
cations. To demonstrate this, we generated 700 deforma-
tions of the previously identified worst-case liver shape and
re-trained DAL on 500 of these generated deformations. We
then tested the fine-tuned model on the other 200 samples.
The results were compared to the deformations obtained us-
ing FEM, and DAL achieved a mean absolute error (MAE)
of 2.5 ± 0.8 mm, a significant improvement over the previ-
ous MAE of 9.3 ± 4.4 mm. Notably, this fine-tuning pro-
cess only took 30 minutes, compared to the 12 hours required
for training a patient-specific U-Mesh model from scratch, as
proposed by Mendizabal et al. [8]. With fine-tuned DAL
demonstrating similar performance to U-Mesh, less than 3
mm of errors. This highlights DAL’s potential for rapid adap-
tation to complex, patient-specific liver geometries.

4. CONCLUSION

To provide real-time and accurate simulations of the liver,
we introduce the Deform Any Liver (DAL) model, a surro-
gate approach for predicting liver deformations across various
geometries. By utilizing a hypernetwork to condition a U-
Net architecture, DAL generalizes beyond individual patient
shapes while maintaining good accuracy. The hypernetwork
inputs a segmentation mask that delineates the liver’s geom-
etry, providing information about its shape. Meanwhile, the
U-Net processes the applied forces to predict the resulting dis-
placement field based on this geometric input, allowing DAL
to capture the relationship between the applied forces and
liver deformations. Our evaluations demonstrate that DAL
achieves good results compared to the finite element method
(FEM) simulations while delivering real-time performance.
Trained on 78 liver shapes and tested on 14, DAL achieves
a mean absolute error of 5.9 ± 2.7 mm. Additionally, DAL
can be fine-tuned for patient-specific complex geometries in
just half an hour, achieving less than 3 mm of error, similar to
U-Mesh [8].

DAL was evaluated on liver shapes, which happen to vary
significantly from one patient to another, as illustrated in Fig
2. This large variability would certainly require more samples
to improve the prediction accuracy. On the other hand, we be-
lieve that DAL could perform better on other organs, such as
the kidney or brain, for which anatomical variations are less
important. Future work will focus on expanding the dataset
and enhancing the model’s robustness to accommodate com-
plex anatomical variations. We will also explore alternative
methods for describing the geometry as input for the hyper-
network. A signed distance function could be a promising
approach, as it not only represents the shape of the liver but
also encodes geometric information about the surface.
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