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A B S T R A C T

The assessment of structural safety and a thorough understanding of buildings’ structural behavior are critical to 
enhancing the resilience of the built environment. Cultural Heritage (CH) buildings present unique diagnosis 
challenges due to their diverse designs and construction techniques, often requiring attention during mainte
nance or disaster relief efforts. However, collaboration across CH and Architecture, Engineering, and Con
struction (AEC) fields is hindered by increasing information complexity and prolonged feedback loops. This 
paper introduces a methodological approach utilizing Knowledge Graph technologies to integrate structural 
diagnosis information and processes. The approach is applied to the diagnosis of the Notre-Dame de Paris but
tressing system, demonstrated through a proof-of-concept knowledge system. By leveraging Knowledge Graph 
functionalities, insights are derived from the spatialization and provenance of mechanical phenomena, including 
observed or simulation-predicted cracks in mortar-bound masonry.

1. Introduction

In the context of Cultural Heritage (CH) buildings and in
frastructures, the conservation and restoration activities have as a 
common endeavor to ensure that built assets last over time, along with 
their cultural and socio-economic values. From the broader perspective 
of Architecture, Engineering and Construction (AEC), such works are as 
many edge cases which cast a light on the current craftsmanship and 
industry practices. This is due to their uniqueness in design or remark
ability in the achievement of their construction, drawn from the archi
tectural and structural expressiveness of the material. Stonework 
renders iconic structural components, integrated as a coherent whole 
while varying scale and, occasionally, construction time. As a prime 
illustration for this material mastery, the Gothic style features great 
light-filled volumes, enclosed by slender structures, that provides 
reference for tracing the evolution of stonework, then stereotomy, over 
centuries (Fig. 1). Their apparent sturdiness conceals maintenance ef
forts and recovery from disasters, delivered within the conservation- 
restoration activities during the building life cycle. Given the prevail
ing doctrines on cultural heritage preservation, the maintenance phase 
of these structures is envisaged as enduring. It is a renewed challenge to 

both accompany their mutations of social function, of usage, and to 
build their resilience to threats and natural deterioration [1].

Effective decision-making during the maintenance phase and perti
nent design choices originate from a comprehensive understanding of 
the built asset’s current condition. This requires an interdisciplinary 
approach encompassing conservation surveys, heritage value assess
ments, material identification, and more. Among them, structural 
diagnosis specifically aims to evaluate service capacities and safety 
margins, explain observed damage, and provide “a full understanding of 
the structural behavior and material characteristics [that] is essential for 
any conservation and restoration project” [2]. Since precise represen
tation of real phenomena featured on the CH asset is challenging, reli
able insights are derived from a combination of observational, 
analytical, and interpretative methods [3] such as damage inspection, 
mechanical simulation or mechanical testing. These pertain to the civil 
engineering field and are refined provided with cross-pollination with 
other studies.

Post-disaster relief highlights the critical role of diagnoses in the 
maintenance phase. The April 2019 fire at Notre-Dame de Paris cathe
dral is no exception. The burnt framework and severely damaged vaults 
immediately question the stability of the entire structural system (Fig. 1. 
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a). Recovery efforts involved in an unprecedented collaboration [4], 
performing multi-scale diagnoses [5], non-destructive mechanical 
testing [6], instrumentation of upper parts, and multi-physical simula
tion campaigns.

Both routine and disaster-relief diagnoses are data- and knowledge- 
intensive. A successful interdisciplinary approach relies on aligned data 
products and meaningful resources to share insights, explore alterna
tives, and curate traceable hypotheses. Yet, crippling information gaps 
hinder their integration and accessibility during the CH building 
lifecycle: 

• incompleteness: only partial building information reached us 
through history, nor is potentially identifiable via modern 
techniques.

• heterogeneity: uneven quality and granularity in the data sets.
• information attrition: data quality decreases as it is exchanged.
• rarefication of raw data: synthetic documentation is maintained and 

exchanged between diagnostic activities, but raw survey data or 
provenance assessments are seldom included.

These gaps are fueled by technical incompatibilities, cultural bar
riers, communication silos, and the inevitable turnover of experts 
throughout the endless life of the building. Not only it obscures crucial 
information, italso silences valuable feedback loops. Still, the challenge 
is “to find ways to allow those communities to collaborate effectively 
with one another whilst maintaining their existing, efficient, effective 
separate world views” [7].

1.1. Knowledge graphs for sharing masonry CH buildings diagnosis 
information

This article presents an experiment of using a Knowledge Graph for 
sharing, visualizing and reusing the body of knowledge constituted from 
the structural diagnosis of a heritage building. It aims to bridge civil 
engineering with the conservation-restoration communities using a se
mantic framework.

Therefore, the related research question is one of integration of 
heterogeneous, spatialized, uncertain data: How can we effectively inte
grate structural diagnosis information of Cultural Heritage masonry assets in 
a structured way, allowing common understanding and interrelations be
tween the disciplines involved?

More specifically, we want to narrow this question to the interop
erability between visual inspection data and mechanical simulation re
sults: How can we effectively provide a two-way link relating the study of an 
alteration observed on the physical material, to the multiple modeled and 
predicted damage quantified through mechanical simulations?

We favor graph-based structuration of knowledge for (i) its 
conciseness in a setting characterized as complex (Section 3.1); (ii) its 
capacity to retrieve both local and global information, from the meta
data of a resource to the inferences across resources; (iii) flexibility in 
the modeling strategies, to shift from document-centric to resource- 
centric archiving strategy (Section 3.2). Our work demonstrates that 
interoperability of rich AEC and CH data products, such as those de
tailing degradation phenomena, benefit from being established at the 
knowledge level. Therefore, the two-way exchange of qualitative and 
quantitative data between the aforementioned communities is chan
neled throughout the use of a Semantic Web based Knowledge Graph.

We explore Knowledge Graph design and construction from two 
perspectives. First, we focus on knowledge modeling tailored to the 
domain, robustly describing the provenance of degradation phenomena 
as spatial resources. Second, we design a knowledge system that hosts 
the Knowledge Graph, enriching and processing data for both human 
readability and machine actionability. Respectively, we adopt Methon
tology [8] and eXtreme Design [9] for pattern-based reuse of the stan
dard CH ontology CIDOC CRM [10]. We follow the design science 
guidelines to design, implement and validate the knowledge system as 
an artifact [11]. Our approach is evaluated by integrating structural 
diagnosis data from Notre-Dame de Paris’s buttressing system to assess 
its effectiveness.

1.2. Overview of the outline of the article and the main contributions

In this article, we first give a brief overview of the state of the art 
(Section 2) in performing structural diagnosis of cultural heritage ma
sonry buildings (Section 2.1) and using Knowledge Graphs to structure 
the corresponding data produced by the AEC and CH experts (Section 
2.2). More precisely, we refer to the use of Semantic Web technologies 
for the design and management of a Knowledge Graph (Section 2.2.1), 
followed by the application of knowledge graphs in the AEC and CH field 
(Section 2.2.2). In Section 3, we expose the methodological framework 
we employ to design the ontology and the knowledge system frame
work. From the the requirements and competency questions capture 
(Section 3.1.), we outline the use of Ontological Design Patterns (ODP) 
for extending the scope of the CIDOC CRM ontology to the structural 
diagnosis of building (Section 3.2). By ODP, we refer to small ontological 
patterns used as building-blocks for modeling a knowledge domain. 
Finally, we detail the integration of the Knowledge Graph within an 
event-driven information system (Section 3.3). In Section 4, we 
demonstrate the use of the Knowledge Graph for bridging the observa
tional data on a building, cartographied on an annotated point cloud, 
with mechanical simulation results produced with the Discrete Element 
Method. We begin with a step-by-step application of the eXtreme Design 

Fig. 1. (a) April 2019 fire damage to Notre-Dame de Paris’ nave and transept vaults (@Bestrema); (b) Notre-Dame choir’s sexpartite vault and buttressing system.
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methodology to design a basic ODP (Section 4.1) underlining the reuse 
of existing thesaurus and metadata vocabularies. By metadata vocabu
lary, we refer to structured list of property built for interoperability. We 
move forward to demonstrate the linking of building alteration data 
from the perspective of spatial information (Section 4.2) and the prov
enance of collected data with reference to the diagnostic activity and its 
dependencies (Section 4.3). The result section includes a proof of 
concept of the proposed framework, evaluated with the integration of 
structural diagnosis data from Notre-Dame de Paris’s buttressing system. 
Finally, the study concludes with insights and future research directions 
(Section 5).

2. State of the art

In this section, we present a summary over the structural diagnosis of 
masonry CH buildings (Section 2.1), and the role of Knowledge Graphs 
in organizing data from AEC and CH fields (Section 2.2). Thus, we first 
describe the data and domain knowledge to integrate, then a way of 
structuring them as graphs.

2.1. Structural diagnosis for the conservation of masonry CH buildings

Structural diagnosis aims to specify the stability, the integrity of the 
parts, the performance of the structure, of a building or an infrastruc
ture. Due to the unique nature of CH buildings, their structural diagnosis 
benefits from the interplay of observational, analytical, and interpreta
tive studies [3]. These studies rely heavily on accumulated expertise to 
identify typologies and draw analogies among the existing works, their 
parts and their key features.

The tasks related to structural diagnosis investigate structural 
behavior and damage, building usage and social function, material 
characteristics such as mechanical, physical, chemical, and the kinds of 
its decay. They account for both the present and the historic condition of 
the asset, then lead to uncover the causality that tie the degradation 
phenomena. Due to the uncertainties of the as-built context, there is an 
interplay between these tasks and other studies conducted on the asset, 
in particular condition assessment, heritage value assessment and his
torical studies. As an illustration, historical studies can provide century- 
old clues about usage, design, restoration or constructive techniques 
choices that impact the actual structure. Embracing operational and 
scientific endeavors, these interrelated activities share common 
attributes: 

• they are systematic in their methodology to ensure information 
consistency and reliability.

• they rely on accumulated knowledge within its disciplinary 
spectrum.

• they require interdisciplinary collaboration with the synergistic 
expertise of engineers, architects, conservators, and diagnosticians.

• they operate on asynchronous time frames while remaining inter
dependent in terms of task-flow and information flow.

Current structural diagnosis methods are incremental. The infor
mation and generated data feed into a common body of knowledge 
about the asset until a consensus is reached on its actual structural 
condition and performance. It can stop at any step depending on the 
case’s complexity. The first step involves general documentation of the 
structure (e.g. function, location, topography) and is followed by pre
liminary surveys of the geometry, materials and damage. They are 
recorded on reports, annotations of 2D drawings, orthophotos [5], or 3D 
point clouds [12,13] produced by state of the art photogrammetry or 
lidar surveying techniques. The next step includes specific surveys, the 
most common of which relate to material characterization and internal 
composition identification. In the CH context, non-destructive tech
niques such as sound velocity measurements for the characterization of 
mechanical properties, or ground penetrating radar for internal 

composition cartography are preferred over sampling and testing [3,14]. 
Finally, a last stage triggers in situ instrumentation if the detailed 
analysis of a temporal phenomenon is needed [15], or mechanical 
simulation to clarify the structure’s behavior and internal distribution of 
forces.

Both the building type and its construction material frame the design 
of diagnosis activities. For masonry buildings, massiveness and ductility 
are the prominent features of these structures. At the material level, the 
stone masonry bonded with mortar offers a high resistance to 
compression but a quasi brittle response to tension and shear [16]. These 
characteristics drive the design of the structural components: due to the 
material performance in compressive strength, the stability of a masonry 
structure is built from the efficient routing of thrusts across the struc
tural components down to the foundations, in order to avoid tension and 
shear in the material. In circumstances of tension and shear, these me
chanical stresses immediately lead to cracks in the masonry, geometric 
deformations and rotation of blocks within the masonry panels of the 
structural components [16]. Ultimately, these flaws in the structural 
components can lead to collapse mechanisms global to the structure. 
Therefore, diagnosis activities give careful attention to identifying de
formations and cracking patterns that may reflect a compromised 
structural integrity and stability [17].

Likewise, the construction material frames the expertise, techniques 
and models used in diagnosis activities. For mechanical simulation and 
modeling, the goal is to depict the structural condition of a building 
given its material, its geometry, its history and a simulation scenario. In 
order to accurately replicate the structure response to mechanical loads 
and stresses, the simulation models have several dependencies: (a) a 
material model, to describe the characteristics of a material by its 
constitutive laws; (b) a geometric model, to represent the volumes of the 
structural components; (c) the boundary conditions, to represent the 
loads and stresses applied to the structure according to a simulation 
scenario (d) an initial state serving as a starting point for the scenario. In 
the case of stone masonry bounded by mortar, several modeling stra
tegies coexists to represent the behavior of masonry structures with 
varying granularity (Fig. 2) [18]. For instance, Continuous Homoge
nized Material (CHM) strategies trade the simplification of the geo
metric model, considering only the shape of the structural component as 
a meshed envelope, with the complexification of the material model, 
now responsible to replicate the anisotropy and heterogeneous compo
sition of the masonry. In contrast, the Discrete Element Method (DEM) 
among the Block-Based Models (BBM) strategies relies on the complex 
geometric modeling of the masonry apparel, as it solves the blocks dy
namics taking into account interactions at their interfaces [19,20], while 
it keeps the material modeling simpler.

Fig. 2. Block-Based Models (BBM) and Continuous Homogenized Material 
(CHM), two strategies for modeling masonry-based structures.
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The effective use of mechanical simulation in diagnosis relies on 
constructing accurate simulation scenarios, each reflecting a hypothesis 
about the structure’s loading history. A hypothesis is validated by 
matching observed mechanical features, such as crack patterns or 
deformation, with simulated outcomes. Once a scenario is validated, the 
simulation model can be used to support diagnostic tasks in other dis
ciplines, predict the performance of conservation-restoration design 
solutions or to monitor the physical asset with a synchronized digital 
model [21].

From the process perspective, such insights come with the cost of 
computing time and highly specific expertise for the design, analysis and 
interpretation of the simulation model. From the data perspective, they 
come with the cost of the lack of support for managing and recording 
both the simulation results and its dependencies. Hence, the evaluation 
of a simulation scenario is mostly a manual process, mapping the 
observed flaws on the building and the parameters values within the 
simulation results.

2.2. Graph-based management of data

Graphs provide “a concise and intuitive abstraction” to integrate, 
manage, and derive value from domain-specific data [22]. Nodes in the 
graph represent tangible and intangible entities within the knowledge 
domain, while edges depict their relations, whether hierarchical or 
cyclical. Information retrieval in graphs efficiently traverses scales and 
layers of information as it can be local, global or pattern based. This 
accounts for their ability to encapsulate heterogeneous interconnected 
data and provide both specific and global perspectives [23].

A Knowledge Graph is defined as a “data graph potentially enhanced 
with representation of schema, identity, context, ontologies and/or 
rules” [22]. In mathematical terms, data graphs typically take the form 
of a property graph or a directed edge-labelled graph in order to struc
ture data. A property graph “allows a set of property-value pairs and a 
label to be associated with both nodes and edges” [22]. And directed 
edge-labelled graph are constituted by the connection of a set of nodes 
with a set of labelled edges. As an enrichment of a data graph, a 
Knowledge Graph may combine at least one feature from (i) a meta
model describing the possible entities and relations in the domain, (ii) a 
persistent identification passed by the node or an edge, (iii) a manage
able scope of truth for the dataset or (iv) formalized knowledge for in
formation entailment. The combination of those features supports 
domain disambiguation, enhances the expressivity of the knowledge 
base, and lets new information be entailed via formal deductive 
reasoning. Following this definition, the knowledge addressed within 
these graphs is explicit knowledge [24].

2.2.1. Semantic web technologies for knowledge graphs
Knowledge Graph design and application is one of the driving themes 

for the Semantic Web [25]. In the last decades, Semantic Web technol
ogies have been enhanced to provide a set of efficient tools and methods 
aimed at data sharing, discovery, openness, integration, and reuse. 
Knowledge Graph development is tied with Semantic Web endeavors, 
tinting the development of Linked Open Data with industry-specific 
requirements [23].

Semantic Web interfaces Description Logics from a modular stack of 
languages to provide a rich development environment for structuring a 
knowledge base as a graph. These knowledge bases are defined by 
interlinked sets of axioms for making claims about recorded facts. The 
Terminology Box (TBox) and Assertional Box (ABox) are two sets central 
to the representation of knowledge, with the TBox containing axioms 
that defines a knowledge domain concepts and properties, while the 
ABox holds specific facts about individuals linked to the TBox axioms. 
Together, these statements constitute the foundation of a Knowledge 
Graph [22,26]. Therefore, the Semantic Web stack provides the RDF 
(Resource Description Framework) as a basic syntax for expressing 
statements and structuring them in directed edge-labelled graphs [27]. 

RDF Schema (RDFS) offer a semantic extension of RDF as a “data- 
modelling vocabulary for RDF data” [28] applicable for expressing ax
ioms consistent with ABox and TBox sets. Web Ontology Language 
(OWL) and RDFS both offer a concise way to encapsulate knowledge by 
representing concepts and their relationships in an ontology.

Ontologies are defined as “formal, explicit specification of a shared 
conceptualization” [29], and known as a “main vehicle for data inte
gration, sharing, and discovery” [25]. They orient the modeling of graph 
data during the update of the knowledge base with new facts and in
dividuals. The set of TBox axioms they gather for modeling the knowl
edge of a domain can be reused across distinct knowledge bases, thus 
making their datasets instantly interoperable. Finally, deductive 
knowledge can be derived from the facts and axioms recorded in the 
knowledge base through the various entailment regimes the reasoners 
algorithms can provide [22]. These features encourage ontology reuse 
for structuring data or for extanding the scope of an existing model for 
relevant applications (Section 3.2).

In addition to languages for defining knowledge graph statements, 
the Semantic Web stack includes tools for entity disambiguation and 
internal coherence verification. Each individual is identified using an 
Internationalized Resource Identifier (IRI) [27], while Shape Constraint 
Language (SHACL) allows for validation of RDF graph data against 
“shape graphs”, which are patterns used to assess the coherence of the 
graph relative to a schema [30].

Considering the array of sources and expertise from AEC and CH 
processes thoughout a building asset’s lifecycle, Knowledge Graphs offer 
promising prospects for data integration and organization. Supported by 
the Semantic Web’s framework, it facilitates the percolation of com
munities across domains and the persistence of datasets.

2.2.2. Knowledge graphs and data integration in AEC and CH fields
Knowledge management and integration of AEC and CH data have 

emerged as vibrant domains in recent decades. In line with the scientific 
literature on general building information management, most of the 
publications pertaining to the diagnostics and maintenance of built 
works are shaped by Built Information Modeling (BIM) or Digital Twin 
(DT) paradigms. Knowledge Graphs enrich BIM and DT by facilitating 
information structuring, enabling knowledge-based processing, and 
supporting explicit and implicit derivation of valuable insights from 
existing data on the built environment [31]. The sole constraint of the 
DT on information is to enable a two-way real-time retroaction from the 
physical object to its digital model [21]. Whereas BIM addresses the 
representation and exchange of structured building information, often 
emphasizing 3D modeling as a core aspect of its approach [32]. The 
open ISO standard, Industry Foundation Classes (IFC), is proposed to 
streamline information sharing for “[facilitating] design, construction 
and operation processes to form a reliable basis for decisions” [33]. 
Academic efforts successfully brought the IFC schema, originally 
modeled with EXPRESS modeling language and inherited from STEP 
specification, to Semantic Web RDF and OWL formalizations [34] as a 
standard serialization of the model. This is in keeping with the bolstering 
of IFC schema through various extensions, to enhance information 
granularity of this high-level schema. Therefore, several initiatives 
address entailments on building topology [35], description of moni
toring information [36], bridging with standard ontologies such as 
CIDOC CRM [10,37] for cultural heritage assets.

In this setting, research efforts concerning the maintenance and di
agnostics of CH buildings focus on two themes: the condition assessment 
and the integration of monitoring data for Structural Health Monitoring. 
As a heritage-specific process, most of the modeling effort for elabo
rating Knowledge Graphs revolves around the CIDOC CRM ontology 
suite whether for describing masonry building decay by integrating 
spatial data and annotations [38] or restoration reports on a wooden 
building in a Heritage BIM framework [39]. DTs are used to embrace 
condition assessment in the scope of risk management and prevention 
policies design [40,41] and foster decision-making for restoration [42]. 
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Nonetheless, DT applications for CH are still in their early stage for 
building conservation [43] as the field is in consolidation phase due to 
the scarcity of validated implementations. Structural Health Monitoring 
focuses on the integration of the quantitative data output from sensors. 
CH buildings applications benefit from the modern infrastructure 
monitoring driven by Internet-of-Things (IoT) sensor management such 
as for dams [44], bridges and built assets grouped in a DT collection 
[31]. Hence, comparable monitoring approaches are applied to masonry 
buildings [45] and on heritage wooden structures with a BIM-based 
framework [46].

Both BIM and DT modeling paradigms are purpose-driven, priori
tizing on building description and model synchronization. They are 
model-centric approaches, relying on the curation and update of a single 
representation as a consensus between the experts and stakeholders. 
Challenges remain in coupling different representations of the built 
asset, such as different models and multiple surveys, and organizing the 
eventual concurrencies or interpretation clashes between them.

3. Methods

The development of a Knowledge Graph requires domain-specific 
knowledge modeling and data enrichment via an information system. 
As a domain, the structural diagnosis of a cultural heritage building 
overlaps AEC and CH fields. Although it is positioned at the intersection 
of these fields, it relies on a union of their requirements and knowledge 
sets.

In Section 3.1, we introduce the knowledge capture and requirement 
elicitation activities, forming the foundation for knowledge modeling 
and system design. We leverage the Semantic Web stack for building the 
Knowledge Graph as a managed RDF Dataset, using ontology design as 
the core knowledge modeling approach. Our methodology uses the 
Xtreme Design methodology [9,47], focusing on the reuse and integra
tion of Content Ontological Design Patterns (ODPs), with Methontology 
[48], which supports iterative and reusable ontology development. By 
following a test-driven workflow, we extract and integrate ODPs, pri
marily from the CIDOC CRM ontology, to accurately represent the 
knowledge domain. (Section 3.2.). Finally, we follow the design science 
guidelines [11] to combine the heterogeneous data sources in the 
Knowledge Graph. To ensure effective data processing, we organize 
these sources into specific pipelines, each designed for data enrichment 
and transformation (Section 3.3.).

3.1. Shaping the structural diagnosis of a building as a domain

The structural diagnosis of cultural heritage buildings, situated at 
confluence between AEC and CH (Section 2), operates in the complex 
setting of building construction and maintenance [49]. To delineate the 
relevant knowledge domain and assess the framework’s functionality, 
our methodology follows standard practices in requirements engineer
ing and knowledge capture [50]. On one hand, the requirements are 
statements describing a necessary function or feature for a system to 
achieve or possess [51]. On the other hand, a competency question “is a 
typical query that an expert might want to submit to a knowledge base of 
its target domain, for a certain task” [52,53]. Both the requirements and 
competency questions are trustworthy assertions, refined throughout a 
project lifecycle, organized hierarchically, and inform specifications 
from design through implementation phases.

The definition of these statements stems from meetings and di
alogues with the experts panels, from systematic reading of the civil 
engineering scientific literature and from the definition of use cases. 
Participation and attendance of structural diagnosis activities highlight 
expert-stakeholder interdependencies and the corresponding domain 
expectations, especially in disaster relief scenarios. A thriving part of the 
civil engineering scientific literature investigates the structural diag
nosis of masonry cultural heritage buildings. Several case-related studies 
offer in-depth insight in surveying, monitoring or modeling mechanical 

phenomena, underpinning the sensibility and impact from one task to 
another: Parent et al. [54] devises a methodology to evaluate the sta
bility of a structural compound by examining the stability regimes of its 
components, Ferrante et al. [55] examines a Block-Based Model sensi
tivity to the geometric accuracy of masonry apparel approximated from 
a point cloud survey. Finally, the use cases provide generalized scenarios 
that strengthen the connections between domain entities and ensure 
applicability. Considering these three sources, it is worth noting that not 
all contained assertions are explicit. With the aim of revealing implicit 
assertions, we conducted semiotic topical analysis to capture and 
consolidate analogies, reconciliations, and comparisons in the domain.

In addition, System Engineering [51,56] provides efficient tooling to 
unambiguously identify and describe the flow of tasks, information and 
objects between asynchronous activities in a complex setting. A hier
archy of diagrams reveals these flows at different scales and between 
different layers of information [57], outlining the convergence points 
and possible feedback loops between the activities, and thus the relevant 
experts (Fig. 3).

Competency questions and requirements are increasingly connected 
statements as the knowledge domain and system are refined. They 
provide a foundation for reusing existing ontological patterns to 
compose the knowledge graph’ supporting ontology, and guide the 
effective integration of structural diagnosis data.

3.2. Ontology reuse for knowledge graph design

A considerable number of ontologies has been built and made 
available in open repositories as shared conceptualizations [25]. On
tologies can be categorized by the scope of the objects they describe, 
which reflects their level of abstraction. Application ontologies directly 
model specific tasks or objects, representing a single viewpoint from 
either a user or developer [58]. Domain ontologies “define concepts 
from a given domain” [48], developed from a consensus among users. 
Core reference ontologies incorporate multiple viewpoints within a 
domain, capturing the essential concepts and relationships. Finally, 
upper-level ontologies define “general concepts that are highly reusable 
across several domains and applications” [48], like primitives from a 
metamodel to structure new ontologies. Even knowing that an ontology 
is often more expressive than its initial purpose [53], direct reuse of an 
ontology is as much the best-case scenario as it is unusual: an existing 
ontology seldom fits precisely with the requirements of the Knowledge 
Graph being constructed. Still, ontology reuse is more cost-efficient of an 
approach than ontology building from scratch, and trusts, on a wider 
scope, a common conceptualization across datasets.

Ontology reuse relies on methods for relating existing yet distinct 
ontology components. It encompasses the range of approaches bounded 
by ontology fusion and ontology integration [48]. On one hand, fusion 
aims at unifying knowledge from source ontologies in a single one. On 
the other hand, ontology integration aims at assembling source ontology 
modules through extension, specialization, and modification operations 
to achieve consistency across the network of modules. Critical issues 
arise when reconciling different knowledge models. While the most 
basic driver for ontology reuse is its content - i.e. the terminology and 
relations between domain-specific entities -, the major challenges lie in 
evaluating the compliance between ontological statements and recon
ciling asymmetric abstraction levels.

According to the intricacy of the domain and the existing ontological 
material, we rely on the eXtreme Design (XD) methodology for ontology 
reuse. XD is founded on the application, use, and definition of Content 
Ontology Design Patterns (ODPs). Content ODPs are small-scale ontol
ogies acting as building blocks, which are to bridge typical problems 
with specific instantiations [9]. Thus, XD is a method for ontology reuse 
that falls under the category of the ontology integration approaches. By 
utilizing Content ODPs drawn from upper-level ontologies or extracted 
from existing core, domain, or application ontologies, the aim is to 
compose a cohesive network of ODPs that combines the unique 
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capabilities of each ODP with those that emerge from their integration. 
Looking at the XD iterative workflow, each iteration starts with the se
lection of a User Story and Competency Questions, which are general
ized and then matched with Content ODPs. The selected Content ODP is 
then integrated with the pre-existing ones to form the ontology. Finally, 
a resource proper to the newly integrated ODP or transversal to the 
resulting ontology can be documented and exposed in a knowledge 
system. This process is illustrated with the Builtwork resource in Section 
4.1.

We characterize the domain’s intricacy by a cluster of key themes 
branching from AEC and CH fields: (i) building features description, (ii) 
simulation models description, (iii) spatial indexing of information with 
respect of topology and geometry, (iv) time indexing of information with 
respect of dates and events, (v) activities and process description, (vi) 
epistemological stances indexing fact, possibility and interpretation. XD 
manages the increasing complexity of the corresponding knowledge 
modeling activities and products due to its modular and iterative nature. 
In terms of existing ontological material, two standards emerge for 

delineating AEC and CH domains. IFC is a monolithic domain ontology 
for construction and facility management industries [59]. CIDOC 
CRMcore is a formal ontology for the CH field [60] with a family of 
modules broadening its scope. Both IFC and CIDOC CRM are large, 
interoperable schemas [37]. As a pattern-based methodology, XD fa
cilitates the selective extraction and reuse of pertinent parts for the 
target domain.

By separating highly reusable Content ODPs from their domain- 
specific adaptations, this approach highlights the coexistence of ab
stract entities crucial for inferring, and attributes essential for recording 
domain data but with minimal impact on inferences. A key illustration in 
our domain is the terminological coverage, encompassing domain- 
specific terms used by experts to denote structural diagnostic activ
ities, techniques, or study objects like materials and alterations, without 
affecting inference. As a result, we choose to delegate the terminology to 
external SKOS thesauri, benefiting from existing resources like the 
BRGM resources for description of stones [61], the Getty’ Art and Ar
chitecture Thesaurus for categorizing structural elements and 

Fig. 3. SysML Activity diagram outlining the tasks and information flows tied to numerical simulation preparation, modeling, and computing.

Fig. 4. Resulting ontology schema.
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components [62], or ICOMOS multilingual glossary of stone alterations 
[63].

Successive iterations of this approach yield a compact schema, pri
marily built from CIDOC CRM extracted Content ODPs for modeling 
structural diagnosis knowledge (Fig. 4) We combined XD iterations with 
Methontology to model the most constrained Content ODPs of our 
domain, such as information spatialization and provenance. Spatial 
indexing of information relies both on topological relations between 
abstract places and their diverse geometrical representations. We select 
modules from CRMgeo and GeoSPARQL [64] to bridge these entities 
with the RCC8 topology model [65]. The corollaries are: (i) circumvent 
the systematic 3D geometry querying at the system level; (ii) ability to 
compute topological relation between places that shall exist but have 
not undergone geometric survey or modeling activities. The temporal 
indexing of activities is supported by CIDOC CRM through its manage
ment of events. According to this approach, Content ODPs host the 
consequence of an event that has seen or caused the production of the 
information. Information production events can be described in greater 
depth by referencing a type from a SKOS thesauri or with the definition 
of an epistemological stance via CRMsci and CRMinf entities [66,67]. 
Each event shall be related to another, thus forming a chain of events 
mirroring the structural diagnosis process from the information 
perspective. This enables solid provenance elicitation of information by 
the reification of the related entities [68].

3.3. Knowledge graph publication

Knowledge Graphs provide a means to structure the meaning of re
sources and link them. Once embedded in a knowledge system, 
Knowledge Graphs can be managed, enriched with the integration of 
verified data from various sources, used as a support for data analysis, 
and as a support for publishing resources in a human-readable and 
machine-processable format. Methodologically, we emphasize on 
designing jointly the knowledge system and the knowledge model 
(Section 3.2) to avoid over-conceptualization and ensure practical 
operability. Using the design science framework, we create and validate 
a knowledge system as a purposeful artifact for a specific domain [11]. 
We implement the knowledge system as a proof of concept and validate 
it with real structural diagnosis data (Section 4.). If the context and re
quirements for the system arise from structural diagnosis as a knowledge 
domain, the system is further determined by (a) the type of data 
considered, (b) the type of sources, and (c) the knowledge modeling 
method.

The diversity of data products stemming from the studies of CH 
masonry buildings relates to two types of data: operational and scientific 
data. Operational data management is conditioned by business logic, 
while research-related data are shaped by epistemic requirements [69]. 
Both of them benefit from the “Findable, Accessible, Interoperable, and 
Reusable” (FAIR) guidelines to build an operable and trustworthy 
knowledge base. These guidelines are widely acknowledged by the sci
entific community [70], but they need ad hoc adjustments in privacy 
and access policies to meet business requirements [71]. Nonetheless, 
these guidelines inform system specifications to ensure machine 
actionability and human readability of resources. Conversely, hetero
geneous data sources come with diverse data products. The data influx is 
marked by (a) low volume, primarily made from the data relationships 
and the weight of raw survey and simulations; (b) intermediate velocity, 
except for SHM, all studies are satisfied with batch or near real time; and 
(c) high format and meaning variety. This emphasizes the system’s need 
for flexibility and adaptability over scalability in the perspective of 
volume, velocity, and variety as big data characteristics. Finally, 
knowledge modeling led us to use eXtreme Design (XD) (Section 3.2.). 
This method features short iterations, where each cycle’s validation 
conditions the start of the next. As a test-driven approach, it relies on a 
knowledge system to support procedures and perform validations, 
adding further system specifications.

Knowledge system design is supported by conceptual and technical 
references, which require curation or revision for Knowledge Graph 
implementation. In line with the heterogeneities of data and the 
complexity of resources prompted by the domain, we consider the use of 
Semantic Web technologies over property graph solutions for formatting 
the Knowledge Graph as a RDF Dataset [22]. This design decision de
fines the knowledge system with an existing technical framework. From 
a system architecture perspective, the diversity of data sources promotes 
the design of a distributed and flexible system, where modularity allows 
for the gradual addition of services as new sources and functionalities 
are introduced. We therefore envision the system architecture as event- 
driven, with interactions between microservices choreographed through 
event flows. By microservices, we refer to deployable, independent 
services that isolate specific tasks and are bound to collaborate to 
address elaborate functionalities [72]. In this context, choreography is a 
service coordination method where each microservice operates auton
omously but produces or reacts to events by exchanging messages via a 
central broker. This approach results in a loosely coupled system (Fig. 5) 
that can evolve to handle both basic and sophisticated functionalities, 
seamlessly integrating various data flows and computational processes 
into coherent data pipelines [73]. The modular, event-driven nature of 
the system ensures adaptability as demands grow in complexity. A 
meaningful example concerns the Extract-Transform-Load (ETL) tasks. A 
simple data pipeline for an ETL task triggers only the API gateway and 
RDF Integration Service. As data requirements grow more complex, such 
as adapting existing semi-structured data or extracting unstructured 
data, the data pipeline is extended by adding ad-hoc mediation services 
[74].

We outline the system architecture by following the data flow from 
data collection to data publication through the stages of collection, 
ingestion and enrichment, storage, analysis and processing, and 
publication.

During data acquisition, an API gateway centralizes the data flows 
coming from user interfaces or services within existing CH ecosystems 
[77]. Each route within the API is mapped to a dedicated pipeline for 
processing resources.

During data ingestion, if the incoming textual data complies with the 
pipeline specification, it is serialized and stored in JSON format within 
the body of a message, which is published to a topic within the message 
broker. If the input data includes a binary file, the file is first uploaded to 
the Data Lake, with its location reference included in the message. Each 
message features a unique key generated by combining the data pipeline 
identifier and a UUID, while their body holds the data to be cast as RDF 
Data in the Knowledge Graph. The message broker employs a publish/ 
subscribe mechanism, where services – such as the API Gateway - pub
lish messages to topics and others consume them. As a consumer service, 
the RDF Data Integration Service acts as a stream processor, updating 
the Knowledge Graph using templated SPARQL Update queries. The 
template corresponds to the data pipeline specified in the message key, 
with its fields populated by the message body data. The outcome of each 
update operation is logged into a dedicated topic of the message broker, 
facilitating the monitoring of the microservice’s instances.

Two databases provide the data storage solution: GraphDB as an RDF 
Triplestore, a structured graph database designed for the storage and 
retrieval of an RDF Dataset, and Minio as a Data Lake, an unstructured 
database solution to store raw or binary data. The knowledge graph, 
residing in the RDF Triplestore, captures resource relationships and links 
to binaries in the Data Lake, adding a semantic layer with metadata and 
provenance information.

Additional data analysis and processing are necessary for certain ETL 
or processing pipelines. For example, ingesting semi-structured data 
from the Aioli platform’s external document store requires preprocess
ing before updating the Knowledge Graph (Fig. 5). Regarding the data 
publication side, enhancing information retrieval or deriving additional 
knowledge from the graph may also necessitate further processing.

Finally, the data is published via an API and SPARQL endpoint, with 
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the API mediating data for easier management and ergonomics, 
shielding users from RDF complexities. A web service interfaces with the 
API to facilitate resource interaction and visualization.

4. Results

In this section, we integrate structural diagnosis data as meaningful 
resources for effective storage, processing, and visualization. Using the 
Notre-Dame de Paris flying buttress diagnosis use case, we demonstrate 
knowledge modeling of the Builtworks resource, describing buildings 
and structural components (Section 4.1). We then focus on the Built
works Feature resource, aligning the degradation phenomena data 
documented through visual inspection and simulation models. Instances 
of this resource are linked by type, spatialization within the built asset, 
and provenance. We curate these instances by modifying visual in
spection data from third-party services and extracting simulation pre
dictions from their time series results (Section 4.2). Finally, we 
demonstrate information retrieval and processing to publish the 
resource and provide scenario insights (Section 4.3).

We support these operations by a Proof-of-Concept (PoC) imple
mentation of the knowledge system (Section 3.3). It features all the 
services for Data Collection, Ingestion, Processing and Publication 
(Fig. 5), with the sole difference that the processing services are deliv
ered by a single API, and the Web Dashboard is planned for the proto
type version as it is not a core service. The deployment scripts, services 

codebase, and supporting ab2crm ontology are available in the GitHub 
repository (https://github.com/prj-astragale/). We tested the services 
individually and performed an integration test with the Notre-Dame 
flying buttress diagnosis.

In the aftermath of the April 15th 2019 fire, a comprehensive diag
nosis supported Notre Dame de Paris Cathedral’s recovery [5,78]. Sig
nificant structural damage resulted in the destruction of the carpentry 
and impairments of the vaulted stonework, such as a breach in the 
northern transept voussoir paneling (12th), the collapse of a nave arch 
(12th) and of the transept crossing vault (19th) (Fig. 6).

The vault’s stability relies on the careful proportioning of their 
buttressing system to efficiently route the thrusts caused by the weight 
of the vaults, the covering carpentry work and the wind loads. The 
design solution brought by the Gothic style is the flying buttress. An 
arched structural device, set into the load-bearing wall at the level of the 
vault haunch that shifts the thrusts onto an offsetted abutment (Fig. 7). 
The principal collapse mechanisms originate from the rupture of equi
librium between the thrusts of the vault and the buttressing system. The 
vault thrust exceeding the buttressing’s is referred to as passive thrust 
mechanism, and the opposite case as active thrust mechanism. Both sce
narios are outlined by the apparition of hinges in the buttressing system 
corresponding to the rotation of stone blocks. They are evidenced by 
crack patterns in the masonry [78,79].

Scaffolding facilitated visual inspections and sound velocity mea
surements, revealing cracks in two choir flying buttresses (Fig. 6). 

Fig. 5. High-level overview of the knowledge system architecture, based on modern service-layering [75,76].

A. Gros et al.                                                                                                                                                                                                                                    Automation in Construction 170 (2025) 105927 

8 

https://github.com/prj-astragale/


Mechanical simulations can help to determine if the cracks occurred 
before or after the partial collapse of the vaults and the carpentry loss. 
The aim is to correlate observed cracks with predicted crack patterns 
from active or passive thrust mechanisms.

4.1. Baseline: the craft of the Builtwork resource

An iteration of XD results in the development of a new resource type 
for the Knowledge Graph (Section 3.2). The outputs of this process 
include the curation of a Content ODP with the appropriate classes and 
relations (TBox), the selection of metadata vocabularies and thesauri for 
recording the resource’s instances attributes (ABox), and the design of 
SPARQL query templates and validation schemas necessary for 

configuring the resource’s ETL pipeline. These components are docu
mented and work together to ensure seamless integration of new in
stances into the knowledge graph.

As a baseline for demonstrating the methodological steps, we curate 
the Builtwork resource in charge of describing the buildings and its 
structural components. An iteration starts by selecting the correspond
ing User Story and Competency Questions (CQ) (Table 1). Issued from 
knowledge capture, they frame the resource in the domain: the CQs 
establish the foundation for the user queries while the user story relates 
them to the context. This is followed by the Generalization Tasks, which 
aim to translate these assertions from natural language to more formal 
statements that “express possible inferences or other rules that apply to 
the concept” [52]. Conversely, the Generalized CQs are as straightfor
ward as the Generalized User Story: “Different built structures form 
another structure, with various types”.

The next step consists in curating the Content ODP that accurately 
carries the resource meaning according to the generalized assertions. 
Given that our domain is at the intersection of the AEC and CH fields, we 
identified IFC and CIDOC CRM as candidate ontologies for curating the 
Builtwork ODP. Several classes and properties from CIDOC CRM exactly 
match the generalized statements: the self-referenced property crm: 
P46i_forms_part_of allows to replicate the hierarchical composition of 
structural components, the class crm:E22 Human Made Object describes a 
persistent physical object of which the spatial extents are defined by crm: 
E53_Place. We extract these CIDOC CRM classes and properties (TBox), 
compose them with skos:Concept from the SKOS ontology to manage 
entity typing, and then document the resulting Content ODP (Fig. 4).

The Content ODP Integration and Pipeline Design phase bridges 
knowledge modeling with the technical aspects of data integration. 
First, the Content ODP is integrated into the actual ontology that has 
been built from the previous methodology iterations. In order to derive 
the Builtwork resource from the Builtwork ODP, we then select the 
domain-specfic metadata vocabularies and thesauri to describe the at
tributes of a resource instance. Given the lack of domain-specific met
adata vocabulary for the target, we opt for the Dublin Core [80] and 
schema.org [81] vocabularies. For categorizing the different types of 
buildings and structural components, we use the Getty’ Art and Archi
tecture Thesaurus [62]. The products of this phase are: the JSON Schema 
for data validation, the templates of the SPARQL queries for “Create, 

Fig. 6. Location of choir flying buttresses with a crack observed at the head.

Fig. 7. Four geometric representations of the T17 flying buttress: pre-fire lidar and post-fire photogrammetry surveys, STEP and MSH models for supporting me
chanical simulation. Each geometry is stored in the Data Lake and linked in the Knowledge Graph.
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Read, Update, Delete” (CRUD) operations, and the processing methods 
for complex data integration cases (Table 1.).

Finally, the resource-specific pipeline implementation within the 
knowledge system ensures dynamic knowledge graph updates and 
resource publication. It enables the development of data-driven ana
lytics and ad-hoc visualization. Testing forms the backbone of a suc
cessful iteration. We facilitate the design and implementation of a 
resource’ related unit tests, which can be triggered at any step at the 
Knowledge Graph management service (Fig. 5).

The succession of XD iterations results in the addition of ressources 

types manageable through the Knowledge Graph. Accordingly, the 
ontology (TBox) is expanded with the integration of the corresponding 
ODPs. Therefore, the Builtwork ODP serves as a dependency for ODPs 
such as the Geometry ODP, aimed at managing the typology and geom
etry of a place within the building, or the Builtwork Feature ODP, aimed 
at describing characteristics or phenomenon pertaining to the structural 
components.

4.2. Recording the surveys information and the simulation results

The visual inspection of the Notre-Dame de Paris buttressing system 
has been transcribed as annotated point clouds using the photogram
metric annotation platform Aïoli [13]. These point clouds are produced 
using photogrammetry techniques from a sequence of photos of the 
building after the fire to serve as a basis for an Aïoli scene (Fig. 8). Each 
scene contains the 3D point cloud (Fig. 7.b), the spatialized photograph, 
and different annotation layers. Each annotation associates a subset of 
the point cloud to user-defined labels, which structure varies depending 
on the kind of diagnosis the layer is referring to. The conservation- 
restoration layer indifferently holds information about observed alter
ation on the masonrywork – such as cracks, displacements of masonry 
panels, stone weathering – and forecasts of conservation-restoration 
activities to be delivered. This information is formatted as a list of 
informal statements: descriptions such as “Altered stone, to be replaced” 
or “Crack in the mortar”. Other information complement this layer, like 
sound velocity measurements [6] for the mechanical characterization of 
stones and identification of cracks in the mortar indiscernible to the 
naked eye.

From a technical standpoint, the Aïoli scenes are stored in a 
document-oriented database specific to the platform. We retrieve the 
semi-structured information held in the database to the Knowledge 
Graph with an Extract-Transform-Load (ETL) process. A first Transform 
process occurs in the Data Adapter service (Fig. 5), with the aim of 
formatting incoming data to fit an existing resource, then we reuse the 
resource pipeline to update the Knowledge Graph. Considering the 
conservation-restoration layer, we target the Builtwork Feature resource 
for loading information about an observed alteration on the masonry. 
For each annotation, the point cloud subset can either be embedded in 
the Data Lake, internal to the system, or linked via a reference to its 

Table 1 
Seven steps of the methodological continuum, from the use case narrative to the 
publication of routes for interacting with Builtwork resource.

Use Case Narrative and User 
Story

The T17 flying buttress, the T19 flying buttress and 
the CH1518 vault are structural components of the 
cathedral Notre-Dame de Paris. While the arches 
are more recent (19th century), the vault dates back 
to medieval times, between 1163 and 1200.

Competency Questions What is the name of the built asset? 
What is the construction date of the built asset? 
Give a summarized description of the built asset? 
Which are the components of a building? 
What is the type of a building?

Generalized Constraints A building and its components are Builtworks. 
Builtworks have none to many types of Builtworks. 
Builtworks have one identifier. 
Builtworks can be hierarchically related. 
A Builtwork shall not be part of itself. 
A Builtwork designates an immovable object, at a 
specific location.

Generalized Competency 
Questions

What is the type of a Builtwork? 
Which Builtworks are part of a Builtwork?

Content ODP (Fig. 4)
Content ODP Integration and 
Pipeline Design

(JSON Schema) Builtworks 
(SPARQL) Create, Update and Delete SPARQL 
templates 
(SPARQL) Select and Construct SPARQL templates

Implementation and 
Publication

(POST) https://{INLAKE_HOST}/builtworks 
(GET) https://{INLAKE_HOST}/builtworks? 
recursive = {bool}?graph = {bool} 
(GET) https://{INLAKE_HOST}/builtworks/ 
{builtwork_id}

Fig. 8. Visual survey masonry information recorded on the Aioli platform, with annotations applied to both the photogrammetric point cloud (left) and corre
sponding photos (right).
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location in the external Document Store of the Aïoli platform (Fig. 5). 
The information associated with this geometry consists in an informal 
description, metadata, and thus lacks a consistent way to describe what 
feature has been observed. In addition to the formatting of the data in 
the Data Adapter service, we derive a reference to a controlled vocab
ulary from the informal description. We perform fuzzy string matching 
with the comparison of the Levenstein distance (reference) to align the 
description with one of the entries ICOMOS glossary for stone alteration 
[63] formatted as a SKOS thesaurus. For instance, the annotations 
featuring a “Crack in the mortar” are labelled with the icomos-stone: 
Crack reference. Finally, the formatted data is sent down to the Builtwork 
Feature pipeline to update the Knowledge Graph accordingly. In 
compliance with the Builtwork Feature ODP, the annotations generated 
in the Aïoli platform (crm:E13_Attribute Assignment) denote on-site fea
tures (crm:E26_Physical_Feature) observed (crmsci:S4_Observation) on 
structural components (crm:E22_HumanMade_Object). They are spatially 
indexed within photogrammetric point clouds (crmgeo:SP4_Declar
ative_Place), depicting the geometric extents (crm:E53_Place) of compo
nents in a specific spatial basis (crmgeo: 
SP4_Spatial_Coordinate_Reference_System).

The simulation results are recorded by the simulation solver as time 
series recording the evolution of the physical properties of mechanical 
variables. We use LMGC90 multiphysics solver [19] to perform two 
simulations of the Notre-Dame de Paris buttressing system evaluating 
the principal collapse mechanisms known for Gothic flying buttresses: 
active thrust and passive thrust mechanisms. Despite following different 
scenarios, these simulation models share the same initial state, material 
model and geometric model. The latter is a volumetric mesh (Fig. 7.d), 
computed from the STEP model (Fig. 7.c), designed from both the Tallon 
laser survey (Fig. 7.a) and the specifications of the targeted simulation 
modeling strategy. LMGC90 is based upon the Discrete Element Method 
(DEM), one of the Block-Based Modeling (BBM) strategies to solve the 
interactions between entities (Section 2.1) (Fig. 9). Masonry apparel is 
represented as discrete blocks interconnected by cohesive interfaces 
reflecting mortar behavior, with their physical properties recorded in 
the time-indexed tables of a HDF5 file. The condition of the mortar is 
represented by the gap between two blocks and a damaging variable. 

Hence, data that evidence a predicted crack is discrete to the time and 
the entities. Provided with connected components algorithm and graph 
operations, we retrieve chains of damaged interfaces along simulation 
steps and geometry topology, and represent them as a disjoint set of 
graphs. In other words, we retrieve the predicted evolution of cracks 
within the mortar.

Consequently, we craft a Builtwork Feature resource similar to the 
surveyed one. We annotate the geometric model supplied for the 
simulation with the prediction of a crack and update the Knowledge 
Graph accordingly. These annotations are derived from (crmsci: 
S6_Data_Evaluation) LMGC90 simulation (crmsci:S9_Simulation) denote 
on-site features (crm:E26_Physical_Feature) predicted (crmsci:S4_Obser
vation) on structural components (crm: E22_ HumanMade_Object). They 
are spatially indexed within the geometric model (crmgeo:SP4_Declar
ative_Place), depicting the geometric extents (crm:E53_Place) of compo
nents in a specific spatial basis (crmgeo:SP4_Spatial 
_Coordinate_Reference_System). Fortunately, the information conveyed by 
these annotations is structured and univocal as they refer to the icomos- 
stone:Crack concept in the SKOS version of the ICOMOS glossary for 
stone alteration [63].

The interrelations between visual inspection, on-site measurements, 
and simulations are established at the knowledge model level. By elic
itating the meaning of these complex data products, instances (TBox) are 
accurately aligned and published as Builtwork Features resources. These 
resources are typed using SKOS Concepts, expose metadata structured 
with existing metadata vocabularies, are linked to the Geometry resource 
they are derived from, have their production event identified with SKOS 
Concepts (Fig. 11) and linked with the resource dependencies as a 
provenance chain.

4.3. Provenance-based and spatial insights for the diagnosis

As the diagnosis question concerns the existence of cracks in the 
mortar whether pre- or post-fire, the Builtwork Feature is a central 
resource for supporting analysis and interpretation. Querying the 
Builtwork Features attached to the studied T17 flying buttress retrieves 
all of them, independently from their meaning or origin. They can be 
filtered to isolate only the crakcs, identified as icomos-stone:Crack.

Event-based knowledge modeling roots on the production events 
relative to the documents and resources, thus forming an efficient basis 
for provenance retrieval as it lowers the cost of storing the dependencies 
of a resource’ production. A Builtwork Feature documenting an icomos- 
stone:Crack issued from simulation post-processing unveil a deeply 
layered provenance (Fig. 10.a), while the one from the alteration survey 
displays a shallow one (Fig. 10.b). Epistemological stance is registered at 
the ontology level (TBox) and linked to the production of a resource and 
its dependencies using CRMsci classes crmsci:S4_Observation for mea
surement and surveying, and crmsci:S8_Categorical_Hypothesis_Building or 
crmsci:S9_Simulation. Therefore, the layered provenance accounts for the 
stack of surveys, hypothesis and models contributing to the creation of a 
Builtwork Feature instance (ABox). Multiple Builtwork Features can be 
examined and linked regarding the shared dependencies. For instance, 
both the Builtwork Features in (Fig. 10) are related to the post-fire geo
matic survey. The provenance tree can be expanded in an iterative 
fashion as new information becomes available, for instance adding 
material model parametrization “Material Rigids CZM” can be deferred 
with respect to adding geometric modeling of the structural component 
(Fig. 10).

To conclude on the technical side, the provenance diagram provides 
a visualization of the recursive SPARQL Construct query addressed to 
the Knowledge Graph for a resource at the route /process/{resource_id}/ 
event_chain. Hence, this eases the verification process and responsibility 
elicitation in the information production chain.

From the perspective of spatialized data, the information held by the 
Builtwork Features is native spatial data. Their simultaneous visualiza
tion and their clustering provide a baseline for the interpretation of the 

Fig. 9. Mechanical simulation prediction for a choir flying buttress under 
active thrust load. The DEM-based LMGC90 solver outlines block panel rotation 
and the apparition of a crack at the head of the flying buttress.
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phenomena they describe. Each Builtwork Feature corresponds to one of 
the many geometric representations of the structural component - 
whether measuring or modeling it as a Geometry resource - and condition 
its recording. The instances (ABox) of Builtwork Features extracted from 
the post-processing of DEM simulations are mapped to the STEP model 
of the structural component, while those issued from the visual inspec
tion are mapped to the photogrammetric point cloud (Fig. 11). The 

location of each Builtwork Feature is documented in the Knowledge 
Graph by referencing a specific subset of its corresponding Geometry 
resource instance (ABox). Dependencies between the Geometry resources 
are described in the Knowledge Graph - later visualized in the prove
nance trees (Fig. 10.a) – and their binaries are stored in the Data Lake 
after having previously been processed through the ETL pipeline.

In an operational setting, the succession of measures and studies with 

Fig. 10. Provenance visualization for two Builtwork Feature instances related to the T17 Flying Buttress: (a) a crack predicted by the Active Thrust simulation scenario 
and (b) a crack observed during the visual inspection of alterations.

Fig. 11. Joint visualization of two Builtwork Feature instances related to the T17 Flying Buttress: (a) a crack predicted by the Active Thrust simulation scenario, 
located on the structural component STEP model; (b) a crack observed during the visual inspection of alterations, located on the post-fire Aïoli photogrammetry 
point cloud.
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varying technologies inevitably leads to a breadth of geometries 
instantiated without fixed reference in 3D space. The dataset from Notre 
Dame de Paris buttressing system makes no exception to this common 
operational setting. The different surveys and models had to be aligned 
in the same space regardless of whether they come from before or after 
the disaster [82] (Fig. 7). To leverage the reconciliation of geometries in 
the same space, we use the classes crmgeo:SP4 Spatial Coordinate Refer
ence System and ab2crm:SP16x Spatial Transformation in the Geometry 
ODP (TBox) to capture the relations between Spatial Coordinate Refer
ence System (SCRS). This enables the declaration of the 4 × 4 affine 
transformation matrices to move from a datum to another (Fig. 4.a). At 
query time, when requesting multiple Builtwork Features recorded on 
different Geometries of a Builtwork, a common SCRS to the Geometries is 
defined and the related 4 × 4 transformation matrices are computed and 
retrieven in table to the user. On the technical side, a challenge arises to 
visualize such a breadth of geometry types: unstructured point clouds 
with scalars for laser intensity or RGB colors, structured CAD files with 
volumes registered in boundary representation (b-rep) and structured 
volumetric meshes (Fig. 7). The Paraview suite for scientific data visu
alization is used for desktop display and interaction with these geome
tries, further preprocessing is required for online previewing with the 
threejs Javascript graphical library.

Finally, we delineate the clashes, concurrency and complementarity 
among the Builtwork Features, seen as native spatial data via their spatial 

clustering. Different criteria are available: topological information be
tween Builtworks with RCC8 model [65], proximity and topological 
between the related Geometries. In this study, the structural diagnosis of 
flying buttresses showcases the use of the proximity and intersection 
criterion. We first reconcile Geometries and Builtworks Features in the 
same SCRS, then we compute the Euclidean distance between two ge
ometries’ nearest points for the proximity criterion or the convex hull 
overlaps and containment for the topological criterion. Lastly, we 
resolve clusters with Ward’s method for hierarchical clustering analysis 
[83]. The clustering results provide two kinds of insights. First, they 
reveal the correspondences between similar phenomena observed in 
different studies, enabling the tracking of changes over time through 
successive visual surveys and facilitating the comparison of model pre
dictions with real-world observations. Second, they help identify haz
ardous zones, characterized by the concentration of features detected 
through multiple expert studies. The clustering of the Builtwork Features 
instances (ABox) from the structural diagnosis of the flying buttress 
outputs six clusters (Fig. 12). In addition to the concentrations of 
weathering in different parts of this structural component, we observe 
that the sixth cluster is the only one where a surveyed crack is predicted 
by a simulation. The corresponding simulation scenario is the active 
thrust mechanism, prompting further exploration and evaluation of this 
scenario.

Fig. 12. Spatial clustering results of Builtwork Features instances, corresponding to observed or predicted alteration during the structural diagnosis of the T17 flying 
buttress. Each instance is represented as a square and classified according to its type from the ICOMOS glossary for stone alteration [63].
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5. Conclusions

5.1. Knowledge graph for integrating cultural heritage buildings structural 
diagnosis

A detailed framework for enriching structural diagnosis data up to a 
Knowledge Graph, an ontology, processing services has been developed 
with the use of Semantic Web technologies, big data principles and 
microservices guidelines. Toward knowledge capitalization, the signif
icance of the established Knowledge Graph lies in enabling data sharing 
between operational and scientific communities, facilitating the evalu
ation of models against surveyed reality, and supporting knowledge- 
driven processes alongside with archiving diagnosis studies. More spe
cifically, the degradation phenomena are syntactically and semantically 
aligned with the description of their provenance and matched with 
controlled SKOS vocabularies. As natively spatial data, this information 
is mapped by its position on the structure, its topological relationships 
and the alignment of its geometries. The contribution of this paper can 
be outlined as: (a) interoperability between the data products of cultural 
heritage building diagnosis studies; (b) robust building information 
spatialization across different modalities; (c) concurrency and lineage of 
the degradation phenomena competing studies. A main challenge has 
been the mitigation of the complexity emerging from the combination of 
those items. Although it responds to the demand of multimodality in the 
study of a heritage asset, this contribution complements the actual ef
forts to bridge quantitative SHM data to a simulation model under the 
DT paradigm, or to structure surveying data in a building digital model. 
Knowing the scarcity of knowledge system implementations in the CH 
field, we made a point to support this contribution with the deployment 
of a proof-of-concept.

A case study based on real structural diagnosis activities is imple
mented as an integration test for our knowledge system. It was 
endeavored to evaluate and compare the presence of cracks on Notre 
Dame de Paris choir flying buttresses. The heterogeneous data influx has 
been structured as data pipelines, contributing to the information sys
tem through an API, data adaptation from third-party services such as 
Aioli photogrammetric annotation platform for visual inspection, and 
data extraction from stored raw data such as LMGC90 mechanical 
simulation results. A Knowledge Graph and a Data Lake are used to store 
diagnosis data in a structured way. The relationship between the data is 
sustained in the Knowledge Graph as the diagnosis progresses and the 
different alternatives of the condition state can be considered. Further
more, the reuse and ability to link this Knowledge Graph is fostered by 
the designed ontology based on the standard CIDOC CRM ontology, 
using the widely adopted metadata vocabularies from Dublin Core [80] 
and schema.org [81] for the description of the resources, as and relating 
to domain-specific thesaurus such as the ICOMOS glossary of stone al
terations [63] or the Getty’s Art and Architecture Thesaurus. Concerning 
the practical utilization of this data, the queries and inferences are 
enabled by OWL reasoning, then performed by an API exposing the data 
as manageable resources. Further processing and analytics are provided 
by the API to retrieve the provenance of a resource, its spatialization on 
aligned geometries, and clustering in the case of resources that depicts a 
degradation phenomenon. They can be consumed by visualization ser
vices to facilitate the reading of this processed information. At query 
time, the user can retrieve a proposition of a condition state from a 
curated set of degradation phenomena, mixing surveyed reality to pre
dicted scenarios. Therefore, this eases the evaluation by stakeholders 
and experts of alternative scenarios, supporting decision making for the 
design of conservation-restoration activities.

5.2. Limitations and critical review

Using Semantic Web technologies to build inteconnected data and 
knowledge through a Knowledge Graph comes with an invaluable range 
of advantages, especially in terms of expressiveness, reasoning, 

knowledge reuse and sharing. However, several limitations tied to its 
application in this work’s framework impact its efficiency in practical 
operations, and reflect the broader challenges of using linked data as a 
foundation for associating information across domains.

In this paper, several limitations stem from ontology modeling 
choices for structural diagnosis as an operational process. First, the 
condition state of a built asset remains unmodeled, as we opted for a 
CIDOC CRM event-based framework over a state-based model. The 
current or projected state of an asset is constructed at query time by 
selecting features unveiled during diagnostic activities. While this 
approach enables discussion across several studies, it lacks a formal 
means to validate or standardize the proposed state. Second, the model 
does not capture causality analysis, an area where expert knowledge, 
such as the signification of degradation patterns, is essential. While the 
proposed framework enables the clustering of similar features affecting 
the building, the model does not embed the description nor interpreta
tion of degradation patterns. Despite these limitations, the methodology 
allows for stepwise completion of the ontology with the integration of 
new Ontological Design Patterns (ODPs).

Expanding the model to convey more comprehensively the structural 
diagnostic approach - incorporating risk, restoration, and building life
cycle perspectives - highlights the broader challenges associated with 
linked data. Similar to the work presented, which models a facet of 
structural diagnosis, other models exist in the literature that depict 
related concepts. Staying faithful to the original endeavor of reusing 
existing ontological material via ODPs, open questions remain around 
creating links between distinct models and their classes (TBox) to ach
ieve ontology alignment and integration. The pitfall being the clashes 
between the ontologies, resulting in data inconsistency or redundancy. 
Manual validation and operation are still paramount despite the 
enhancement of automation support [22]. This question also extends to 
the maintenance of existing Knowledge Graph Data (ABox) regarding 
the evolution of a knowledge domain, modeled by ontologies (TBox).

Another limitation stems from the research design, scoped down to 
conceptual modeling and integration framework design. While CH data 
is a document-centered practice, often restricted to describing individ
ual buildings. Although the framework provides pathways to integrate 
and describe CH data, further challenges lie in fostering user engage
ment and promoting rigorous data management practices. Solving these 
challenges requires establishing a solid data governance coupled with 
adapted UI/UX design for efficiently connecting the model to user 
expertise in CH fields. These elements, essential for reliable input 
management and effective data usage, remain outside the scope of this 
study.

5.3. Future outlook

Recording and capitalizing on the structural diagnosis data of cul
tural heritage (CH) buildings aligns with broader maintenance practices 
within the Architecture, Engineering, and Construction (AEC) industry, 
although specific requirements arise due to heritage considerations.

Considering first the structural diagnostis and putting aside the CH 
diagnostics accountments for unique material, original construction 
techniques, variance of procedures, impact of the heritage value pres
ervation, both CH and AEC benefit from consolidating various damage 
representations. This work focuses on reconciling qualitative in situ 
observations with simulation results, laying the groundwork for future 
research to bind sensor-based measurements from Structural Health 
Monitoring (SHM), material sampling and mechanical testing. Building 
on the ongoing developments in Digital Twins for construction, a central 
direction for this work is to utilize Knowledge Graph as a backend to 
consolidate information from corresponding models and enhance in
sights into structural damage. By connecting multiple damage repre
sentations, this approach enables the referencing of a building’s current 
or projected state, related to operational aspects such as risk assessment 
and the causality between various types of damage. To generate 
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operational insights, Knowledge Graphs enable two distinct reasoning 
approaches. One focused on deductive knowledge, leveraging formal
ized expert knowledge and rulesets tied to common pathological sig
natures found in well-known AEC structures, like masonry bridges or 
retaining walls. An open question remains regarding the generalization 
of these rules to more complex CH cases. The other reasoning path fo
cuses on inductive knowledge, applying graph analytics to generalize 
insights from accumulated data. Given the complexity of CH buildings 
and the inherent sparsity of data, a combined approach may provide the 
most robust solution.

In the context of the entire building lifecycle, the integration of 
diagnostic data with maintenance actions provides the opportunity to 
model the current condition, the expected degradation patterns and the 
corresponding interventions required over time. Such a broader 
perspective places structural diagnostics knowledge management into 
the facility management research agenda for CH buildings. One prom
ising area of research to consolidate is the combined use of the two 
established ontological frameworks, IFC schema and CIDOC CRM, for 
managing both the technical and cultural aspects of CH building 
maintenance.

Ultimately, research prospects tied to this approach have the po
tential to enhance the preservation of CH works by aligning diagnostic 
data with actionable maintenance and restoration workflows, ensuring 
the longevity of heritage structures while maintaining their cultural 
significance.
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Conceptualization. Philippe Véron: Supervision, Project administra
tion, Funding acquisition, Conceptualization. Kévin Jacquot: Writing – 
review & editing, Supervision, Project administration, Methodology, 
Conceptualization.

Declaration of competing interest

The authors declare no competing interests.

Data availability

Data will be made available on request.

Acknowledgements

This work was supported by the project Astragale funded by the 
CNRS-MITI, France, and surrounded by the project n-Dame_Heritage (n- 
Dimensional Analysis and Memorisation Ecosystem in Heritage Science) 
funded by the ERC (European Research Council), European Commission. 
The authors wish to acknowledge the Notre Dame Scientific action 
driven by CNRS and the Ministry of Culture (France), notably the 
collaborative environment established between the ‘Digital Data’ and 
the ‘Structure’ work groups. The authors thank the numerous scientific 
partners and collaborators, with special recognition to: the heads of the 
aforementioned scientific workgroups, chief architects of historical 
monuments and engineers in charge of the restoration of Notre-Dame de 
Paris cathedral.

References

[1] ICOMOS, International charters for conservation and restoration = Chartes 
internationales sur la conservation et la restauration = Cartas internacionales sobre 
la conservación y la restauración, ICOMOS International, 2004. ISBN 3-87490-676- 
0. http://openarchive.icomos.org/id/eprint/431/.

[2] ICOMOS, Principles for the analysis, conservation and structural restoration of 
architectural heritage, in: Proc. ICOMOS 14th Gen. Assem. Vic. Falls, 2003. https 
://www.icomos.org/en/resources/charters-and-texts (Accessed November 25, 
2024).

[3] P.B. Lourenço, Structural Behavior of Civil Engineering Structures: Highlight in 
Historical and Masonry Structures. https://hdl.handle.net/1822/6436, 2006.

[4] P. Dillmann, P. Liévaux, L.D. Luca, A. Magnien, M. Regert, The CNRS/MC Notre- 
Dame scientific worksite: an extraordinary interdisciplinary adventure, J. Cult. 
Herit. 65 (2024) 2–4, https://doi.org/10.1016/j.culher.2024.02.004.

[5] P. Villeneuve, R. Fromont, P. Prunet, Cathédrale Notre-Dame de Paris: 
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