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BRANCHING PROCESSES IN RANDOM ENVIRONMENTS:
MOMENTS AND LARGE DEVIATIONS

ION GRAMA, QUANSHENG LIU, AND THI TRANG NGUYEN

ABSTRACT. Motivated primarily by the study of large deviations of multitype branching
processes in random environments, we first establish, for products of independent and
identically distributed random positive matrices (My,)rez, a Perron-Frobenius type theo-
rem under the Cramér type changed measure, the stable and mixing convergence of the
direction of the random walk My - - - M, (with z € Ri) as n — 0o, under both the initial
probability and the changed measure. We also determine the exact growth rate of the
moments of the vector norm ||z My - - - M, ||, the entrywise L' matrix norm ||[Mo - - - My ||1.1,
and the scalar product (xMy - - - My, y) for z,y € ]R‘Jir with unit norm. As applications, we
derive precise large deviation results for the population size ||Z,|| of n-th generation, for a
d-type branching process Z, = (Zn(1),- -, Zn(d)) in an independent and identically dis-
tributed random environment, by giving an equivalence of the large deviation probability
P[||Z.|| = e™], for ¢ > 0 in a suitable range. Additionally, we obtain precise estimation of
the moments of ||Z,|| and those of the j-type population size Z,(j).
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1. INTRODUCTION AND MAIN RESULTS

1.1. Motivation and main objective. Mainly motivated by the study of precise large
deviations for multitype branching processes in random environments, we begin with estab-
lishing some limit theorems for products of independent and identically distributed (i.i.d.)
random positive d x d matrices (M, )ncz. This topic is of independent interest, thanks to
a large number of applications and interactions with important problems arising in various
fields. For important progress on this topic in the last decade, see e.g. Benoit and Quint
[7, 8], Buraczewski, Damek, Guivarc’h, Mentemeier [10], and Guivarc’h and Le Page [36].
See also Fernando and Péne [25], Cuny, Dedecker, Merlevede, Peligrad [18], Xiao, Grama
and Liu [74, 76, 77] for recent works on large deviations and the convergence rate in central
limit theorems.

With the spirit for applications in branching processes, we first establish a Perron-
Frobenius type theorem for the products My, ,, = My, --- My, k < n of the random matrices
(M,,) defined on some probability space (€2, F,P), under the Cramér type changed measure
QU with s in a suitable interval I, of R, and v € S = {z € R% : ||z|| = 1}. For a matrix g,
denote by g7 its transpose. Under a simple positivity condition, we prove that there exist
two sequences (uy), (vg) of elements of S NR*, such that, QU a.s. for each fixed k € Z as
n — oo, and for each fixed n € Z as k — —oo, with = - g = zg/(||xg]|),

x - (Mkm)T —ur — 0, x-Myy,—v, =0, uniformly forzeS, (1.1)
(xMppn,y) ~ (U, )(vn,y), uniformly for z,y € Ri \ {0}, (1.2)
where ayp, = ||Mgnlli1 = Zg,j=1 My, n(i,7) is the entrywise L' norm. Moreover, (uy) and

(vy) satisfy, QU-a.s., ugr1- M = ug, vg_1- My = vg, Vk € Z. These results extend the known
ones under the initial probability established by Hennion [37] and in our previous work [30].
We then prove the stable and mixing convergence of the sequences of directions x - My,
and v,: for any m > 1 and R"-valued random variable 7 defined on the same probability
space (€2, F,P), both sequences (x - My, n) and (vy,n) converge in law, under both the
initial measure and the changed measure QY, to the product law w5 ® £(n), where 75 is the
unique invariant probability law of the Markov chain (x - My ,,)n>0 under QY, £(n) denotes
the law of 7. We also give precise description of the growth rate of the moments of the
vector-norm ||z My ,—1|| by proving that, for some function x(s) explicitly defined, the limit
S
m(z,s) = lim e Mo.n—1]* exists with value in (0,00), Vz € S. (1.3)
n—00 5"(3)

A similar result is also established for the matrix norm [|[Mp,,—1||1,1, for the scalar product

(xMp,p,y) with 2,y € S, and for the spectral radius pg,—1 of Mg p,—1.

The above mentioned results will be applied to study asymptotic properties of multitype
branching processes in random environments. A branching process in a random environment
is a natural and important extension of the Galton-Watson process. In such a process, the
offspring distributions of particles in n-th generation depend on an environment &, at time n.
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The process has been first introduced by Smith and Wilkinson [65] for an i.i.d. environment,
and by Athreya and Karlin [3, 4] for a stationary and ergodic environment. Fundamental
results can be found in the early papers by Atheraya and Karlin [3, 4], Kaplin[51] and Tanny
[68, 70, 71]. For the development of the theory, we refer to the recent book by Kersting and
Vatutin [52].

The process has attracted the attention of many authors over the past two decades,
and interest in studying it has grown in recent years, thanks to its numerous applications
and interactions with other scientific fields. For the single type case, see e.g. Geiger,
Kersting and Vatutin [28] and Afanasyev, Geiger, Kersting, and Vatutin [1] on the survival
probability in the subcritical and critical cases, Bansaye and Berestycki [6], Huang and Liu
[46], Grama, Liu and Miqueu [29], Buraczewski and Dyszewski [12], and Buraczewski and
Damek [13] on large deviations and central limit theorems (with rate of convergence) in the
supercritical case. For the multitype case, see e.g. Le Page, Peigné and Pham [60], Vatutin
and Dyakonova [72] and Vatutin and Wachtel [73] on the survival probability for critical
and subcritical processes, and Grama, Liu and Pin [31, 32] on the Kesten-Stigum theorem
and LP convergence for supercritical processes.

In this paper we consider large deviations for a d-type branching process in an i.i.d. en-
vironment, say Z, = (Zn(1),---,Zy(d)),n > 0. For the single type case (d = 1), moderate
and large deviations have been considered in [6, 46, 29, 12]. In particular, precise large
deviation for Z,, has been given in [12]. The multitype case (d > 1) has been significantly
less explored. We are only aware of the Cramér type moderate deviation result established
in [34] for ||Z,| = Z,(1) + --- + Z,(d), the total population size of generation n. Here
we focus on precise large deviations, specifically the Bahadur-Rao type large deviations of
|| Z||. Under suitable conditions, we prove the precise asymptotic behavior of the form (see
Theorem 1.6 below): for ¢ > 0 in a suitable range,

C@) 1y
P(1og ]| Zu | > qn) ~\/<%>e Ham, (1.4)

where the rate function I(q) and the constant C'(¢q) are given explicitly. We also give the
precise growth rate of the moments of || Z,||, by proving that the limit

Znl®
Z(s) = lim 12,

n—oo KN (5)

exists with value in (0, 00). (1.5)

A similar result is also established for the j-type population size Z, (7).

Let us give a precise description of the model. Let £ = (&, &1, -+) be a sequence of
independent and identically distributed (i.i.d.) random valuables taking values in some
measurable space (F, E), where , represents the random environment at time n. Let d > 1
be an integer. Each realization of &, corresponds to d probability distributions on N%:

P(&) = {Pj(&) : 5 €NT}, where  pi(&) 20, Y p(&) =1, r=1,---.d
jENd
A multitype branching process in the random environment £ (MBPRE) is a process Z,, =

(Zn(1),--+, Zn(d)), n > 0, with values in N, such that for all n > 0,

d Zn(r)

n+1 Z Z Nln (16)

r=1 [=1

Here Z,(r) denotes the number of type r particles of generation n, and the j-th component
Nl’zn(j) of Ny, is the number of type j offspring of the I-th type r particle of generation
n. Conditioned on the environment &, the random vectors Zp and Ny, indexed by [ > 1,
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n > 0and 1 < r < d, are all independent; for all [ > 1, each Nl’:n has the same distribution
p"(&,) depending on the environment &, at time n.

Let (A, A,P¢) be the probability space under which the process (Z,)n>0 is defined when
the environment ¢ is given. The total probability P can be formulated as

P(dg, dy) = Pe(dy)T(dE), (1.7)

defined on the product space (©,.%) = (EN x A, £®N @ A), where 7 denotes the law of the
environment sequence ¢ (which is a probability measure on (EN, £2N)); by definition

Lo dewr@sdy) = [ ][ e upen]ra) (18)

for any positive and measurable function f (with an abuse of notation, we use the same
letter £ to denote both the environment sequence and its possible values). The probability
P¢ is usually called quenched law, while the total probability P is called annealed law.
The quenched law P¢ can be considered as the conditional law of IP given the environment
& Pe(-) = P(-|€). The expectation with respect to P¢ and P will be denoted respectively
by E¢ and E. According to the definition of the model, under P¢, the random vectors
N[, = (N[, (1),--- N[, (d)) are independent and have the probability generating function

fr(s) =Ee(s"in) = 37 ph(én)s*, s= (51, ,sa) € [0,1]" (1.9)

keNd
(which does not depend on 1), where by notation, s*¥ = H;l:l sfj if s = (s1,-+-,84) and
k= (ki, - ,kq). Let

fo= (s s 1. (1.10)
Denote the mean matrix of the offspring distributions of time n by M,,, whose (r, j)-th term
is

N Ofy s

Mn(raj) = 0. (1) = ESNZ,TLO)

j
Notice that the mean matrix M, just depends on &, (it is of the form M, = M(&,)).
Since the environment sequence (&) is assumed to be i.i.d., so is the sequence of matrices
(My)n>0. We will use the natural filtration (.%,,)n>0, where %y = o{{} and

ﬁnza{f,NZj:l>1,0<j<n,1<7"<d} for n > 1. (1.11)
It is well-known that when Elog™ [[My|| < +o0, then the Lyapunov exponent

1
v:= lim —Elog||Mon-1l| (1.12)

is well-defined, and is equal to the quantity ]igfliElog | Mo —1]|, which lies in {—oo} UR.

The process (Z:) is called supercritical, critical or subcritical, according to v > 0,= 0 or
< 0, respectively.

1.2. Notation and conditions. In the sequel, the process Z, will be noted Z! when
Zy = e;, which means that the process starts with one initial particle of type i¢. For any
k.n € 7Z, let

Myp = My,... M, and M, =(My,)" ifk<n, My,=1; ifk>n, (1.13)
where I; denotes the d x d identity matrix, M7 denotes the transpose of M (the notation
Mgn should not be confused with M --- M.

n

Let R? be the d-dimensional Euclidean space. Each element v € R? is written as a row
vector. The transpose of v € R? is denoted by vT. For 1 < i < d denote by e; € R? the
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vector with 1 in the i-th coordinate and 0 elsewhere. The symbol 1 = (1,---,1) € R?
stands for the vector with all coordinates equal to 1. The indicator function of an event F

d(P
is denoted by 1g. The symbol (—g denotes the convergence in distribution under P. For
any z,y € R%, the scalar product and the L' norm in R¢ are defined by

d d
(w,y) =) x(i)y(i) and |lz]| = |z()]. (1.14)
i=1 i=1

For a matrix or a vector a, we write ¢ > 0 to mean that each entry of a is strictly positive.
We denote by G the multiplicative semigroup of d x d matrices with non-negative entries.
The subsemigroup of G composed of strictly positive matrices is denoted by G°. Let

S={veRL |lv] =1},

where R‘i is the positive quadrant of R and denote by S° the interior of S. The space S is
referred as the projective space. For any matrix g € G and any « € S we define the action
of g on x by setting
rg
g = )
lzg]
Let us state various conditions to be used latter on. For any ¢ € (G, define the operator
norm and the iota function:

when xg # 0. (1.15)

d

lgll = sup flagll = llgaé; 9(i, j) = max [leig]],
d

Wg) = Inf gl = 1%121; 9(i.j) = min [leig]],

where ¢(g) > 0 for g € G°. We shall also use the entry-wise L'-matrix norm: for g € G,

d

gl = (1, 1g) = > g(i, j)- (1.16)
ij=1

Let © be the common law of M,,. Set
I: ={s20:E([[Mo]°) <oo} and I, ={s<0:E(||Mo]*) <oo}.

By Holder’s inequality, both I J and I are intervals of R. The interior of a set A is denoted
by A°, so that (I,7)° and (I,)° are the interiors of I'" and I respectively.

Denote by supp p the support of the measure p and by [supp u] the closed semigroup
spanned by supp p. We will need the following condition introduced by Furstenberg and
Kesten [27]:

Al. There exists a constant D > 1 such that for p-almost every g € G,
0 < max {e;,ej9) <D min (e e;g). (1.17)

1\,\ 1\)\d

It can be easily checked that, for any matrix g satisfying (1.17), we have

1
pllgll < ulg) < llgll- (1.18)

+ —
Forany s € [; U, let

3=

K(s) = nhﬁrrolo (E||Mopn—1]]*)" , and A(s) = logk(s). (1.19)
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It is known that the limit above exists (see [11] and [36]), and that the function A is convex
and analytic on (I ;f Url, )°. This function plays the same role as the log Laplace transform
in the case of sums of i.i.d. real-valued random variables. Introduce the Fenchel-Legendre
transform of A by

A*(q) = sup {sq—A(s)}, q¢€ A’(I;r Ul,).
selfuly
Notice that if ¢ = A’(s) for some s € (I,7)° U (I)°, then A*(q) = sA(s) — A(s) > 0.
We need the following non-arithmeticity condition on .

A2. (Non-arithmeticity) There do not exist t € (0,00), 6 € [0,27) and ¢ : S — R such
that

logl (v g) = €’o(v), Vg € [supp ], Vo € suppr.
It is known that condition A2 ensures that o2 = A”(s) > 0.

1.3. Main results for products of random matrices. In this subsection, (M,)ncz
stands for an arbitrary sequence of i.i.d. positive random matrices with common law p,
defined on some probability space (€2, F,P). For any s € I :[ U I, , the transfer operator Ps
is defined as follows: for any bounded measurable function ¢ on S and v € S,

Pap(v) = [ gl e(v-g)u(dg). (1.20
"
Then the function x(s) defined in (1.19) is an eigenvalue of the operator Ps, with respect
to which there is a unique (up to a scaling constant) strictly positive and continuous eigen-
function r5 on §, and a unique probability eigenmeasure v on Sg:

Pirs = k(s)rs, Psvs = Kk(s)vs.
Define a new measure QY, such that for v € S, for any n > 0,

Q1 = dn(v, Mon-1) Plg, (1.21)
where -|¢ _, denotes the restriction of the measure to %, = o(My,k < n — 1), and

||U-MO n—l”s 7‘5(2} - My n—l)
(v, Myp—1) = : d .
qn(’u, O;m 1) Ii(S)n 7“5(1))

Notice that, while the sequences (u,) and (v,,) are stationary and ergodic under the original
measure P, they may be non-stationary under the measure QY; also, under QY, the sequence
of matrices (M,,) is no longer stationary, nor independent. However, under QY, we can
still establish a Perron-Frobenius type theorem for the products of random matrices (M,,).
Under both the initial probability P and the changed measure QY, we will establish the
mixing stable convergence of the sequences of directions (vy,)n>0 and (z - Moy )n>0, which
will be very useful in the estimation of moments and large deviations.

We will need the following positivity condition introduced by Hennion [37]. A matrix is
called allowable if every row and every column has at least a strictly positive entry.

A3. My is a.s. allowable and
P(3n >0, My, > 0) > 0. (1.22)
It is known (see [37, Lemma 3.1] or [40, Lemma 2.1]) that (1.22) holds if and only if

P(Eln >0, My, > 0) —1.
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Remark 1.1. Remark that condition (1.22) is equivalent to the following condition used in
[10] (recall that G° denotes the subsemigroup of G composed of strictly positive matrices):

[supp p] N G # 0, (1.23)
where [supp u] denotes the closed semigroup generated by supp u, the support of p.

To see the equivalence, notice that if P(3n > 0, My, > 0) > 0, then there is n > 0 such

that P(Mp,, > 0) > 0. Therefore there is a matrix g € supp My, (the support of the law
of My,) such that g > 0. Since

supp Mo = {90 gn : gi € suppp Vi € {0,--- ,n}}, (1.24)

where {-} denotes the closure of the set {-}, it follows that g € [supp p] (the equality (1.24)
is a consequence of [62, Lemma 2.1] applied to the mapping f(go, - ,gn) = go - gn). This
gives the implication = in (1.23). For the converse implication, assume that g € [supp y]
with g > 0. Since

[suppp] = {go---gn :m > 0,9; € supppu Vi >0}, (1.25)

it follows that there is n > 0 and go, - , g, € supp p such that ¢’ := go--- g, > 0. Again
by (1.24), ¢’ € supp My,. Since ¢’ > 0, there is a neighborhood O(g’) of ¢’ such that
O(¢') € G°. Therefore
P(Moy, > 0) = P(My,, € O(g')) > 0.
This concludes the proof of the implication < in (1.23).
Notice that the equivalence (1.23) remains valid when [supp u| is replaced by the semi-
group generated by supp p (without taking the closure).

We sometimes need the following stronger allowability condition than that in A3.
A4. All elements of [supp p] are allowable.

Our first result is a Perron-Frobenius type theorem for the products of random matrices
My, = My, - -- My,, where k,n € Z,k < n, under the changed measure QY.

Theorem 1.2 (Perron-Frobenius type theorem). Assume condition A3. Let s € I U,

and v € S. Then there are sequences (uy)rez and (vi)pez of elements of SNR*?, such that
for each fixed k € Z as n — oo, and for each fixed n € Z as k — —oo, QY-a.s.

sup ||z - (Myn)" — ugl| = 0, (1.26)
zeS
sup ||z - My, — vpl| = 0, (1.27)
€S
M
sup ‘ (@M y) 1‘ — 0, (1.28)
wyeRI\ {0} | Ukt ) (Vn, )
" PV
where ay, , = };{:;:ig = (E{fllivj)' Moreover, (u) and (vy,) satisfy, QY-a.s.,

T
Uk41 ° Mk =Up, Up_1- -M=uvy, VkEeLZ.

Note that for s = 0, Theorem 1.2 recovers a similar assertion obtained in [30].

Theorem 1.2 is a consequence of Remark 3.5 and Theorem 3.3, where more details,
including the relations with the spectral radius py, of My ,, the eigenvectors wy, (resp.
Uk Of (Mkn)T (resp. M}, ), and other possible choices of ay, ,, are given.

Our second result concerns the mixing stable convergence of the direction of the random
walk (zMor)n>0. The result is new in both cases s = 0 (under the initial probability P)
and s # 0 (under the changed measure Q).
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Theorem 1.3 (Stable and mixing convergence). Assume condition A4. Let s € I,; UI,
and v € §. Assume also condition A3 when s > 0, and A1 when s < 0. Then, under QY,
for all x € S, all the three sequences (z - Moyy,), (vn) and (vor), converge mizing stably to
ws: that is, for any m > 1 and any R™-valued random variable n as n — oo, we have the
following convergence in law under QY:

(- Mon,n) =1Ly, (Un,n) =7s®@Ly and  (Von,n) = Ts @ Ly, (1.29)
where s is the unique Q-invariant measure (cf. (2.15)), L, denotes the law of 7.

In fact we will prove the stable and mixing convergence of the joint law of (z- M.y, vn, vo )
see Theorem 2.9 (under P) and Theorem 3.7 (under QY).
Our third result is on the moments of the products of random matrices.

Theorem 1.4. Assume A4 and let s € I, U I:[. Assume also condition A3 when s > 0,
and A1 when s < 0. Then the spectral radius pyn—1 of Mon—1 satisfies

i Eloon—1)® [ w)®
TLlL)HC}O /{,n(s) o /52 ’I“S(U)

13 (du) e (dv), (1.30)

where (i denotes the law of ug under Qg/d. Moreover, for any x,y € S, we have

E(zMon-1,y)° y)°
lim E@Mon-vy) / w0y ). (1.31)
n—oo RM(s) s s(v)
In particular,
E|xMypn-1]|*
lim EllrMon* = rs(w)/ ms(dv),
n=oo RM(s) s 7s(v)
E||Mon-1]l5 1
lim 1 Mo.n— 1l :/ ms(dv).
noo  RM(s) s 7s(v)

For the proof, see Section 3.4, Theorems 3.8, 3.9 and 3.10.

1.4. Main results for branching processes. We first state our main result about the
moments of the MBPRE (Z},).

Theorem 1.5. Assume conditions A4, A1 and s € IF \ {0}. Assume also that when 0 <
s < 1, we have maXKi,KdE( Z0) log™ 2, ) ) < 0o and E(||My||* log™ || Mo||) < oo,

Mo (i,5)" =2 7= Mo(i.j)
and when s > 1, we have maxi; j<qa E(Z1(j))° < co. Then for alli,j € {1,---,d},

. E|Z¢|* A ms(dx)

1 0l g (WY (e; , 1.32

ngrolo HH(S) Qs ( ) r (6 )/S 7"5(.’,12‘) ( )
- E(Z,(9)° : / (z,€5)°
lim 2 gy (e (da), 1.
nl—I>I<}o IQ"(S) Qs ( ) T (6) S ’I“s(l’) T ( ‘/1:) ( 33)

where the random variable W' is defined in Section 4.2, with 0 < Ein(Wi)s < 00.

For the proof, see Section 5. For the single-type case d = 1, the result has been proved
by Huang and Liu [46, Theorem 1.3]; see also Buraczewski and Dyszewski [12, Lemma 3.1].

We next state our main result about the precise large deviation of the MBPRE (Z7).
Theorem 1.6. Let s € (I)° be such that ¢ = A'(s) > 0 and 02 = A"(s) > 0. Assume
conditions A4 and A1. Assume also that:

(1) When 0 < s < 1, there is § > 0 such that

S

max E[(Ee(2{(7)'**) "] < oo. (1.34)

1<i,j<d
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(2) When s > 1, there is 6 > 0 such that
max E[(Z(5))""] < oo, (1.35)

1<i,j<d

In the case where s > 1, we assume additionally that r(s) > k(1).

: rs(€:) :
Then, = AN'(s), we have, with C(s) = ——————=FE e (W")* € (0, 00), — 00,
en, for q (s), we have, wi (s) o)V i (W')* € (0,00), as n — o0
P(log 1Z8|| > qn) ~ C\v/(%)e_"A*(q) as n — oo. (1.36)

More generally, for any constant C > 0 and any given sequence (Sn)r?l with 0 < 6, =
o(n=12), we have, uniformly in all sequences (6p)n>1 such that 6, < Co, for alln > 1,

P(log 1Z3)l = (q+ 5n)n) ~ C\'/(i)e"(A*(qHs‘;") as m — oo. (1.37)
n
Remark 1.7. In (1.37), we can replace e~ (A" (@+50n) by e=nA"(a+0n) gince

2

1)
A*(q+ 6n) = N (q) + 0, + T;E(l +0(1)),

uniformly in all sequences (8, )n>1 such that 6, < C6, for all n > 1 (see [74, Lemma 4.1)).

Remark 1.8. Notice that Theorem 1.6 applies to all three cases: supercritical, critical, and
subcritical, provided ¢ > max(v,0). Note that A’(1) > 0 ensures the condition k(s) > k(1)
for s > 1 is automatically satisfied in all the three cases, except probably in the strongly
subcritical case, namely the case where A’'(1) < 0.

Remark 1.9. When d = 1, the Bahadur-Rao type expansion (1.36) reduces to that of
Buraczewski and Dyszewski [12]. Note that in the case where s < 1, they assumed the
additional condition that the conditional mean M satisfies EM -1z log®™ Z; < 0. In fact
we can check that this condition is implied by (1.34) that they also assumed in an equivalent
form: see Lemma 6.8. The Petrov type expansion (1.36) is new.

1.5. Key ingredients of the proofs and organization of the paper. Let us give a
short explanation of the mains ingredients of the proofs.

For the proof of Perron-Frobenius theorem, as in the case under P, an important step is
to use the contraction properties of the Hilbert cross metric d on S (see (2.1) and (2.2))
and nice properties of the contraction coefficients (see (2.3) and Lemma 3.4), to conclude
that (see Remark 3.5)

supd(y - (Myn)",ug) =0 and  supd(y - My, vn) — 0, QU-as. (1.38)
yeS yeS

For the proof of the stable and mixing convergence under P and QY, we still use the
contraction properties of the metric d, together with the spectral gap theory.

Using the measure change technique and the stable and mixing convergence of (x -
Mo, Un, v0,) under the changed measure, together with the Perron-Frobenius type the-
orem, we get precise estimation of the moments of the vector norm |zMy,|, the matrix
norm || Mo pl1,1, the scalar product (xMo p,y), and the spectral radius po,, of Mo .

Using the stable and mixing convergence of x - My, and vy, also under the changed
measure, as well as the LP convergence results under the changed measure, we get similar
estimation for the moments of || Z,|| and Z,(j).

We finally explain the main ingredients of the proof on the precise large deviation of || Z,,||.
Inspired by the approach of Buraczewski and Dyszewski [12] where the single type case was
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considered, the starting point of the proof is the following martingale decomposition: for
any 1 <m < n,

n
Zn = ZmMm,nfl + Z (Zk - Zk—le—l)Mk,n—l
k=m+1

(recall that My, ,, = My, ... M, if k < n, and My,,, = I; = the identity d x d matrix if £ > n),
where the empty sum is taken to be 0, and the summands in ), ., are martingale
differences (see Lemma 6.1). With m = K |logn| for a suitable K (large enough), we prove
that the sum » p_ ., above is negligible, so that ||Z,| behaves like ||Z;, My, n—1|, whose
precise large deviations can be estimated by conditioning on Z,,, and using the Bahadur-Rao
type theorem for xM,, ,—1 with « € S, established in [74].

In the proof, we mainly use:

1) The Perron-Frobenius type theorem for the products of positive random matrices
under the Cramér-type change of measure, that we establish in Section 3.2. . Notice that
while the sequences (uy,) and (v,) are stationary and ergodic under the original measure P,
they may be non-stationary under the measure QY.

2) The mixing stable convergence of (v,) and (z - Mo y) that we establish in Sections 2.3
and 3.3.

3) Under the changed measure Q¢ , the LP-convergence theorems for the fundamental
martingale (W}), for the normalized j-type population size Z!(j) for each j € {1,--- ,d},
and for the total population size || Z! || of generation n, and the convergence of the direction
Z% /|| Z ||, established in Section 4.

The rest of the paper is organized as follows. In Section 2, we prove the stable and
mixing convergence for products of positive random matrices under the initial probability
P. In Section 3, we investigate properties of products of positive random matrices under
the changed measure QY, where, in particular, we prove the Perron-Frobenius type the-
orem and the stable and mixing convergence of the direction of xMj,. As application,
we determine the exact growth rate of the moments of ||zMy,| and (xMp,,y). Section
4 is dedicated to the properties of the branching process Z, under the changed measure
Q%. We mainly prove the LP(Q%) convergence of the fundamental martingale (W?), the
normalized total population size ||Z,||/E¢||Zy||, as well as the normalized j-type popula-
tion size Z,(j)/E¢Zn(j). We also prove the exponential convergence rate. In addition, the
convergence of the direction Z,, /| Z,|| is established as well. The exact growth rate of the
moments of ||Z,|| and Z,(j) are established in Section 5, by using the stable and mixing
convergence of x - My, and (vy), and the LP convergence under Q$. These properties are
also used in Section 6 for precise large deviations of ||Z,]|.

2. STABLE AND MIXING CONVERGENCE FOR PRODUCTS OF POSITIVE RANDOM MATRICES

Recall that we always assume that the environment (£x)ken, is independent identically
distributed sequence of random variables with values in (E,£). For convenience of ap-
plications, we extend it to the double sided sequence Assume that M : x — M(z) is a
measurable mapping defined on (E, £) with values in G, so that M,, :== M (§,),n € Z, is an
i.i.d. sequence of random elements of G (the set of d x d non-negative matrices). We notice
that any i.i.d. sequence of random elements of G can be written in this form. To see this, it
suffices to consider the canonical probability space (,.%,P), where Q = GZ, P = pu®% with
u the common law of M,,. In this case we have M, (w) = w, for each w = (wg)rez € 2, and
we can take £ = w.
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2.1. Preliminaries. Following [37], we equip the projective space S with the Hilbert cross-
ratio metric d defined as follows: for any x,y € S,

1 —m(z,y)m(y,x

d(a,y) = LD (21)

1+ m(z,y)m(y,x)
where m(z,y) = sup{A > 0: \y(i) < z(i), Vi = 1,...,d} for x = (z(1),...,2(d)) € R?
and y = (y(1),...,y(d)) € R% By Proposition 3.1 in [37], the distance d is bounded,
d(z,y) < 1, for any z,y € S, and has the important property that for any matrix g € G the
action (1.15) on § is a contraction with respect to d, that is, for any g there exists ¢(g) < 1
such that, for any =,y € S, it holds

d(z-g,y-9) < c(g)d(z,y) < c(g). (2.2)
The number ¢(g) is called contraction coefficient of the matrix g. An explicit calculation of
the coefficient ¢(g) in terms of the matrix is performed in [37], where it is shown that

(o) =  max l9(k, )9(l, j) — g(k, j)g(l, )| (2.3)

igkie(ddy g(k,0)g(l,5) + g(k,5)g(l, i)

The contraction coefficient satisfies the following properties: ¢(g) < 1iff g € G°, ¢(g) = ¢(g7)
and ¢(g,9") < ¢(g)c(g’) for g,¢' € G. Tt is known that the distance d satisfies

1
Sz =yl <d(z,y) <1 (2.4)

For any € € (0, 1), we denote
Sc={veS:(f,v)>ecforall feS}.

Next we introduce a Banach space which will be used in the sequel. Let C(S) be the
space of complex-valued continuous functions on S. For any ¢ € C(S) and v > 0, denote

lp(u) — p(v)]
o (= Su v and = sup ——————,
lell Ueg\w( )l [ely B A T

and the Banach space

By = {9 €C(S) : el = llelloo + [y < 00}
We shall consider the following weaker version:
A5. There exists a constant D > 1 such that for p-almost every g € G, and all 1 < ¢ < d,

0 < max (ei,ejg) < D min {e;, e;g) (2.5)

Clearly condition A1l implies A5. Condition A5 says that all the entries of each fixed
column of the matrix g € supp u are comparable, while condition A1 requires that all the
entries of g are comparable.

Below we give equivalent formulations of conditions A1 and A5. For any set B C S, we
denote B-g={v-g:v € B}.

Lemma 2.1. Assume A4. Then: (1) condition A5 is equivalent to the following statement:
there exists a constant € € (0, ?) such that

S-gCS. for p-almost every g € G, (2.6)
(2) condition A1 is equivalent to the following more restricted statement: there erists a

constant € € (0, @) such that
S-gCS and S-g' CS. for p-almost every g € G. (2.7)
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The first assertion is given in [78, Lemma 3.2]. The second one can be proved in the
same way, so its proof is omitted.

2.2. Spectral gap theory. In order to state the large deviation results for Z¢, we need
some spectral properties of transfer operators related to the norm cocycle ||[vMp,||.

For any s € IIJ[ U1, , the transfer operator Ps and the conjugate transfer operator P; are
defined as follows: for any bounded measurable function ¢ on S and v € S,

Psw(v):/F lvgl*e(v-g)u(dg), P;"<p(v):/F log™[[*e(v-g ™) u(dg), (2.8)

Iz Iz

where g7 is the transpose of g. The following conclusions have been known. For simplicity,
we just state the results under the condition A1, although some of them are valid under
much more general conditions.

Lemma 2.2. [10, 75]. Assume A4 and let s € I, UL}. Assume also condition A3 when
s >0, and A1 when s < 0. Then k(s) is an eigenvalue of the operator Ps, and for some
e > 0, there is a unique probability eigenmeasure vs on S and a unique (up to a scaling
constant) strictly positive and continuous eigenfunction rs on S :

Psrs = k(8)rs, Psvs = k(s)vs.

Similarly, there exist a unique probability eigenmeasure v on S and a unique (up to a
scaling constant) strictly positive and continuous function r% such that

Pir: =k(s)ry, Pivi=rk(s)v;.

With a particular choice of the constant, the eigenfunction rs (resp. vi) and the eigen-
measure v} (resp. vs) are related by

rs(v) :[S<v,u)suj(du), ra(v) = /S(v,u>sys(du), veS, (2.9)

which are strictly positive and 5-Holder continuous with respect to the L' norm || - ||, where
s =min{1,|s|}.
In addition, there exists a constant cs > 0 such that for anyn > 1,

k(8)" S E(|Mon-1|°) < esk(s)” for s >0, (2.10)
csk(8)" S E(|Mon—1]°) < k(s)" for s <O0. (2.11)

Moreover, when A1 holds, there is some € € (0,1) such that the measures vy and v} have
supports contained in Se.

The lemma comes from [10, Proposition 3.1] (see also [36]) for s € 1, and [75, Proposition
22 for s eI .. - Notice that under the Furstenberg-Kesten condition A1, the allowability
condition A4 is equivalent to the condition that the 0 matrix is not in [supp u], which is
used in [75, Proposition 2.2].

Remark 2.3. The constant c, in (2.10) can be taken as follows: ¢; = 1/[min g =1 [5 [|zg||*vs(dz)]
for s € It (see [36, Lemma 2.8], and ¢, = (D?d)* for s € I (see the proof of [75, Lemma
2.4]).

For any s € I;’ U I, , define the operator Qs as follows: for any ¢ € C(S),

1
Qsp(v) == mﬂ((prs)(v), veS, (2.12)
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which is the normalization of the transfer operator Ps. It is not difficult to check that the
n-fold iterations of Qs and Py satisfy the relation

B (ers). (2.13)

n, _
s = K(8)"rs
Lemma 2.4. [10, 36, 75] Assume A4 and let s € I, UL}. Assume also condition A3 when
s >0, and A1 when s < 0. Then uniformly for ¢ € C(S),

lim Q" = ,(¢), (2.14)

n—oo

where s s the unique Qs-invariant (i.e. Qsms = ms) probability measure on S, given by

vs(rs)
ms(p) = va(r) Vo € C(S). (2.15)
The result comes from [10, Theorem 3.11] and [36, Theorem 2.6]) for s € I,f, and [75,
Lemmas 2.7 and 2.8] for s € I,
Below we state the spectral gap property of the operator (s from [43]. Denote by
L (B, #.,) the set of bounded linear operators from %4, to %, equipped with the operator
norm || - ||z, 2,, by p(A) the spectral radius of an operator A acting on %,.

Proposition 2.5. [75, Proposition 2.10] Assume condition A1. Let s € I} U1, . Then,
there exists v € (0,1) such that Qs € L (%, %), and there exists a constant a € (0,1)
such that for allm > 1,

QZ:HS_FNSTL;

where Ils is an one dimensional projector with IL;(p)(v) = ws(p) for ¢ € % and v € S,
and Ny satisfies IIgNg = NIl = 0 and p(Ny) < a.

As a direct consequence of Proposition 2.5 and (2.13), we get the following

Corollary 2.6. [75, Corollary 2.11] Assume condition A1. Let s € IIJ[ U1, . Then, there
exists v € (0,1) such that Ps € L(#.,#,), and P} = k(s)"Ms+ L} for any n > 1, where
Mg := vy ® 1y is a rank-one projection on %, defined by Msp = (“’) rs for ¢ € A, and
P! denotes the n-fold iteration of Ps. Moreover, MsLs = L M, = 0 and p(Ls) < Kk(s).

2.3. Stable and mixing convergence of (v,) and (z - My,). In this subsection, we
consider the stable and mixing convergences of the sequences (vy,) and (z - My ,,) (z € S),
for products of i.i.d. non-negative matrices (M,). These types of convergence were first
introduced by Rényi [64]. We refer to [2] for a nice presentation, and to [24] for more details.

Definition 2.7. Let X,, be a sequence of random variables with values in a Polish space S,
defined on the same probability space (0, %, P). Let 4 be a sub-o-field of F. We say that
X, converges 9- stably to X (orits law), if X is an S-valued random variable defined on an

extension (Q Z, IP’) of the original space and if, for any bounded &4 -measurable real random
variable n and any bounded continuous function f:S — R,

Jim B (nf(Xn)) = E(nf(X)). (2.16)

The stable convergence is called &-mixing if the above convergence can be improved to the
asymptotic independence of X, and n, in the sense that

lim E (nf(Xn)) = E(mE(f(X)). (2.17)

In the case where 4 = F, we simply say that X, — X stably, or mixing stably, instead of
saying 4 -stably, or G-mixing stably, respectively.
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Remark 2.8. It is known, and it can be easily checked that, when X, are R%valued
random variables defined on (Q,.%#,P), the stable convergence of (X,) to X defined on
some extended space ((2, %ﬁ”), is equivalent to the following convergence of the joint law
under P: for any m > 1 and any R™-valued random variable 7 defined on (Q,.%,P),

(Xnsm) (X, (2.18)
and X,, — X mixing stably if and only if (2.18) holds and X and 7 are P-independent.

In fact, the implication (2.17) = (2.18) can be seen by considering the convergence of the
characteristic function of (X,,,n); the converse (2.8) = (2.17) can be seen by considering
the approximation of n by its truncating h.(n) at level ¢ > 0, where h.(n) = n if |n| < ¢,
he(n) = cif n > ¢, and he(n) = —c if n < —c¢, and the passage to the limit while ¢ — oo.

As a direct consequence of the equivalent form (2.18), we see that the stable convergence
has the stable property that if X,, — X stably, then (X,,n0) — (X,n0) stably, for any
m > 1 and R™-valued random variable 7y defined on (92, F,P), since we can apply (2.18)
with 7 replaced by (1o, n).

Under the initial probability P, as the sequence (My)kez is stationary and ergodic, the
sequences (uy,) and (vy,,) are also stationary. In particular all the u, have the same law, and
so do all the v,. From vg_q1 - M} = v, we see that the common law v of v, is u-stationary
in the sense that v % u = v, where

v p(B) = / 1p( - g)dv(x)dp(g), (2.19)

for each measurable set B C S.
For k < n, let py, be the spectral radius of My, ,,, and ug p, Vk,n € Ri be eigenvectors of
(M;m)T and M}, ,, with unit norm, that is,

Uk,nM]z:n = Pk,nUk,n, Uk,an,n = PknVkn, Huk,n” = Hvk,nH =1 (220)

The following result shows that each of the sequences (z - My,), (Vkn), (vn) converges
mixing stably, and so does their joint law. As usual we write v (¢) = [ ¢(y)v(dy).

Theorem 2.9. Assume condition A8. For any real valued continuous function ¢ on S and
any P-integrable R-valued random variable n defined on (Q, F,P), we have for each k € Z,

Jim E (e (x- Myn)) =Em)v(e), vVrels, (2.21)
Jim E (1 (vn)) = E (n) v (#) , (2.22)
Jim E (¢ (vi,n)) = E(n) v (#). (2.23)

In other words, each of the sequences (x - Myy), (Vkn) and (vy) converges mizing stably
to v. Moreover, we have the following convergences of joint laws: for each fixred k € Z, as
n — oo,

(@ Mgy Uy Vkn) = (Voos Voos Vo) miizing stably, (2.24)
(@ - My Uy Vkom, Uk ) = (Voos Voos Voo, k) Stably, (2.25)

where v is a S-valued random variable defined on some extended probability space (2, F,P)
of (Q, F,P), with law v, which is independent of uy.

By Remark 2.8, the conclusion of Theorem 2.9 is equivalent to the following: for any
m > 1 and any R™-valued .%-measurable random variable 7, we have the following weak
convergence of the joint laws: under P, Vz € S, as n — oo,

(- Mon,m) = v®Ly, (vn,n) >vL, and (von,n) = V& Ly, (2.26)
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where £,, denotes the law of 7. This implies Theorem 1.3 for the case s = 0.

Proof of Theorem 2.9. Step 1. We first establish (2.21) for any %,,,-measurable n with E|n| <
0o, for each fixed m € Z,m > k, where ¢4, = 0({&;,j < m}), as defined in (3.14). Since n
is ¥,,-measurable, by the Markov property, we have, for k < m < n,

E(ne(z - Myn)) = EME(p(z - Min)|[9m)) = EMmPy "¢z - Mim)), (2.27)
where Py was defined in (2.8) with s = 0, and P} denotes its k-fold iteration. Since
lim PYo(v) = lim Ep(v- Myg_1) — v(6),
k—o0 k—o0
from (2.27) and the dominated convergence theorem, we obtain
Jim E(ne(z - Myn)) = Env(e). (2.28)

So we have obtained (2.21) when 7 is ¢,,-measurable.
Step 2. We next prove (2.21) for any ¢-measurable n with E|n| < co, where

G = 0(Unez9m) = 0(&;,j € 7). (2.29)

We will use a monotone class argument. Let 4* = U,,ez%n. It is clear that ¢* is stable
under intersection (that is, ¢* is a m-system). Let C be the class of B € ¢ such that (2.21)
holds for n = 1. The result proved in Step 1 implies that ¥* C C. We check that C is a
monotone class:

a) Q € C because 2 € ¥* and ¥* C C;

b) if A, B € C with A C B, then by linearity B\ A € C since 1p\4 = 1p — 14 ;

c) if By, € C are increasing, then B := U}>_; B, € C, as shown in the following. We will
use the decomposition

Elpe(x - M) = Elp,,¢(x - My,) +E(1p — 1B,,)e(x - Myy),
and the fact that
|E(1p —1B,,)¢(z - My,)| <E(1s — 15,,)[l¢llc — 0 as m — oo,

where the last convergence holds by the monotone convergence theorem. Using the above
decomposition together with the inequality, taking lim sup as n — oo, and then passing to
the limit as m — oo, we get

lirrlllso%p Elpp(z - My ) < n%gnoo ligsolép Elp,, o(x - My,) = W%gnoo Elp, v(p) = Elgr(p),

where the first equality holds by the result proved in Step 1, and the second one from the
sequential continuity of the probability P. Similarly, we get

linrr_1>ioréfE13g0(x - My ) = Elgv(yp).

Therefore
nlggo Elpp(x - M) = Elgr(yp).

This shows that B € C.

Thus we have proved that C is a monotone class. Therefore, by the monotone class

theorem,

COMG)=0(9")=9,
where M(94*) denotes the monotone class generated by ¥*. Consequently, C = 4. This
means that (2.21) holds for n = 1p for each B € ¢.

Then, by linearity, (2.21) holds for each ¢-measurable and positive simple function 7
(which is a linear combination of indicator functions of sets in ¢, with positive coefficients).
By a similar argument as in c¢) above, we then conclude that (2.21) holds for each ¥-
measurable, positive and integrable function 7, as such a function is the limit of an increasing
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sequence of ¥-measurable, positive and simple functions 7, (in fact we just need to replace
1p and 1p,, by n and n,,, respectively). Again by linearity, this implies that (2.21) holds
for each ¢-measurable real-valued random variable n with E|n| < oo, since n = gy — 7,
where 14 and n— denote the positive and negative parts of 7.

Step 3. We then prove (2.21) for any .#-measurable n with E|n| < co. To this end we
just need to apply the result proved in Step 2 to 71 = E(n|¥), and make use of the fact
that Mj, ,, is &-measurable. Indeed, we have:

Jim E (g (2 - Mg,n)) = lim E(E(9|9)e (z - M)
—EEWI9)) v (9) =E@n)v(p). (2.30)
Step 4. We now prove (2.22) and (2.23) about the mixing convergence of (vy,) and (vg ).
To this end, consider the modulus of continuity of ¢ defined by

my(e) = sup lo(y) — ()], €>0.
z,y€S, |ly—z||<e

Then lim,_gmy(e) = 0 and, for any a,b € S,

|o(b) = w(a)| < mg([[b - al]).
Since ||z - My, — vyp|| — 0 a.s., by the dominated convergence theorem, we have

[Elne(z - Min)] — Elne(on)ll < Ellnlme((lz - Myn — val))] = 0.

Therefore (2.21) implies (2.22). Similary, since ||vg, — vn|| = 0 a.s., (2.22) implies (2.23).

Step 5. We prove (2.24) for the mixing stable convergence of (x - My, , Uy, V). To this
end, by Remark 2.8, we just need to prove that, for any x € S, m > 1 and any R"-valued
% -measurable random variable 7,

(- My, Un, Vkm, 1) dg) (Voo, Voo, Uso, 1),  Where v and 7 are I?’—independent. (2.31)

This convergence can be easily seen by considering the characteristic function of (x -
Mp nyVny Vg m,m). In fact, for any (t1,t2,t3,t4) € R? x R? x R? x R™, we have, by the
dominated convergence theorem, as n — oo,

’Eei<tl7I‘Mk,n>ei<t27vn>ei<t3avk,n>ei<t4777> _ Eel’(hwn)ei<t2,vn>ei<t3,vk,n>ei(t4,77>‘
< E|<t1,l’ . M07n> — <t1,vn>| < ||t1||EH.T . M[)’n — UnH — 0. (232)
Similarly,

|]Eei<t1/vn>ei<t2yvn>€i<t3,vk,n>ei(t4m> _ Ee’i<t17vn)ei<t27vn)ei<t3avn)ei<t4m>‘ 0. (2.33)

By the mixing convergence of (v,), we have

Eei(tl ,’Un> ei(tQ,’Un> e’i<t37vn> ei<t4777> — E€i<t1 7v00>e7:<t27v<>0> ei<t3’U°°>Eei<t4’n> . (234)

From (2.32), (2.33) and (2.34), we obtain

Eei<t1ka,n)ei<t27”n>ei<t3v”kv">ei<t4’n> N Eei<t17U00>€i<t271}°°>ei<t3’v°°>Eei<t4’n> . (235)

This gives (2.31), and thus ends the proof of (2.24).

Step 6. We finally prove (2.25) for the stable convergence of (x - My, 5., Un, Vk s Uk,n). To
this end, we just need to remark that uy, — uj a.s., ui is independent of v, and use the
following stable property of the stable convergence: if X,, are R¥'-valued random variables
defined on some probability space (€2,.%,P), which converge stably to X defined on some
extended probability space on some extended probability space (Q, ﬁ, IAPi’) of (2, #,P), and
Y;,,Y are R*2-valued random variables defined on (£2,.%, P) such that Y;, — Y in probability,
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then (X,,Y,) — (X,Y) stably. (This property can easily be checked by considering the
convergence of the joint law of (X,,, Y,,n), and by using Levy’s theorem, as we did above.)
O

3. PRODUCTS OF POSITIVE RANDOM MATRICES UNDER THE CHANGED MEASURE

In this section we give some properties of the products of i.i.d. random positive matrices
under the changed measure. Recall that, as in the previous section, without loss of generality
and motivated by applications in the branching process setting, such a sequence is written
as My, = M(&,),n € Z, where M : x — M(x) is a measurable mapping defined on (E, )
with values in G, £ = (&,)nez is an ii.d. sequence of random variables defined on some
probability space (€2,.#,P) with values in the measurable space (E,E). Recall also that
G = 0(&ky k < n), for n € Z.

3.1. Change of measure. The Cramér type change of measure will play an important
role. Let s € I/j' UI, and v € S. Set for n > 0 and any matrix g,

s _ llvgl*rs(v-9)
Qn(vvg) - K(S)n T‘S(U) ’ (31)

so that for n > 0,
[oMop—1* 7s(v - Moyn—1)
K(s)" rs(v)

Notice that ¢j = 1, since by notation My 1 stands for the identity matrix ;.

@ = qn (v, Mon—1) = (3.2)

Lemma 3.1. Under P, the sequence {q; (v, Mon—1),%n—1}n>0 i a martingale with mean
1, where 91 = 0(&, bk <n—1).

Proof. Actually, the mean 1 property that [ ¢S (v, My... M,_1)dP =1V¥n > 1 comes from
the fact that Psrs = k(s)rs. We just need to prove that

E(q;+1(v, M() e Mn)|gn71) = qiL(’U, MO PN Mnfl) vn > 0. (33)

For n = 0, Eq. (3.3) holds since, by the independence between My and ¢_; and the fact
that Psrs = k(s)rs, we have

E(qi (v, Mo)|9-1) = E(q7 (v, Mo) = 1 = g5(v, 1a)- (3.4)

For n > 1, (3.3) follows from (3.4) and the fact that, for any n > 1,
a1 (v, My... My) = qp(v, Mo ... Myp_1)qi(v-My ... My_1, My,). (3.5)
O

From Lemma 3.1 and the Kolmogorov extension theorem, there is a unique probability
measure QY on ¢ := 0(Upez%,) = o(§), such that for any n > —1,

Qls, = g (v, Mo ... My) Plg, , (3.6)

where P|g, denotes the restriction of the measure P to %,,. In other words, for any non-
negative ¥,-measurable random variable Y, we have

Egy (V) = |} (v, Mo . Ma)Y . (3.7)



18 ION GRAMA, QUANSHENG LIU, AND THI TRANG NGUYEN

Denote by Eqgv the corresponding expectation. The following information about the Lya-
punov exponent under the changed measure QY will be used. For any s € I J Ul,,ves
and z € R with s +- 2z € I} U I, it is easy to prove that

. o AL K(s+2)
Jim (Eqy[|Mo - - Mn—1[[) < ol (3.8)
if condition A1 holds, then by using the result of [75, Lemma 2.4] we have
L L K(s+2)
rs(2) == lim (Bqy[|Mo - - - Mp||*) = o) (3.9)

The sequence (£ )x>0 is no longer stationary, nor independent, under the new measure QY.
In the following lemma we give some elementary properties of QY. For other concerned
properties, see Lemma 4.3.

Lemma 3.2. Let s € Ilf UI, andv €S. The following properties hold under Q-

(1) the sequence {& : k < —1} is iid, and has the same law as under P;

(2) the two families of random variables {& : k < —1} and {& : k > 0} are independent;

(8) the process (v-Mopn—1)n>0 is a Markov chain with the transfer operator Qs given by
(2.12): for any n > 0 and any non-negative and measurable function ¢ on S,

Eqy (p(v-Mon)|%n-1) = (Qs®)(v - Mon-1)- (3.10)
Moreover, for any n > 0,
Qi o(v) = Eqy (p(v-Mon)) - (3.11)

Proof. The proof is straightforward. Indeed, Part 1 comes from the fact that ¢§ = 1 so that
the law of (§x)r<—1 is not changed under the new measure. Using Part 1, we can easily
check Part 2. The check of (3.10) of Part 3 is also easy. Let us just prove (3.11) using
(3.10). In fact, taking the conditional expectation at both sides of (3.10) given %,,_2, we
obtain for n > 1,

Eqy (p(v-Mon)|[%n—2) = (Q3¢) (v - Mop—2). (3.12)
Continue in this way, we obtain, for all k > 1 and n > k — 1,

Eqy (o(v-Mon)|%n—k) = Q) (v - Mo pnr)- (3.13)
Applying this with £ = n + 1, we get the iteration formula (3.11) for Q. O

3.2. Perron-Frobenius theorem under the changed measure. In this section, we will
prove a Perron-Frobenius type theorem for products of i.i.d. random positive matrices (M,,),
under the changed measure. It shows that the all the conclusions of the Perron-Frobenius
type theorem established in [37] and [30] under the initial probability PP still hold under the
changed measure QY, except the stationarity and ergodicity for the sequences (ug), (vi),

(Ak) and ().
We need the following o-algebras: for any k € Z,

As usual, for sequences of real numbers a,,b,, we write a, ~ b, if a,/b, — 1; for
an(9),bn(0) € R depending on some parameter 6 € A, we say that, as n — oo,

lim su ‘an(é)
"_>005€Ap by (6)

an(0) ~ b,(0) uniformly for § € A if —1]=0. (3.15)
Clearly, this relation ~ with uniformity is an equivalent relation; in particular, if a,(§) ~
b () and b, (0) ~ ¢, (9), both uniformly for § € A, then a, () ~ ¢, (), also uniformly for
0 €A



MULTI-TYPE BRANCHING PROCESS IN RANDOM ENVIRONMENT 19

Theorem 3.3 (Perron-Frobenius type theorem). Assume condition A3. Let s € I ;[ Ul,

and v € S. Let py,, be the spectral radius of My, ,, and ugy, Vg, € Ri be the eigenvectors
defined in (2.20). Then:

(1) There are sequences (uk)gez and (vi)kez such that for all k, uy > 0, vy > 0,
llur|l = ||kl = 1, and that for each fized k € Z as n — oo, and for each fixed n € Z
as k — —oo, Q7-a.s.

Ugp — U — 0  and v, — v, — 0.
Moreover, for all k € Z, with A\, = |Jugs1 ML || and pg = ||vg—1 My, Q-a.s.
uk+1Mg = )\kuk and kale = UEVE- (316)

(2) For each fixed k € Z as n — oo, and for each fized n € Z as k — —oo, uniformly
forx,y € R‘i \ {0}, Q¥-a.s.

<-TMI<:,n, y) ~ Qk.n <uk,n; .1'> <Uk,n7 y> (317)
~ ak,n(“k)$><vn>y>7 (318)
where (ay.r) is any of the following equivalent sequences:
Pkn
a) agp = ——"—, b)apn=|Mpn|11,
) 1 <uk,n7 Uk,n> ) n ” TLH
n n
L L\
&) app = =R j=r 2y (3.19)

<uk)vk—1> <un+1pvn>

Lemma 3.4. Assume A8 and s € I;f UlI,. For each fized k € Z as n — oo, and for
each fixed n € Z as k — —oo, the contraction coefficient of the sequence (M n—1) satisfies

QY-a.s.,
log ¢(Mj n—1)

lim sup < K € [—00,0), (3.20)
n—00 n—=k
1 My e
lim sup 08 Men-1) po 1), (3.21)
k——o0 n—k

where K1, Ko are constants (which may be —oc). In particular, for each a € (ef1,1), as
n — oo,

¢«(Mon—1) =o0(a") Qf-a.s.
Proof. We fix k € Z, and set X; = logc¢(M;). Let ¢ > 0 be a constant. Define X{ = X if
Xi > —cand X{ = —cif X; < —c. That is, X{ = max(X;, —c). Let
Skn-1= Z Xi, forn>k. (3.22)

We have the following martingale decomposition: for n > k,

n—1 n—1
Stn1= D (X —Equ(X{|%-1)) + > Eou(X{|%1). (3.23)
i=k i=k

y [79, Corollary 2, p.385] we can prove that

— Eqv(X{|%-1)) =3 0, Ql-ass. (3.24)

S
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We next consider —; S Ege (X§|%i—1). For any A € %_1, we have
By (X 14) = B( g1 (0 Moo) X5 14)
= E(Qf(v, Mo i—1)qi(v- Mo;—1, M;) X§ ]1A>
= E[Qf(vaMO,i—l)E(Qf(U - Moi—1, M) X5 14 | %‘-1)}

]lAE (qi(v . M(M',l, Ml)XZC | %1>:| . (325)
This implies that
Eqy (Xj | %-1) = E(Qf(v - Moi—1, M) X5 | %‘1)
= qi(v- Mo,i-1), (3.26)
where ¢} is the function on S defined by
¢ (x) = E(q{(z, My)Xj), VYzreS.
We see that

Gi(z) = E(qi (2, Mo) X¢)
[l Mol rs(x - Mo)

r(s)  rs(x)

-E| X§| < CLE(|lxMo|1*X5), (3.27)
where C; is a constant.
Remark that ¢«(My) = infes||zMp|| > 0. It follows from (3.26) and (3.27) that for any
E<i<n—1, Qf-as.,

CsE(e(My)° X§ 0 ifs>0,
A O (3.28)
° CsE(|| Mo|*X§) <0 if s <O0.
This implies that for all £k € Z and n > k,
1 n—1
— 2% Eqy (X{|%9-1) < K1 < 0 Q¥-as. (3.29)

Combining (3.23), (3.24) and (3.29), we get that for any fixed k € Z,

Skn—
lim sup Lkl < Ky, Qp-as.

n—oo T —
Since X; < XY, this implies that,

n—1 y .

L x
lim sup ﬁ < K;, QUas.
n—oo -

Recall that X; = log¢(M;) and that ¢(Mp,,—1) < [T ¢(M;). Therefore

log ¢( My, X,
lim sup 208 AP k1) (Min 1) < lim sup L=k “7%

< Kq, QY-as..
n—oo n—=k n—00 n—=k h ’ s

This proves (3.20). For fixed n € Z as k — —oo, we use an analogous argument as above
to get (3.21). O
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Proof of Theorem 3.3. 1. Recall that by Lemma 3.4, under condition A3, for any fixed
k € Z as n — oo, or for any fixed n € Z as k — —oo, it holds,

¢(Mp.) = «(Mgn)') =0 QUas. (3.30)

Consider the event

0 = {nlgrolo (Mgn)') =0, lim o((Mgn)?") = 0},

k——o00

whose probability is 1 under the new measure: QY(€2;) = 1. Note also that, on the event
Oy, for any k < n in Z, uniformly in y,y’ € S,

Sy (M) — 3 (M) < dly - (Mico)” ' - (Mi)T)
< o((Mgn)T). (3.31)
(My)t = {z - (My,)" : € S}. From

)

For any k < n in Z, introduce the set Cj,, = S -
the contraction property (2.2) it follows that

S-MI,,CS. (3.32)

Then applying (Mkn)T to both sides of (3.32) we get that Cy 1 C Ck . Moreover, the sets
Ck.n are compact. Let Cp = N%_, Ckm # 0. Since limy, o0 ¢((My.,)T) = 0, the diameter
of Ck in the norm || - || is equal to 0. It follows from (3.31) that QY-a.s., the set Cj is a
singleton, i.e. C} consists of one single point, which we denote by wuy.

Since uy, € Cf, C Cp, there exists y' € S such that

up =y - (Myn)". (3.33)
Therefore, by (3.30) and (3.31), we have that, for any k < n in Z, for any y € S,
d(y - (M) ur) = d(y - (M) "y (Min)™) < (M) "), (3.34)
Taking the limit as n — oo we obtain that, for any fixed k € Z, uniformly in y € S,
lim y- (My,)" =up Ql-as., (3.35)

n—o0

which implies that uy, is ¥*-measurable. We note that

up = nlgrgoy (MMt ... M)t = (nlgrgoy (Mis1n)T) - M = upyq - MY

Therefore, for all k € Z, with A\, = ||ug1 MI||, QV-a.s., we have w1 M = A\guy. Using
the uniform convergence of (3.34), choosing y = uy , in it, we see that, for any k € Z,
: _ v
Jim d(upn,ur) =0 Qf-a.s. (3.36)

This implies that for each fixed k € Z as n — oo,
Ukn — Uk — 0.

We use the same argument as above to prove the existence of the sequence (vg)gez such
that for all k, vy, > 0, ||vg|| = 1, and that for each fixed k € Z as n — oo,

Vg — Up — 0.
2. For any fixed k € Z as n — oo, we use the following result in [30],

AM. N
hm Sup <y ( k,n) Y x)
n—=00 ;e s (ug, x)

—1l=0 (3.37)
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and notice that

_ <y(Mk,n)T7x> _ <ka,nay>
ly(Mi)l - (UM, y)

Therefore, we get uniformly for =,y € Ri \ {0}, Qt-a.s.,

(ka,na y)
<]1Mk,n7 y> <uk7 x>

Substituting = vy ,, into (3.38), we get uniformly for y € R% \ {0}, Q¥-a.s.,

<y . (Mk,n)Ta $>

—1, asn — 0. (3.38)

Pk.n <vk,n7 y)
(I My, y) (uk, Vi)

Substituting y = uy,, into (3.38), we get uniformly for z € R% \ {0}, Q¥-a.s.,

— 1, asn — oo. (3.39)

pk,n<uk,n7x> — <uk’"’m> — 1, asn— o0 (3.40)

(LM ug o) (g, ©)  (ug, x)
Multiplying (3.39) with (3.40), we obtain uniformly for z,y € R% \ {0}, Q%-a.s.,

Pk,n <uk,n7 .’13) <Uk,n7 y>
(ks V) (L M, y) (U, )

Dividing (3.38) by (3.41), it gives uniformly for z,y € R% \ {0}, Q%-a.s.,
<5UMk,n7 y>

<uk,n)m> <Uk,n)y>
Pln™ Cugevk,n)

—1, asn— oo. (3.41)

—1, asn— oo. (3.42)

Taking © = vy, in (3.40) implies (uk, Vgn) ~ (Ukn, Vkn) as n — 00. Therefore, the above

convergence implies, uniformly for z,y € RZ \ {0}, Q?-as.,

(uk,n7 «T> <Uk:,n7 y>
(Uk, Vi)

(xMp 0, y) ~ P , asm — oo. (3.43)

We now prove that, uniformly for z,y € Ri \ {0}, Qt-a.s., as n — oo,
(@M, y) ~ ([ Ml ur, ) (on, y).- (3.44)
Indeed, taking x = v,_1 in gives, uniformly for =,y € Ri \ {0}, Q?-a.s.,

(Vs Y)Wk - - - i
<uka Uk‘—1> <]1Mk77’b7 y>

Dividing (3.38) by (3.45), we get, uniformly for z,y € R% \ {0}, QV-a.s.,

— 1, asn— oc. (3.45)

<ka,na y> <Uk, vk—l>
(U, ) (Un, Y) M- - - Py
Let x = y = 1 into (3.46), we obtain, Q?-a.s.,

—1, asn— oo. (3.46)

(Up, VE—1)

[ Mg ll1
HE

— 1, asn— oo. (3.47)

n

Combining (3.46) and (3.47), we get (3.44).
For any fixed n € Z as k — —o0, the proof is completely similar as above. This concludes
the proof of the theorem. O

Remark 3.5. The following results will be useful.



MULTI-TYPE BRANCHING PROCESS IN RANDOM ENVIRONMENT 23

(1) Assume condition A3 and s € I} UI, . Then for any fixed k € Z as n — oo, and
for any fixed n € Z as k — —o0,
supd(y - (Myn)"ug) =0 and  supd(y - My, v,) — 0, QU-as. (3.48)
yeS yeS
The first result follows from (3.34) and (3.30). The second can be proved similarly.
(2) For k,n € Z with k < n, the following assertion holds Q?-a.s.:

n n
un+1M,€n = ( H /\j)uk and vy 1 My, = < H ,uj>vn. (3.49)
=k =k

3.3. Stable and mixing convergence under the changed measure. Recall that the
sequences (vn)n>0 and (My)n>o are stationary under the measure P, but non-stationary
under the measure QY when d > 1. However, under QY, we still have the mixing stable
convergence of (v, )n>0 and (x - M,,)n>0, as in the case under P (see Theorem 2.9).

We begin with the usual convergence in law under QY.

Lemma 3.6. Assume A4 andlets € 1, UI:[, v € S. Assume also condition A3 when s > 0,
and A1 when s < 0. Then under QY, for each x € S and k € Z, all the three sequences
(x-My ), (vn) and (vgy), converge in law to ms, the unique Qs-invariant probability measure
given by (2.15).

Proof. The lemma is a consequence of Lemma 3.2(3) and Lemma 2.4. In fact, by Lemma
2.4 and (3.11), we see that

v- My, — ms inlaw under Q.
From (3.48), we know that v - My, — v, — 0 QY-a.s. So it follows that
v, — ms in law under  Qj.
Again from (3.48), we know that for any z € S and k € Z,
- -Myy—v,—=0 and vp,—v, =0 Qj-as.
So the convergence in law of (v,,) to 7y under QY implies also that of (x-Mj, ) and (vg,). O

Theorem 3.7. Assume A4 and let s € I,/ U Ij, v € S. Assume also condition A3 when
s >0, and A1 when s < 0. Then under QY, for each x € S and k € Z, as n — oo, all
the three sequences (x - My ), (vn) and (vg,), converge mizing stably to ms: that is, for
any real valued continuous function ¢ on S and any R-valued random variable n such that

Eqy (In|) < oo, it holds that for any k € Z,

Jim Eqy (ng (7 Min)) = Eqy (n)7s (9) Vo €S, (3.50)
lim Egy (n¢ (vn)) = Eqgy (1) 7s ()., (3.51)
lim Egy (n¢ (vk,n)) = Eqgy (n) 7s ()., (3.52)

where my is the unique Qs-invariant measure given by (2.15). Moreover, we have the fol-
lowing convergences of the joint laws: under QY, for each fized k € Z, as n — oo,

(2 - My, Uny Vo) — T mizing stably, (3.53)
(- My, Un, Uk, Uk n) — w? ® ui  stably, (3.54)

where w5 denotes the law image of T under the mapping x + (x,z,x) from S to S3, and
ui the law of uy, under QY.

By Remark 2.8, this theorem implies Theorem 1.3.
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Proof of Theorem 3.7. Step 1: proof of (3.50) with £ = 0 and z = v: that is,
nh_)lgo EQ;’ (ne (v MO,n)) = EQS () ms () (3.55)

for any R-valued random variable 7 with Eqq|n| < oco.

a) We first prove (3.55) for any %,,,-measurable 1 with Eqv|n| < oo, for each fixed m € Z,
where ¢, = 0({§;,j < m}), as defined in (3.14). Let n > m. Since 7 is ¥,,-measurable, by
the Markov property (3.13), we have,

Eqgy (0 (v Mon)) = Eqy (1Eqy (¢ (v Mon) [9m))

=Eqy Q5 " p(v - Mom)) - (3.56)
By Lemma 2.4 we know that for any x € S,
lim Qfp(z) = m4(). (3.57)
k—o0

Therefore from (3.56) and the dominated convergence theorem, we get (3.55), for any %,-
measurable 7 with Eqgy|n| < co.

b) Then, with the monotone class argument as in Step 2 of the proof of Theorem 2.9,
we can prove that (3.55) holds for any %-measurable 7 with Egy|n| < co. Finally, as we
did in Step 3 of the proof of Theorem 2.9), by conditioning on ¥, we get (3.55) for any
Z-measurable n with Egy|n| < oo.

Step 2: proof of the mixing convergence of (vy,), (z - Mj,) and (vg,). From (3.55) and
the fact that v - My, — v, — 0 QY-a.s., by the same argument as we used in Step 4 of the
proof of Theorem 2.9, we get (3.51) about the mixing stable convergence of (vy,). Similarly,
using this convergence, and the fact that

z - My —v, —0and vp,, —v, =0 Qf-as.,

we get (3.50) and (3.52), about the mixing stable convergence of (x - My, ) and (v ).
Step 3: proof of the convergence of the joint laws. By the same argument as in Steps 5
and 6 of the proof of Theorem 2.9, the mixing stable convergence to 75 of the three sequences
(x - M), (vp) and (vg,), and the a.s. convergence of uy, to uy, enable us to conclude
the mixing stable convergence of (x - My, Un, Vk,n) to 73, the law image of 7s under the
mapping z — (z,7, ) from S to 83, and the stable convergence of (z - My, U, Vkom> Uk
to 7 ® pg, where pf is the law of uy under QY.
O

3.4. Moments for products of random matrices. In this subsection, as applications

of the convergence of v - My, —1 under the new measure Qf, we give the exact equivalence

of the moments of the vector norm ||[vMp,—1]|, the matrix norm |[Mpy,—1|1,1, and, more

generally the scalar product (zMj,—1,y). Recall that 7, is the limit law of v,, under Q¥.
To warm up, we first consider the case for the vector norm ||zMp,—1]|.

Theorem 3.8. Assume A4 and let s € I, U IJ’. Assume also condition A3 when s > 0,
and A1 when s < 0. Then, for any x € S, we have

E||zMon1]* 1
tim Mo |l® oy / s (du). (3.58)

neo KM(s) s 7s(u)

Proof. By the definition of Q%, we have

EllaMon—1]° _ rs(z)
ﬁ”(s) o EQ? <7‘S<m . MO n—1)>' (359)

)
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Since x - Mo ,—1 converges in law to mg under Q¥ (cf. Lemma 3.6), it follows that

ElleMgyn-1]l®
lim ||SU 0,n 1|| :TS(.’L')/

e (s) s +(u)

ms(du).

We next consider the more general case, i.e., for the scalar product (xMon—1,).

Theorem 3.9. Assume A4 and let s € I, U I:[. Assume also condition A3 when s > 0,
and A1 when s < 0. Then for any x,y € S, we have

E{xMopn—1,y)° Y)°
i E&Mon-1,9)° ::rs(x)J/ (wy) ), (3.60)
n—00 K"(s) s rs(u)
In particular,
E||Mon-1ll3 1
ti S Mon-illia_ / ro(du). (3.61)
n=oo  KM(s) s s(u)

Proof. We have

E(xMon—1,y)° _r leMo p—1|* (xMon—1,y)°

K" (s) K7(s)  [leMop-1ll®

(xMop—1,9)* rs(x)
S e Mo |F re(e Mon—1)

(3.62)

Notice that, by the Perron-Frobenius type theorem (Theorem 3.3), we know that Q%-a.s.

(xMopn-1,9)

Mol ~ (Up-1,Y), asn — oo.
V=

Since [(vn—1,y)| < 1, it follows that Q%-a.s.

<xM0,7L717 y)

m—@n,l,w—)& as n — 0.
sN—=

So by the dominated convergence theorem, we get that

(xMop-1,y)* rs(x)
Ege | [ 220n=LY) oy ) T8 1 0 asn— oo 3.63
o K edMenl Y ) S Moy (3.63)

Combining this with (3.62), we obtain

. . 1: S T‘S(I')
A K™(S) = i, B <<Un_1’ v) rs(T - Mo,n—1)>

- nh—%O EQ? [<U”_1’ y>87"5($) (7’5(1' . ]340 n—l) - 7’5(”1—1))]

+ nh—golo EQ? [<Un—lv y>s7:<i)(:i)1)‘| ) (3.64)
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provided that the last two limits exist. Their existence will be established below. Using
Lemma 2.2 with § = min{1, |s|} and (3.48), we have, by the dominated convergence theorem,

< CSEQQS” (’Ts(x : MO,n—l) - Ts(vn—l)‘)

< cBoellz - Mon—1 — vp—1]|® =0, asn— oo, (3.65)

1 1

Ts(x : MO,n—l) Ts(vn—l)

EQ? [<vn—1a y>srs (x)

where the constant ¢; may change from one line to another.
Combining (3.64) and (3.65) and applying Theorem 3.7, we deduce that

E(xMon-1,y)° .. n—1,Y)°

lim —<ZC 0n-1,Y) = lim Ege T‘s(x)i@} 1Y)

n— 00 5”(5) n—o00 s Ts(vnfl)

(u,9)°

=rs(x s(du). 3.66
(@) [, () (3.66)
This gives (3.60). Applying (3.60) to x = y = %, and remarking that 7‘5(%) = d* (by
(2.9)), we get (3.61). So the theorem is proved. O

The following theorem provides the precise equivalence for the moment of the spectral
radius pg p—1.

Theorem 3.10. Assume A4 and let s € I, U Ij. Assume also condition A8 when s > 0,
and A1 when s < 0. Then

g 0[O a0), (3.67)

n—00 /{”(3) 2 7”3(1}

where py denotes the law of ug under Q;l/d.

Proof. For any = € S, by the definition of the changed measure Q?, we have

M — E|:||xM07n—1||S ’I“s(ﬂf ) MO,n—l) (Po,n_l)s Ts(g(;) :|
H"(S) [{n(s) T's(x) ||;1;M07n_1||s 7”5(33 . MO,n—l)
(pO n—l)s 7’5(1‘)
=Bor | : 3.68
“ [HxMovn—ﬂls rs(z - Mo,n_l)} (3.68)

By part 2 of Theorem 3.3, we have the following equivalence, as n — oo,

pon-1  [[Mon-1ll11(u0n-1,%n-1) _ (to;n-1,%m-1) (3.69)
|z Mo n—1]| | Mo,n—1||1,1{uo, ) (uo, )
Notice that pg -1 = ||von—1Mon—1||, so that Hﬂfljj&oﬁ lies between two constants thanks to

the Furstenberg-Kesten condition A1l. Therefore, by the dominated convergence theorem,
we get that

Pon—1 \¢  ({Uon—1,V0n—1)\* rs(x)
Ege || ————) — ’ : — 0, asn— oo. 3.70
. l (i) ~ s 3, (3:70)
From (3.68) and (3.68), it follows that
. E(pon-1)* . (U0,n—1, V0,n—1)\ % rs(x)
1 —— 7 =] Ege . . 71
n1—>nolo I{,"(S) n1—>H<}o Q3 ( <UO, .T> ) Ts (:L‘ . MO,nfl) ’ (3 7 )

provided that the second limit exists. Moreover we know that Q¥-a.s.,

(uo,n—1 — von—1) — (uo,vp—1) = 0, asn — oo.
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Using again the dominated convergence theorem, together with the mixing convergence of
(x - Mon—1,vn—1) (see Theorem 3.7), it follows that

lim EPon-DT l<uo,vn1>s ro(z) ]
n—00 /{n(s) n—00 <UO7$>5 ’I"S(l‘ K MO,nfl)
~ (U0, Voo)® .
= r(7)Eqs [M} =: Cj, (3.72)

where vy, is a S-valued random variable defined on some extended probability space (@, i @§ )
of (Q,.7,Q%), which is independent of ug and has law 7, under Qf. It is interesting to
notice that the constant Cs does not depend on the choice of z. Choosing = = %, we get

[ (ww)®
C, = 2 ra(0) po(du)ms(dv),
where 5 denotes the law of up under Qg/ d. O

4. THE BRANCHING PROCESS UNDER THE CHANGED MEASURE Q¢

Let (Z%) be the d-type branching process in an i.i.d. random environment ¢ as introduced
in the introduction, defined on some probability space (2,.#,P), but, for convenience, just
as in Section 2, we consider the double sided environment sequence £ = (& : k € Z) instead
of the one sided environment sequence initially introduced. Accordingly, we can define the
annealed law P as in (1.7) and (1.8), but with N therein replaced by Z.

In this section, we will establish asymptotic properties of the branching process Z,, un-
der the changed measure, about the LP-convergence of the fundamental martingale (W}),
the normalized j-type population size Z! (j)/E¢Z.(j), the normalized total population size
| Z5 || /E¢|| Z%|, and the convergence of the direction Z7 /|| Z%||.

4.1. The environment sequence (&,) under the changed measure. Notice that in

the setting of the branching process the change of measure formula (3.7) can be written as
follows: for any n > 0 and ¥,-measurable random variable Y,

Bo(V) = [ ([ Y€ to. MonEeln)) 7(d)

= /EZ [/Y(&y)ﬂ”&(dy)
:/EZ/Y(f,y)Pg(dy)Tf(df)v

where 7¢ is the probability measure on (E%, £9%) such that for all n > 0,

Gn+1(0; Mo, )7 (dE)

7 la, = @1 (v, Mop)Tly,, where 9, =0(& k€ Z,k<n).

Inspired by this, we can extend the measure QY on (£2,0()) defined from (3.7) to a proba-
bility measure on (£2,.%#) defined in the same way as in (1.7) and (1.8):

Qi (d€, dy) = Pe(dy)7 (dS), (4.1)

which means that for any positive and .%-measurable function f defined the product space
O =EN x A,

Lo seniasdn = [ [ [ 1€ upeay]e@o. (42)
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Notice that given the environment &, the conditional probability under QY coincides with
that under P:

Q:(-€) =P(:[§) = Py, (4.3)
a.s., with respect to both Q) and IP. Consider the natural filtration:

Fn=0(,N;,0<j<nl1<r<dl>1), nelk, (4.4)
Fp=0(&,N[;,0<j<n,1<r<d,l>1), nel,

with the convention that %, = ¢(§) and %), = 0(§;,7 < n) if n < 0. Then
4,1 C F, CFy Ynel.

It can be easily checked that the restriction of QY to .%#) has the density ¢ (v, Mo n—1) with
respect to that of IP:

Qilz, = an(v, Mopn—1)P|z, (4.6)

In fact we can also define the new measure QY starting from this formula. Notice that (4.6)
implies (3.7).

The formula (4.1) shows that under the changed measure QV, the process (Zy)n>0 is
still a branching process in random environment &£, but with the law of £ changed to be
7Y (compare (4.1) with (1.7)). However, the environment sequence (&) is no longer i.i.d.,
and even not stationary, under the new measure QY, for d > 1. So the usual theory for a
branching process in a stationary and ergodic environment does not apply under QY. This
is one of the remarkable difficulties compared with the single type case d = 1. Nevertheless,
we will prove that, under the new measure the branching process (Z,),>o still behave like
a usual branching process in an i.i.d. environment. This is mainly due to the fact that the
products of the mean matrices have similar properties under the new measure, as shown in
Section 3, and the sub-iid property established in Lemma below.

We give some properties on the products of random matrices My, 4 = My, -+ My
under the Furstenberg-Kesten condition A1l under the changed measure QY.

Lemma 4.1. Assume condition A1, and let s € I:[ U1, . Then:
(1) Foralln> 1,k >0 and 1 <1i,j,r <d, Ql-a.s.,

l < Mn,n—&-k’(z.a]) <D and i < Mn,n-l—k(zaj.) < D; (4 7)
D = My ik (isr) D = My pyr(r,j)
1
EHMn,nJrkH S UM ptk) < || Minkl]- (4.8)
(2) Foralln >0 and1<i,j<d, Q!-a.s.,
1
un (1) < Dun(j) and D < up(i) < 1 (4.9)

(8) Foralln>1,k>0and1<i,j7 <d, Q-a.s.,

1 < Mn,n—i—k(i’j)un-‘r.k-ﬂ(j) < 1. (4.10)
dD? )\n,n-i-kun(?’)

Under P (when s = 0), the a.s. assertions (4.7) and (4.9) have been proved in [30, Lemma
3.6]; together with (3.49), they imply (4.10). Also, (4.7) implies (4.8) (just as (1.17) implies
(1.18)). The results under QY follow from those under P, by the definition of Q.
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Remark 4.2. The following consequence of (4.8) will be used several times: under the
conditions of Lemma 4.1, we have, Q?-a.s., for any k,n € Z with k < n, and z,y € S,

1
D IMinll < lzMinll < [Minll, leMinll < DliyMinll, (4.11)

and the inequalities remain valid when M}, ,, is replaced by its transpose M, kT n-
We need the following lemma. Denote
Gtk =0(&,n<j<n+k)forn k>0, and 4, oc =0(&,7 =2n) =9".
It is known that 0 < mingesrs(x) < maxzesrs(z) < co. Let Ry € (0,00) be defined as

maxges 1's(7)

minges rs (l’) ’

R = (4.12)

so that
Ts(x) < Rsrs(y) Vl‘,y €S.

Recall that under the new measure QY, the sequence (£)r>0 is no longer stationary, nor
independent. However, the sequence is sub-iid in some sense, as shown in the following
lemma.

Lemma 4.3 (Sub-iid property of (&,)n>0 under QY). Assume A1. Let s € I UL, and
set Cs = D|5|R§. Then the following assertions hold:

(1) The sequence {§ : k > 0} is sub-independent in the sense that for all integers
n,i1,- - .4, = 1, and all measurable functions f; : E' — [0,00], 1 < j < n, we

have, with Cg := D‘S‘RE,

n n
Cs_(n_l) H Engj(‘SO: T a{ij—l) < EQg H fj(§i1+"'+ij_17 t 7£i1+'~~+ij—1+ij—1)
j=1 j=1

<l [T Eq:filéo-- & —1), (4.13)
j=1

n n
05—2(n—1) H EQEfj(§i1+m+ij_1v T 7’5i1+~~~+ij—1) < EQ”; H fj(§i1+"'+ij—17 T a§i1+-~~+ij—1)
Jj=1 Jj=1

n
<O T Bau fiGinrtiyas s Eirtotig—1);
j=1

(4.14)

where by convention iy 4 ---+ij_1 =0 if j = 1.
(2) The sequence {& : k > 0} is sub-stationary in the sense that for all n,k > 1, and
all measurable functions f : E™ — [0, 00],

C.;lE@gf(fO’ o 7571—1) < Eng(glﬁ o 7§k+n71) g CSEng(§07 o 7571—1)‘ (415)

(8) For eachn > 1 and each measurable and positive function f defined on E™, we have

CgZ Eng(é.Oa T 7571—1) < EQg(f(fm e 7€n—1)‘gn,oo) g Cg ]Eng(g(), T 7571—(1)- )
4.16

As a direct consequence, we see that under the new measure QY, the sub-iid property
holds for any sequence of random matrices (My):
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Corollary 4.4. Assume the hypotheses of Lemma 4.3, and let M : E — G be a measurable
mapping. Then, under QY, the sequence of random matrices { My = M (), k > 0} satisfies,
for anyn > 1, k > 0, and any measurable functions f : G" — [0, 00] and g : GF1 — [0, o0],
Co ' Equf(Mo, -+, My—1)Equg(Mo, - -+, My) < Equ f(Mo, -+, Mp—1)g(My, -+, My

< Cs Equf(Mo, -+, Mp_1)Equg(Mo, - - -, My);

Cs_l Eng(M(L o 7M7’L—1) < E gf(Mka e 7Mk+n71)
< CS Eng(MO7 o 7Mn—1);
03_2 Eng(M()? e 7MTL—1) < EQ;’ (f(M07 e 7Mn—1)’Mn7 Mn—i—b o )
< C? Equ f(Mo, -+, My_1).

Proof of Lemma 4.3. Part 1: we first prove (4.13). For n = 1, there is nothing to prove.

By reduction, we just need to prove the results for n = 2. From (4.11) and the cocycle
property of ¢, we have for n > 1 and k£ > 0,

k1 (0, Monsr) = q5(v, Mon—1)@s1 (v - Mon—1, Mp k)
< Coqy (v, Mo 1) Goy1 (Vs My ptie)- (4.17)

Using this and the definition of QY, we see that forn > 1, £ > 0,

Eqv f1(&o, - »&n-1)f2(&ny - Entr)

= Eqp, 1 (v, Mo i) f1(60, -+ 5 6n—1)f2(ns -+ 5 Enti)

< EDFIR? g3 (v, Mon—1) a1 (v, Mg f1(S0, - &n1) f2(&ns o i)
= Cs Equ f1(&o,- -+ »én—1)Equ f2(&0, -+, k)

Using the same argument, we obtain the opposite inequality that for n > 0, k > 1,

Egvfi(&0,+ vénm1)fo(&ns s s &nt) = C5 7t Egu fi(&o, -+ v én—1)Eqy fa(&0, -+ k).

Thus (4.13) is proved. The assertion (4.14) is a consequence of (4.13) and (4.15) that we
will prove below.

Part 2: we next prove (4.15). By the definition of QY, the inequality (4.17), and the
stationarity of (§,) under the original probability PP, we obtain, for all measurable functions
f:E™—|0,00],

Eng(gkv T 7§k+n71) = Ef(fk? tee 7£k‘+n71)qz+n<va MO,kJrnfl)
SCOEf (ks s Ekrn—1)05 (0, Mo k—1)a5(vs Mk gyn—1)
= CsEf (&, 5 Shn—1)a5 (v, My kin—1)
= CSEf(&% T 75”—1)q7i(v7 MO,TL—I)
= CSEQEf(g()v te 7§n—1)-
This gives the upper bound in (4.15). The lower bound can be obtained in a similar way.
Part 3: we finally prove (4.16). Let n and f be fixed as in the lemma. We can assume

that Eqgy f(&o, -+ ,&n—1) < 00, since otherwise there is nothing to prove. We first prove that
for each k£ > 0,

Mk = EQg(f(goa T ,fn—l)|gn,n+k) < ‘l)2|8|‘l—z£sjL Eng(é-O’ e 7&1—1)' (418)
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To see this, by the sub-iid property of the sequence (&,),>0 under QY proved in parts 1 and
2 above, we see that for each B € £F1,

Eng(foa R ,§n—1)ﬂ{(§n,~- Ensr)EB} < DQIS\R;L Eng(fO, - ,gn—l)EQg]l{(gm.‘. Ent+k)EB}
= D2‘S|R§ EQg [Eng(&)a T )gn—l):ﬂ‘{(gna"' ’£n+k)€B}] ’ (419)

This gives (4.18). From (4.18), passing to the limit as k¥ — oo, and using the fact that
Levy’s martingale (M) satisfies

My — Eqgu(f(&0,- -+ ,€n—1)%n,00), a.s. and in L' under QY
we get the upper bound in (4.16). The lower bound can be obtained similarly. U

4.2. Non-degeneracy of the martingale limit W’ under the changed measure. For
all 1 <7< d, set

" E§<Z7Z7,a un) <€iMO,n—la un) ’

WV

n =0 (4.20)
(by convention, W¢ = 1). By (3.49) we see that the sequence (W) has an alternative
expression:

n—1
= 1 where Agp_1 = Ni, 1<i<d, n=>0

with the convention that the empty product is taken to be 1. The following lemma shows
that (W} )n>0 is a nonnegative martingale, which we call the fundamental martingale of the
branching process (Z,).

Lemma 4.5. Assume condition A3. For all 1 < i < d, the sequences (WS, Zp)n>0 and
(Wi, F)n=0 are nonnegative martingales with mean 1 under the laws Pe and Q%, for
s € Ilf U1, , and hence converges Qg -a.s. to some random variable W' > 0 (whose law
under Q% depends on s).

The fact that (W},.%,),>0 is a martingale under P¢ has been established in [31]. It
implies that (W7, %! ),>0 is also a martingale under P¢. By the change of measure formula

(4.1), it can be easily checked that they remain to be martingales under the new measure
Q¢. Recall that the function A is defined in (1.19).

Proposition 4.6 (Law of large numbers under the changed measure ). [10, Theorem 6.1]
Assume A1, s € IF UL, and E(||Mol|*log™ || Mo||) < co. Then, for any v,y € S, we have
Q7-a.s.,

. log || Mop—1ll . loglloMoyn—1ll . log{vMon—1,y)
hm _— = 1lm _— = llm

n—00 n n—00 n n—00 n

= A(s),  (4.21)

where the derivative function A'(s) can be rewritten as
N = [ [ tog oglai v gyuldg)m (dv)
%

Notice that if we assume A’(s) > 0, then from Proposition 4.6, under QY, the process
{Zn}n>o is still supercritical in the sense that E¢|Z%|| — oo QU-a.s. However, the envi-
ronment sequence is not stationary under QY, nor independent, so that the known results
for a multi-type branching process in an i.i.d. or stationary environment cannot be applied
directly.

We will need the following conditions:
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H1. Foralll <1 <d,

<Zi'>u1> + <Zi,u1>
Eqe;: —lo ~ | < +o0. 4.22
Q: <>\ou0(2) & Nouoli) (422
H2. Forall1 <14,5 <d,
Z1(7) Zi(j)
E e L2 Jogt L) < poo. 4.23
(Mo(Z )% Moli,j) (4.23)

Notice that by the definition of Q¢, condition H2 holds if and only if
Z3(5) Z3(J)
E( —21Y Jogt 1Y) < 400.
(Mo(m)l‘s Mo(i, j)

Remark 4.7. As in [31, pp. 1046-1048, Proof of Lemma A.1], by the convexity of the
function x — xlog™ z, it can be easily checked that, for any s € I/f ul,, H2 = H1.

(4.24)

Theorem 4.8. Assume A1, s € I UI -, N(s) > 0, H2 and E(||Mol|* log™ || Mo]|) < oc.
Then EeW' =1, Q% a.s.

Proof. The proof is similar to that in [30, Proof of Theorem 4.4] where the case s = 0 was
treated. In fact, using [30, Lemma 4.5] and writing for (n,r) € N x {1,...,d},

<N{,n’ un+1> . <N1T,n? un+1>
A(n,r) = Eg¢ [/\n@m = n {7)\0,11 , 1}

as in [30, Lemma 4.5], we just need to check that

oo d

Z Z A(n,r) < oo, Qf-a.s.

n=0r=1
To this end, we use the fact that Zlogo, — A'(s) > 0, Q%-as. (due to the identity
Mo = |[uny1 M, || and the law of large numbers for ||x My ||, see Proposition 4.6), and the
sub—stationarlty of the sequence (&,)n>0 under Q% instead of the stationarity under P used
in [30]. O

4.3. Convergence in probability of — vp—1 under the changed measure Qf'.

IIZZ [
We will need the following lemmas.
The first lemma gives the exponential convergence rate in the Perron-Frobenius theorem

under the changed measure Q%. Set

D? —1

0=——¢€(0,1 4.25

S € 0.1), (4.25)

where D is the constant in A1.

Lemma 4.9. Assume the Furstenberg-Kesten condition A1. Then there exists a constant
C > 0 such that for all1 < i,j < d and k >0, with § defined in (4.25),

Mnn ) ] n,m y Yn,n
| 400 ) W ks Vnnt k) —1f <ok, Qe (4.26)

sup
Pnn+kUn, n+k( )vn n+k (]

n=0

The second lemma establishes the exponential convergence rate for uy, ;4 and vy, p4k, as
k — oo, uniformly for n > 0, also under the changed measure:
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Lemma 4.10. Assume Furstenberg-Kesten condition A1. Then there exists a constant
C > 0 such that for all k > 0, with 6 defined in (4.25),

Slip ik — un|| < COF, Q%-a.s. (4.27)
’Vl/
and
sup |01k — Vnnikl <O, Q%-a.s. (4.28)
n=0

Lemmas 4.9 and 4.10 can be proved by following the arguments in [54] and [31, Lemma
8.2], respectively, using the Perron-Frobenius theorem that we established under the changed
measure. Since the arguments are quite similar, the proofs are omitted.

The third lemma shows that conditioned on the explosion event, each component Z: ()
of Z! tends to oo in probability under the changed measure Q%.

Lemma 4.11. Assume A1, s € IF UI,, N'(s) >0, and E(||Mol|* log™ | Mo||) < oo. Then
f07" all1 < i,r <d, Zp(r) = oo in pmbab@lzty under Q% , conditional on the explosion event
={IZ.| — —|—oo}. for all K >0, as n — oo,

Q% (Z.(r) < K,E") — 0. (4.29)

Proof. Under conditions A1, s € I UI,, A'(s) > 0, and E(|[Mo||*log™ || My]|) < oo, we use
Proposition 4.6 we get that for all Ky > 0,

Q§ (Mon-1(4,j) < K1) — 0.

n—oo

Using this and the same argument as in the proof of [30, Proposition 5.1] under the changed
measure Q¢, we obtain (4.29).
0

We now establish the result for the convergence in probability of the direction under

||Z1 [
the changed measure.

Theorem 4.12. Assume conditz’ons Al, s e ITUI;, N(s) > 0, and (|| My||* log™ || Mo]|) <
oo. Then, for all1 < i < d, ||Z1 I
conditional on the event {W*® > 0}: for all ¢ > 0, as n — oo,

—Up—1 — 0 in probability under the changed measure Q% ,

Q¢ (H 0 —vpa| >, W > 0> 0. (4.30)

Proof. For any 1 < i < d and for all n, k 0, we denote Zfl — 2 By the definition of

12511
n

the branching process, we have for k >

d
Znik =) 2 - (4.31)
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For any n, k > 1, we calculate the following term:

n+k >
T Z;LMn,n—i-k— 1

<un,n+k—lpvn,n+k—1> ‘ Z)

Prn+k—1 123l
Z,
_ <un,n+k—1a Un,n+k 1 d n(r) Z Z’LM
- p ||Zl|| Z Z Ink — “ntInntk-1
nontk—111%n r=1 i=1

d Zn(r)

< <un,n+k71a Un,n+k71> Z i
< -

pnynJrk*lHZ?ZlH j=1r=1

(ank(]) - Mn,n+k1(7"aj))‘

=1

(4.32)

d
_ Z Z M, n+k— 1 r ])<un,n+k—1a Un,n+k— 1
=1 Pnnt+k—1 HZZ ”

Zn(r) s .
g( Zlnk()])l)'

n n+k 1(7'

Notice that W} < 12, and using Proposition 4.6, we get that ||Z} | — 400 Q%-

' = {eiMo,n—1,un)
a.s. on {W" > 0}. By Lemma 4.11 and the weak law of large number, we get that for all

e >0,
(nzm (mk oY

By the dominated convergence theorem and the fact that Q% (d¢, dx) = Pe(dx)7i(dE), w

get
1
Q5 | 77
>\ IZ

Let C > 0 be sufficiently large such that (4.26) holds. By (4.26), forany 1 <7, < d,n >0
and k > 1, Q%-a.s.,

Zn(r)

>, Wi > 0) ez} (4.33)

=1

Zn (1)

> (st~ Y

nn+k—1 (Ta ])

>e,Wi> 0) "2E . (4.34)

Mn,n—i—k—l (T‘, .7) <un,n+k—l ) Un,n+k—1>

< (14 C"unnh—1(r)vpnsk—1(5)
Pnn+k—1

< 140", (4.35)
Combining (4.32), (4.34) and (4.35) we obtain that for all € > 0,

; <un n+k—1 Unntk— 1 n+k:
Q5 — Z My ik
° Prnth—1 123 e

>e, Wi > 0) "ZE . (4.36)

Moreover, by Lemma 4.9 we have for any n,k > 1

HZ%Mn,n+k—l<un,n+k—1aUn,n—i—k—l) <Z"Z u X >U )
- ny Unn+k—1/Ynn+k—1

Pnn+k—1

n n+k—1 (T .7) <un,n+k717 Un,n+k71>
Pnn+k—1

— Up,n+k—1 (T)Un,n+k71 (.7)2111(70)

M IE

=1 ]:1

<

<ii ket (M) mtre1 (j Mnn+k 17y §) (Ut k— 15 Vnnrk—1) .
S e £ Un,n+ n,n+ Pnn+k—1Unnt+k— 1( )Un,n+k—1(])

Mn,n—i—k—l (’l“, ]) <un,n+k—1 5 Un,n+k—1>
Pnn+k—1Unnt+k—1 (T)Un,nJrkfl (])

< max 1| < 0ok, Q%-as. (4.37)

1<r,j<d
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Let ko € N be large enough such that C9%~1 < 1/dD. Then, combining (4.9) and (4.27),
we see that forall 1 <r <d,n>1and k > ko,

1
z> —— %_a.s. .
un,n—l—kz—l(r) Z 94D’ Qs a.s (4 38)
It follows that for all n > 1 and k > ko,
. 1
Z 1) =2 —, %_a.s. 4.
< n?un,n-i-k‘ 1> 2dD QS a.s ( 39)

Let € > 0. Let k1 € N be such that 2dDC§* < e/8 and ki > kg. For alln > 0 and k > kq,
set '
i |’Z1zz+k H (un,n+k—17 vn,n+k—1>

Pnn+k—1 <Z'rlz7 un,n+k—1> ”ZTlLH .

Notice that

L 1 ZZ <un n+k—1,Un TL+1€—1> =i
YZ Zl —v 1 = - n+k ) 7‘ _ ZZ,U k1) b
e k) l e 171 I
(4.41)
Combining (4.36), (4.37), (4.39) and (4.41), we obtain that for all £ > ki,
Q¢ (1Y i Ziee = Vi | > e/4, W8 > 0) "2 0, (4.42)
We next have for all k& > kq,
hmsup@e’<|YZk — 1 >e/4, Wi > 0)
n—-+o0o
= limsup(@?( ||wa,kZZL+k|| - an,m—k—lH‘ > /4, W' > O)
n—-+00
< lim sup QY (H ke~ Vnntkot|| > /4, W > 0) =0. (4.43)
n—-+o0o
For all n > 0,k > k1, we have the following comparison:
|| n+k — Unnti—t = |( ﬁ —-1) fwrk - YikZ1i1+k + k1|
< H( 1% —1 ZZJrkH + H kZ;Jrk - Un,nJrkle
< |Yor — 1]+ n,an+k — Un k1| (4.44)
From (4.42), (4.43) and (4.44) we have that for all k > ky,

Qg (
< Q¢ (1Y 4 Zii = vmminal| > /4, W > 0) + Q¢ (Y, = 1| > /4, Wi > 0)
"2E . (4.45)
Notice that for any ko > 0,
lim sup Q% (HZ_;ZL —vont] > W > 0)

n—-+oo

| Ziik = Unnira]| > /2, W7 > 0)

<timsup Q5 (| Zia, = vyl > /2,W° > 0)

n—-+o0o

+ lim sup Q¢ (Hvo7n+k2,1 — Vpntko—1]| > € 2, W' > 0). (4.46)

n—-+o0o
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Let ko > k; be such that C§*2~1 < £/2. Then by (4.28), the second term in the right hand
side is 0. Also by (4.45), we get that,

lim sup Q% (||Z:‘L — Vg >, W > 0) —0. (4.47)
n—-+o0o
By Theorem 3.3, we conclude the theorem. (]

4.4. Convergence in LP(Q%) of the martingale (W}). In this subsection, we prove the
convergence in LP(Q¢) of the fundamental martingale defined in (4.20).

We first consider the convergence in L!'(Q%). We will use the same conditions as in
Theorem 4.8 for the non-degeneracy of W*.

Theorem 4.13 (Convergence in L'(Q%) of (W})). Assume A1, s € IF UL, , A(s) >0,
H2 and E(||My||*log™ || My]]) < co. Then for alli=1,---d,

—+00

Wi W i LYQ%).
Proof. Since W: — W% a.s. under Q% (by Lemma 4.5), and B ges Wi = EQ?W" =1
(as a consequence of Lemma 4.5), by Scheffé’s theorem we conclude that W — W in
L'(Q). O
We next consider the convergence in LP(Q%) of (W), for p > 1. Set
I ={t <0:EgeiMo(i, )" < +oo Vi, j=1,---,d}. (4.48)

Recall that under condition A1, the function s defined by (3.9) satisfies rs(t) = ”i‘zr)t),
so that As(t) = logks(t) is convex (just as A(t) = logk(t)), As(0) = 0, AL(t) = A (s + 1),
and A%(0) = A’(s) > 0. The convexity of A, together with the fact that As(0) = 0, implies
that if Ag(t) < 0 for some t < 0, then A4(t') < 0 for all ¢ € (¢,0). It follows that we have

the following implication

1<p <p and ks(1—p)<l=rs(l-7p)<L. (4.49)
Theorem 4.14. Assume condition A1. Let p > 1 be such that 1 —p e I, . If
ziG) '\
12(1132(6[1!‘3@? <M0(z',j) <400 and ks(1—p) <1, (4.50)
then
WETZEO W i LP(QY) Vi=1,...,d. (4.51)

Moreover, for 6 = ks(1 —p) when p € (1,2], and any 6 € (ks(1 —p),1) when p > 2, there
1s a constant C' > 0 such that for allm > 0,

Ege: Wy, — WP < C6™. (4.52)
Notice that condition (4.50) reads, in terms of the changed measure,
(21()"
El ——— 1-— . 4.
max <M0(i,j)1’—s> <400 and kK(s+1-p)<k(s) (4.53)

The following lemma will be used to investigate the convergence in LP(Q%).

Lemma 4.15. Let (Xy)r>1 be a sequence of R?-valued independent random variables with
E(Xy) =0 for each k > 1. Then for alln>1andp>1:
p n
< 'BY n(E—D+ 3 EIXiP,

n
S X
k=1 k=1

where B, = 2min {k'/2: k € N,k > B}, and (% — 1)} = max(5 — 1,0).

E
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For d = 1, the result is a direct consequence of the Marcinkiewicz-Zygmund inequality
E| S0 Xil” < BPE(> k-1 X2)P/? (see[14, p.356, Theorem 2]) and the elementary inequal-
ity (Op_q xg)* < n(“ D+ 3o 2% for a > 1 and x; > 0. The conclusion for the case d > 1
can be obtained from that for d = 1 and the fact that ||z||? < d?~' 3%, |z(:)|?, for each
r=(2(1), - ,2(d)) € R%

Proof of Theorem /4.14. The process (Z,)n>0 satisfies the relation

d Zn.])

Znsk = Y Z{nk, n>0k>1, (4.54)
7j=1 I=1

where le;mk(r) denotes the number of the offspring of type r at time n + k of the [-th
particle of type j in the generation n; conditional on the environment &, the random vectors
Zi = (2] (1), 2], () indexed by I € N* and j € {1,---,d} (for fixed n and k)

are independent. Combining W, = /\éf%i% and (4.54) we have, for all n > 0,k > 0 and
1<i<d, ’

3yt g s stV Zinil0)
= Mo n—1uo(i) — Apnth—1Un(J) "
Jj=1 =1 r=1 )
d Z},(5)
un(7) j
— W - 1), 4.55
; >\0,n—1u0(2> & ( I,nk ) ( )
where
j o B tne)
Iink * )\n,n+kflun (]) .
Let T be the shift operator of the environment sequence: for £ = (&),
(Tg)k = £k+1> ke Za (456)

and let T™ be its n-fold iteration. It is clear that, given the environment &, the random vari-
ables I/Vljnk, [ > 1, are i.i.d.; they are independent of (&)r<n_1 and Z!, where (I/Vlj,n,k)@o
is the fundamental martingale associated to the branching process starting with the [-th
j-type particle of generation n, with the shifted environment 77¢.

We divide the proof into 2 steps.

Step 1. We first consider the case 1 < p < 2. Applying (4.55), the convexity of the
function x — zP (together with the fact that Z] 1Un(j) = 1), Lemma 4.15 and Theorem
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3.3, we have, for alln > 0, k > 1 and 1 < < d, Q%-as.,

Egei [|Wir — Wal? | €] = Be[ Wi,y — WP

d
<E5<Z
j=1

7 (3)

Z lnk

=1
A

Z lnk

A0

)\On 1o (%

"

(Ao,n—1u0(%

d .
< BP E — R ZY(E W —
(Ao,n—1u0(2))P eZn (DB Wi

d .. .
pffn,k:(p) Z MO,n—l(’L:JWn(])

j=1 ()‘O,n—luo ()P

= BPon k() (No,n—1u0 (i)',

where

O-n,k(p) - 112;1<)<d E§|WI n,k 1|p'

1?

(4.57)

(4.58)

Using (4.11) and Ao p—1 = ||unMg:n_1H (Which is a consequence of (3.49)), combining with

(4.16) and (2.10), we get that for all z € I;7, n > 1, and 1 <i < d, Q%-a.s.,

B (Nn1 1 T76) = Eggs (lun Mo I | T7)
< DB (| M4 [ | T7)
< ‘sz_DmSl_R;1 EQ? Hngnfl HZ
< CZCSKS(Z)H'

Moreover, from (4.8) and (4.9), we have

1

1 .
<UnMg:n_1,ei> 2 diDHMO,TL*l(Z?')H = dD

t(Mon—1) = | Mo n—1]]-

ch2 |

Thus, we get that forall z€ I, n > 1and 1 <i < d, Q¥-a.s.

Eges [(on1u0(i))* | T7€] = Eges [(un Mg,y e1)°| 77 |

< (dD*)"*Eqei [|Mog-1]17] < e:Csris(2)".

Then, from (4.57) and (4.60), we get that for all m >0, k > 1 and 1 < i < d,
E@ji ‘WTZL-F]C - Wé‘p = E@zi [EQ? (‘Wﬁ+k - me ‘ Tnf)}

= Eg [Bqps (Bgps (Wi — Wil 1 €) | 7€)

BYEqei [00,k(p) Egei (o110 (i) 77 | T7€)]

<
< Bgcl—p CSEin Un,k(p) ks(1—p)",

(4.59)

(4.60)

(4.61)
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gebtlilieol) < 1 Qg as. forall 1< i,j < d. So by the

dP~12P for x; > 0, and (4.15), we have that for all n >0, k > 1

By (4.10) we have 0

0 <
inequality (39, ;)P <

Esz Un,k(p) < ]EQEL max Eé(Wl n, k_)p + 1

s 1<j<d
Z] Unp+k) \P
= EQEi maX Eé(ww”) + 1
s 1gj<d Anntk—1tn(J)

( zd: Mn,n-ﬁ-k—l (.77 l)un-‘,-k(l) Z{,n,k(l/>

P
=E gei max E - - +1
Qs 1<j<d ¢ =1 )\n n—i—k—lun(]) Mn,n+k—l(]al/)>
(') \»p
< Ege max ' S Ee L +1
Q" 1<j<a l’zl My ntk— 104, l/))
d Zj l
ZZdP B g (”"k( ) ) 41
j=1r=1 s Mn,nJrkfl(]J)
d Zj (l/) »
P 1DBIR2E o (—LOR AT 4.62
2 ZZ ot (S 1) (+62)

Using this for £ = 1 and the condition (4.50), we get that

sup Eqeiom,1(p) < +00. (4.63)
n=0

Therefore by (4.61) , writing C' = Bp[c1-pCs sup,,> Ege on.1(p)]Y/?, we have, for all n > 0,
k>1and1<i<d,

Eqe: |\ Wy 1 — WilP < Crs(1—p)™. (4.64)

So by the triangular inequality of LP, it follows that for all 1 <7 < d,

) +o0 ‘ ‘ 1/p
sup (g (Wi)'7” < 1+ 3 (Equ Wiy = Wip)

n=0 n=0
+oo
<1+CD k(1 —p)"P < +oo. (4.65)
n=0
Therefore for all 1 < i < d, the martingale (W) is bounded in LP(Q%), so that it converges

in LP(Q%). Notice that (4 52) is a consequence of (4.64). So the proof of the theorem is
finished for 1 < p < 2.

Step 2. We then consider the case p > 2. In the following C' > 0 will be a constant which
may depend on s and which may differ from line to line. Applying (4.55), the inequality
(E?Zl zj)P < dar—1 Z;i:l l’? for z; > 0, and Lemma 4.15, foralln >0, k > 1 and 1 <14 < d,
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Q%-a.s. we have
Egei (Wasr = Wal? [ €)
= Ee|Wpyp — Wy P
L ) o -
<oy (Y e (Z) W - 1P

=1
d wn (N ZE () \P/?
< Copi(p) Y (un(j))p/2E5<)m> (Aon—1uo (i) #/2

< Cone(p) (X un(5) ) Ee (Wi (Mo 1o (i) /2
j=1
= Con i (D)Ee(Wp)P"*(Aon-1u0(i) 7/, (4.66)

with o, ;(p) defined in (4.58). Let j, € N be the unique integer such that 1 < 2% < 2. For
alln > 0,1 <i<dand 1< j < jp, define

al, ;(p) == (No—1uo(§))P/¥ P Eg(Wi)P/% . (4.67)

n7j

From (4.66), we obtain that for alln >0, k > 1 and 1 < i < d,
By VAP = B [ (W - 3P | 6]
< CEgsi [onr(p)Eqg (aha(0) | 7)) (4.68)

To prove (4.51), it is enough to show that there exists a constant C7; > 0 (which may
depend on s) such that foralln > 0,1 <i<d, 1 <j<j,and § > k(1 —p)l/p,

67" (Bge: (aly ;(p) | T€)' " < C1 Qi-as. (4.69)

In fact, combining (4.68) with k = 1 and (4.69) for j = 1, we see that for all § > rs(1—p)'/P,
all1 <i<d,and n > 0,

Eqei[Wi i1 — Wil < Cad™, (4.70)

with Cy = CCisup,>gEgeion,1(p) < 400 by (4.63) which is still valid for p > 2 (since
(4.62) remains valid for p > 2). By the triangular inequality in LP, it follows that

+o0o
sup (Egee (WHP)'7 <1402 Y 6. (4.71)
n=0 ° n=0

Taking § € (ks(1—p)*/P, 1), we deduce that the martingale (W?) is bounded in LP(Q¢%), for
all 1 <4 < d. Hence, the sequence (W}!) converges in LP(Q%). Since (4.70) implies (4.52),
the proof of the theorem is finished for p > 2, provided that (4.69) holds.

It remains to prove (4.69) under (4.50). We will prove (4.69) by induction on j. First
consider the case j = j,. By definition of j, we have 1 < p/2/» < 2. So, by the triangular

inequality in L?/ 2% under Q¢ conditional on ¢ and (4.57), it follows that for all 1 <i < d
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and n >0, Q%-a.s.,

[k, ()27 < om—1uo(i)) 2"

- n—1 ) ) ) )
+ o 1uo(0) 2 Y (Be| Wiy, — Wip/27)27 /P
[=0
< (/\o,n—1uo(i))172jp
n—1 ij/p ) . .
F O [ou (2] oo )72 A2 (4.72)

=0

Taking the LP/?”” norm under Q% conditional on T"¢, and using the triangular inequality
in LP/?"" and the inequality (4.60), we obtain that for all 1 <i < d and n >0, Q%-a.s.,

(Ege: (a5, () | Tng))Q“’/p
< (EQgi((/\o,n_wo(i))p/m,p | Tng))gjp/p

Cn—1 E e [(Eqe; (X A\ 1—p Tl P )\p/2jp_p . o
) l;){ o (B [Pos-11a(0)™ 5}%1(27‘;’) P e}

n27p

<C/<as(2%—p) !

- Cnil {Hs(l —)Egy [(au (2%))\%2_]"1—10) | T”g} }ij/p.
I=0

(4.73)

Notice that if 1 < j < jp, then we have 1 —p < % —p < —%5. Since &, is log-convexe on
I, we obtain that

max {ns(% —p)} < max {/18(1 - D), I<L5< = 2)} =:0.(p)? <1, (4.74)

1< <Jp 2

where the last inequality holds by (4.49).
We now deal with the second term in (4.73), by calculating first the conditional expec-

tation under Q% given T'+1¢. By the triangular inequalities of LP/? under Q¢ conditional
on £, and inequalities (4.59), it holds that for all [ > 0 and 1 < j < jp, Q%-a.s.,

{EQ? (01,1 (%)Af/Qj—P | Tl+15) }2]'/1:

= {Bge (max Ee[w,, — 1172 N/F 7| T’*%)}yﬁ)

s \1<r<d

r 27 27 — 27 27 — 27
< {Bg (max Ee (W1, )" A/ 77 | T PP 4 (B 7 | 1))
d ¥ .
r 27 J— 27 /p P 27 /p
< { Z Eqe: [E¢ (W1,l,1)p/ )\f/z P Tl“f]} + C:‘is(g - ) .
r=1

From inequality (4.74), we have I£S<% — p) < 1. So from the above inequality, and the

triangular inequality of LP/ 2 yunder Q% conditional on T'+1¢, we see that for all [ > 0 and
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1<y< jp7 Q?'a’sv

(E e (O’l,l (ﬁ))\fﬂj_p | Tl+1f))2j/p

/29 2 /p
<d” /pfilffd( Qs [/\l PEc(NWT )" \TIHED +C
T N
< O (Bqus [\ B W 1Ly, o)™ 1 7))
/29 2 /p
s, (o 7B A, | 7))
1—p I+1 2j/p T \P I+1 27 /p
< Cpax, (B [N B0 | T f]) +Omax, (B (W7,)" 1 T719) " + 0,

where the last step holds since ]l{/\lwr <1} < ()\ﬂ/Vl 1) “fora = 1—% > 0, and H{AzW[1>1} <
()\ZI/VM) forb=27 —1>0.

Notice that (W7, ;) j>o 18 the fundamental martingale associated with the branching
process starting with the 1-st r-type particle in generation [, with the shifted environment
T'¢. In particular we have E¢WT,, = 1 as. Therefore, applying again (4.59), (4.74), it
follows that for all I > 0 and 1 < j < jp, Q¥-a.s.,

i 27 /p
(]EQZi (01,1(3))\7’/% P Tl+1§>)
< C max (EQEz( 1 P ‘ Tl+1§))2 /p + C max (Ein((W{,l,l)p ‘ TlJrlg))Qj/P +C

1<r<d 1<r<d

< Or(L=pP 7+ C e (B (Wi10)" | 719)7 "+ C

< O+ Cmax (Bye (W) | TH1€)?77. (4.75)

1<r<d

Then, since 0 < %ﬁlm <1 Q%-a.s., by the triangular inequality of L?, together with

(4.15) and (4.16), we have for all 1 <r < d and [ > 0, Q%-a.s.,
(Z71105), we)\P e
]E e WT' p Tl+1 1/]0 — <]E 51’(( sby > Tl-‘rl >)
( Qs (( l,l,l) | 5)) Qs Alul(r) | 5
(e ((i Mi(r, j)u (5) Z{,l,lw)p, _— 5))1“”
S\ Auw(r) Mi(r,j)

£

d alsl/p 6/p Z7() \"\'"”
< e | ———— . .
< Dl s (EQS ( 0(r,j)> ) < too.  (4.76)

Putting together (4.75) and (4.76), we get that for all [ > 0 and 1 < j < jp,, Q%-a.s.,

Eqe: (U,J(%)A?/ Yop THE) < C. (4.77)
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Therefore, for alln > 0and 0 <! < n—1, Q%-a.s. (the value of the constant C' may change
from line to line),

29p — n 27 27 n
B o (g N 117 = B [ (B (ona (g5 )N 77 1 741 )R 117
27 n
< CEQ? ()‘%12 ]f | T f)
p n—1—

< Olha(L —p)

< Cop(p) 0P,
where the last two inequalities hold by (4.59) and (4.74). Combining this with (4.73) and
(4.74), we obtain that for all 1 <i < dand n >0, § > §.(p), Q%-a.s.,

i n 27p (n—1— 27p
(B (4, () | 7€) < Coclp)"™” + € Z p)Pac(p) Oy

= Coe(p)" n27p + Cn(sc(p)(n—l)wp < C(Vﬂjp.

So (4.69) holds for j = jp.

Now suppose that (4.69) holds for j + 1 < j, with j > 1. We will prove that it still
holds for j. By recurrence this will prove that (4.69) holds for all j =1,-- -, j,. Since j +1
satisfies (4.69), for allm > 0, 1 <1i < d, and § > 6.(p),

6 (Bgei (aly 11 (0) | T"€)P < C Qas. (4.78)

By the definition of j, we have p/2/ > 2. As in the proof of (4. 73) but applying (4.66)
instead of (4.57), we obtain that for all 1 <7 < d and n > 0, Q%-

(Eqe: (d, ;(p) | T"€))"

Ck (% —p)mj/p +C x

{Ein [01,1(2])E£(I/I/'l )2J+1 (Aou_1uo(i ))ﬁ_p)\ﬁfjl_p | T"{} }Qj/p

N

i
L

T
=

nl 27/p

ro(55 )Y (B o (BN B e (0l a0 T'E) | T )

\
Q

(4.79)

Combining this with the recurrence hypothesis (4.78), together with (4.74), (4.77) and
(4.59), we obtain that for all n >0, 1 < i < d, § > d.(p),

(Ege: (ai;(p) | 7)) < Co.(p)" +COx
n—1 ) - j/
% (B [Bas ona (B0 7 1 2922y 7]}
=0

n—1 j
v (n-1-02//p
<Coup)™ + 0y w(55 )

<05 (4.80)

So (4.69) also holds for j. Therefore, by recurrence, we have proved that (4.69) holds for
allj=1,-- 7,
This ends the proof of theorem.
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0
4.5. Convergence in LP(Q¢') of the normalized j-type population size g gfj()) In
Z,.(J)

this section, we will establish the theorems about the convergence in LP(Q¢) of EZi() the

normalized population size of type j.
We first consider the convergence in L'(Q%) of the normalized j-type population size
Z;,(j)
EeZ5(5)"

Theorem 4.16 (Convergence in L' under Q% of E, ZS ().) ). Assume A1, s € I UI,,
AN (s) >0, H2 and E(||My||* log™ || My]|) < co. Then for alli,j=1,---d,
i - ZhG)  nodeo i o r1pme
Z;, = ni — Wl in L ;Z .
)= 1) @)
Proof. We first prove that

€4

ZL(5) nﬁoo W (4.81)
Indeed, by (4.10) in Lemma 4.1, for all 1 < 4,7 < d, n > 1, Q%-a.s., we have
d .. . ;.
i Mo n—1(3,7)un(j) Z,(5) i
wi = Mol .< V)5 7).
Aon—1uo(i)  Mon-1(i,j5) ~ dD

J=1

Therefore, Zi(j) — 0 Q%-a.s. on the event {W? = 0}. We next consider on the event
{W" > 0}. By using part 2 of Theorem 3.3, we have the following estimation for all
1<i4,7<d,asn— 400, Q%-a.s

1 ZG) Aom—1uo(i)  Zi(5)
Wi Moyn—1(i,75)  Mon—1(3,5) (Z, un)
_ {un,vn 1) Z3 ()
vn-1() <Z7%>un>

1 7)) & 7 Z
Un—l(-j) HZn” r—1 <Zn7un> Zn(r)

By Theorem 4.12, we get that for all 1 < 14,5 < d,
This implies that

i 20 = Wi i (2 ) Q¥

7 - i _ “n n v __ _ ? S

Zi(j) - Wi = Wi = ( v 1w, oo, (4.83)
Hence, we get (4.81). Combining this and the fact that Ege: Zi(j§) = Eqei Wt =1, by
Scheffé’s theorem, we see that Z(j) — W' in L'(Q%). O

We next present the following theorem concerning the convergence in LP(Q%)(p > 1) of
Z} )
the normalized j-type population size Ec2i(7)"
Theorem 4.17. Assume A1. Let p > 1 be such that 1 —p € I7. If (4.50) holds, then

Zi) "W in LP(QY)  for any 1< 4,7 < d.
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Moreover, there exist § € (0,1) and a constant C' > 0 such that for alln >0, 1 <1i,j <d,

Egei| Z,,(5) = WP < C6™. (4.84)

We begin by establishing some preliminary results concerning the products of random
matrices My, ,4 under the new measure Qf'.
For 1 < i < d, let (IT%),>0 be the sequence of random matrices in G such that for all
1<jr<d,
Mo’nfl(i, T‘)Mn(’l", ])
MOJL (Zaj) ’

By definition all the entries of the i-th column of H(i) are equal to 1, the others are 0; each
I} is a stochastic matrix. For n,k > 0 let

Hn+kn'_Hn kH

n

H%(]a T) = 6i,7‘a H:Ln,(jvr) = n > 1.

be the products of the matrices IT%,. Clearly each Hn +k,n 1S @ nON-negative stochastic random
matrix.
The following lemma concerns the convergence of the products IT, n k n of random matrices

and their exponential rate as k — 400 under the change of measure Q%, which will be useful
for proving of the LP convergence of the normalized population size EZZEJ(E).
Lemma 4.18. Assume condition A1. Then for alln >0 and 1 < i < d, as k — 400, the

sequence (Hn+k,n)k>0 converges Q% -a.s. to some random matriz HZ;O n Such that:
(1) for all 1 < j,r < d,

‘ ' o . . M() n—l(iv r)un(T)
IT’ = 1T IT! =
so0ldr 1) = To(Gor), - Moo (o) = ===

(2) there exist constants C' > 0 and § € (0,1) such that for allk >0 and 1 < i< d,
<O Q%-as. (4.85)

,ynz=1;

all <

SUIS ||Hfl+,€’n — Hz

nz

Proof. (1) It is easy to see that for allm > 1, k > 0 and 1 < i,j,7 < d,
MO,n—l(iv T)Mn,nJrk (T’, .7)

I gor) = el 4.86
n+k,n( ) MO n+k('l7]) ( )
Combining (4.86) and Theorem 3.3, we deduce that for allm > 1 and 1 < r <d, Q%-as.
as k — +o0o,
; . MO n—1 (7’7 T)
I ~ , 4.87
n+k,n(]7 T) an,nJrkun(r)'UnJrk (]) ao n-l—ku()( )vn-i-k (]) ( )
1% N | Y
where ap, pifp = m and agp4k = 72— . Therefore, we get that for alln > 1

<un+k+1uvn+k>

and 1 <14,j5,r <d, as k — +oo,

Mo p—1(2,7)up(r)
Ao,n—1uo (1)

L, (Gr) = I, (G,r) = Q%-a.s.. (4.88)

Hence, as k — oo, Q%-a.s., H}; 0= Hfg 1H6 = IT where

00,0
d
ooO.]v Z HOZT ZHooljﬂ 1r: R 1<],T<d
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(2) By (4.7) in Lemma 4.1, we have, for alln > 1, 1 <14, j,r < d,

1 _ MO,n(iaj) — d MO,nfl(iyl)Mn(laj) dD2 Qei a.s
H:z(]a’r) MU,nfl(iar)Mn(raj) =1 MO,nfl(i,T)Mn(ra]) s
Hence,
I (4,7) > — Q%-aus. .
n(07) 2 o5y Qt-as (4.89)

Since (IT,) >0 is a sequence of positive stochastic matrices satisfying (4.89) , by [66, Theorem
4.19], there exist two constants C' > 0 and 0 € (0, 1) such that for all £ > 0 and 1 <17 < d,

supHHn+kn sonll < <O8%, Q%-as. (4.90)

n>0

This concludes the proof of Lemma 4.18.

Proof of Theorems 4.17. For all n > 0 and 1 < 4,5 < d, recall that
ZiG) _ ZiG)
EeZ} (7)) Mopn-1(i,J)
Now we prove that (4.50) is sufficient for the convergence in LP(Q%) of Z% (5), 1 < i,j < d.

Assume (4.50). By the definition of the branching process (Z%), we have the following
decomposition: for all 1 <i,j < dand n, k > 1,

Z,(5) =

n

N\ Zi .
L k() Ed: Myt (ryg) 0 20, 40)
otk r=1 MO,n—l—k—l@;j) =1 MTL,TL—‘rk—l(T;j)
d .
M. _ )
N e L
—1 0,n+k71(17]>
Zi( .
+ - ]W”"‘*‘k—lm X <er”’“(])_1> (4.91)
— Mopntr-1(1,7) = \Mnppir-1(r,J)
Combining (4.91) and (4.86), we get that for all 1 <i,j < dand n, k> 1
d .
k() = D W10 (3 7) 23 ()
r=1
n zd: I, 1,0 7) Zzz(f) ( Zin i (9) B 1>
—1 MOn 1('5 7") =1 an—i—k—l(rvj)
= (Z,( 2L+k71,n) ,€5) + sz,k(j)a (4.92)
with
. T’ Zj(r) Zr ()
zk(])_z n+k— ln Z < I,n,k _1>.
" —1 Mo - 1(3,7) =1 My v k- 1(r,7)

Notice that by the definition of W/ and that of II cf. Lemma 4.18 (1)),

OO’VL(

ZHoon j? = <Zl loo,n)Tﬂej> (493)
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for any 1 <4,j < d. Using (4.92) and (4.93), together with the triangular inequality in L
under Q% , we obtain that for all 1 <i,j < dand n,k > 1,

=i . i 1/p
(E i n+k(]) -W |p>
Zi (TTé i i p) /P
= (IEQiZ <Zn( n+k—1,n)T7 ej> -W+ Rn,k(])|p)
= (BlWi =W+ (21~ W)+ Rk

7 7 1 i Mo
< ( Q51|W - W ’p) /p ( Q%HZ( n—i—k 1,m — Hoo,n)THp)

1/p

R (PP
+ max (Egei | Ry, ()17)

= Ji(n) + Ji(n, k) + Ji(n, k). (4.94)

In the following C' > 0 will be a constant which may depend on p and s which may differ
from line to line.

Control of Ji(n). By condition (4.50) and Theorem 4.14 we get that there exists §; €
(0,1) such that for alln > 1 and 1 < i < d,

Ji(n) = (Ege| Wi — WP) P < 6. (4.95)

Control of Ji(n, k). Applying the relation (4.85) of Lemma 4.18, we get that there exists
d2 € (0,1) such that for all n,k > 1 and 1 <1i < d,

. _ . ) ) 1/p _ . 1
Tink) = (Bgei |22y — T )TI) " < OBl ZEIP) 705, (4.96)
By (4.10) in Lemma 4.1, we know that, under A1, we have for alln > 0and 1 <i4,j <d

L Moy—1(i,j)un(y)
dD2 = )\07n_1U()(i)

<1 Qf-as.

Therefore we obtain that for all m > 0 and 1 < 4,5 < d,

Z5(7) dD2M0n (6, ) un(j)  ZL(3))
Mo pn-1(i,7) Xon—1uo(t)  Mopn—1(i,7)
o Zp(J)un(j ) 2y

Combining (4.97) and Theorem 4.14, and using condition (4.50), we obtain that, for all
1<i<d,

sup (EgeilIZE IP)''? < d2D? sup (E 0 (W) P < e, (4.98)

n=0

This, together with (4.96), implies that for all n,k > 1 and 1 < i < d,
Ji(n, k) < Co5. (4.99)

Control of Ji(n,k) for 1 < p < 2. Assume that 1 < p < 2. Using the convexity of the
function x — 2P (together with Zr:l Hn+k—1,n(]v r) = 1) and Lemma 4.15, for all n,k > 1
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and 1 <14,7 < d, Q%-a.s., we have
Eqei (| Ry, 1 (7)P1€) = Be| Ry, o (5)[P

d 11 (4,r) P
gE < n+k—1,n\J» )
¢ ; Mo,n1(i, )

)

p

“")( Zina ) )
1 Mn,n—l—k—l('r’j)
@ ( ZlT,n,k(]) . 1)
=1 Mn,nJrkfl(r,j)

sz I 1,00, )EgZ’ Eg’ 27 35 (J) _q

N
=T

IT; (4, 7)
< E n+k—1,n
5(; Mo p—1(i,7)P

—1 MOn 1ZT) Mnn—i—k 1(T])
() b
- prS I )M, zrlpE‘Ml
Z n+k— lnj ) 0,n— 1( gMnn-l—k 1(,,,])
< Bgan,k(p)lglgfd Mon—1(i,m)"P,
where
21 () P
T = max Eg¢l—2""— —1|.
i (P) 1<ri<d | My pin-1(r,j)
So, using Lemma 4.3 we get that for all n,k > 1 and 1 <i < d,
i P < e |RY L (4)|P
J5(n, k)P < gg;gd E@Sz ’Rn,k(]”
_ .. .. 7 -\ [P n
— max, Egue[Bqs: (1RGP | 77 )|
d
< BECS]EQE’L'EO,k(p) Z EQ? [M(),n_l(i, T’)lfp] . (4.100)
r=1
By (4.98) we have
sup EqeiTok(p) < d?> max sup Eqei( Zi(4) — 1) < +oo. (4.101)

k>0 1<r,j<d k>0

Therefore, putting together the relations (4.100) and (4.101), we get that for n,k > 1 and
1<i<d,

Ji(n, k)P < Crg(1 —p)" (4.102)

(recall that the value of C' may change from line to line by our convention).

Control of Ji(n,k) for p > 2. Assume that p > 2. Similar to the preceding case, by
the convexity of z — 2? (together with ¢, n+k—1,n(]7 r) = 1) and Lemma 4.15, for all
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n,k>1and 1<14,j <d, Q%-as.,
Eqei (| Ry x (7)IP1€) = Ee| Ry, k(7)1
<E§(§:H]7\?-kn+l gor) %) ( 2k (J) _1>
on-1(6,7) |5 )

y

r=1 nnJrk 1(T J
]’ ) 1 k(]) P
Bp Tl+k n+1 E Zz p/Q]E ' ,n, o 1
rzl MOn 1(Z ’I“) ( ( Mnn+k 1(T ])
d
_ ; . i 2 . _
< BEGai(p) ST g i1 (G Ee (Z () Mo ja (i, 7) P/
r=1
< B k(p) max {Be(Z5()" Mo (i,r) 772} (4.103)
=~ p-n, 1<r<d 3 0,n— ) . .

Notice that (4.101) still holds when p > 2. Therefore, using (4.101), we obtain that for
alln,k>1and 1 <1 <d,

Jy(n, k)’ < BECEgeor(p) Y B [Be(Zi ()" Mo (i) 772

1<r<d
d B /2
<O B [Be(Zi(r) Mom_l(i,r)’p/ﬂ. (4.104)
r=1
Using (4.7) in Lemma 4.1, for all n > 1 and 1 < ¢,r < d, Q%-a.s., we have
1
Mn— .7 >7Mn— .7' 7Mn
0.n—1(%,7) dDH 018 )l = =5 {Mon-1(1, ), tn)
1
——=Aon—
= TpAon-110(7).

Combining this with (4.104) and (4.97), we get that for p > 2, n,k > 1 and 1 <i < d,
T3, k)P < CEoes [Be(Wi)P2 (Ao 1u0(i)) /2] = CEgeial, (0),

where a;71(p) is defined in (4.67) with j = 1. This, together with (4.69) (which holds under
condition (4.50), implies that there exists d3 € (0, 1) such that for all n,k > 1 and 1 < i < d,
Ji(n, k)P < C68F. (4.105)

Combining (4.94), (4.95), (4.99), (4.102) and (4.105), we obtain that for all n,k > 1 and
1<4,j<d,
(B

Applying this inequality with n replaced by |[n/2] (the integral part of n/2) and taking
k=n—|n/2], we see that for alln > 1 and 1 <4,j < d,

71 . 7 1/p n n
nin(d) = W) < OF + 05 + 03).

.o\N1/p _
(Bl Zi () - wiP) " <o+ 57 + a5/ < o,
with § = max{&l/ 2 1/ 2, 53/ 2} < 1. Therefore, for any 1 < 4,j < d the normalized popu-
lation size Z!(j) convergences in LP(Q%) to W' as n — oc. This concludes the proof of

Theorem 4.17.
O
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4.6. Convergence in LP(Q%) of the normalized norm ||IHE5ZéD||' We now deduce from
Theorems 4.17 and 4.16 the convergence in LP(QS) of |HZ ”” the normalized total popu-

lation size of generation n.

Theorem 4.19. Assume A1, s € IF UL .
(1) If N'(s) > 0, H2 holds and E(||Myl||*log™ || Mo]||) < oo, then we have for any 1 <
i<d.
125
e Z I

— W'in LYQ%), asn — 4o0. (4.106)

(2) Let p > 1 be such that maxi<; j<a EMo(i, )P < oo. If (4.50) holds, then for
any 1 <1 <d,

1251 » .
— — W in LP(Q%), asn — +oc. (4.107)
e 2y | ’
Moreover, there exist § € (0,1) and a constant C > 0 such that for all n > 0,
1<i<d,
Z »
| ”II wil” < csm. (4.108)

Proof. For any 1 < i < d, we have the decomposition

12 i~ Mo, 4) (Zfl(j) B >
IEe Z | v ZH Mon-1(8, )| \ Ee¢Zy,(5) W (4.109)

j:
Therefore, applying (4.109), and using the inequality for p > 1, | Z?Zl z;|P < dP1 Zd |z |7,
then there exist 6 € (0,1) and a constant C' > 0, we have for any 1 < i < d,

; p
12|

.H—Wi

- W p) . (4.110)

If p = 1, using this and Theorem 4.16, it follows (4.106). If p > 1, using (4.110) and
Theorem 4.17, we get (4.107) and (4.108). O

5. MOMENTS OF || Zi|| AND Z! ()

S (M€ Iz Z} 2l z: w(7)
In this subsection, as applications of the convergence in L*(Q%) of B2 EeZi () and

of moments for products of random matrices, we establish the exact equ1valence of the
moments of || Z}| and Z}, (7).
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Theorem 5.1. Assume conditions A4, A1 and s € If[ \ {0}. Additionally, when s > 1,
we assume E(Z(4))* < oo for any 1 <14,7 < d; when 0 < s < 1, we assume
Z1(j) Z1(j)
1 +
2%, =G, % W)
Then we have for alli,j € {1,--- ,d},

)<oo and  E(IMo|* log" [[Mo]) < oc.

. E||Z}|° ' / 7s(dx)
1 o = Ene (W*)*rs(e; . 1
oo K (s) s (W)°rs(ei) s 7s(@) (5.1)
. E(Z,(5))° ; (x,€;)°
lim — 22 = E e (W)%rs(e; s(dx). 5.2
Jim S = Egn (W) [ () (5.2)
Proof. Part 1: we first prove (5.1). By the definition of Q%, we have
E||Z,|° :E<||61Mo,n1||8 1Z3]I° )
K" (s) KM(s)  [[BeZpll®
_E. |\Zf1|'|S rs(€:)
O\ NEeZE[[® 7s(ei - Mon—1)
1Z;11° ' rs(€:) ; rs(e:)
=Eqei | (o ar— — (W) ) ——————— | + Eqes |(W*)——————|.
o [(HEgZ;HS P v ey Rl (LR T rymry
(5.3)

By Theorem 4.19, H]L':féﬂu — W% in L*(Q%) when s > 1, and in L'(Q%) when s € (0, 1].

Since the function r lies between two positive constants, it follows that

1ZiE e
Boe | (20l ppriys) T g as - oo, 5.4
o [(IIEgZzIS WY ) e My (5.4)

since the family of the random variables under the expectation is uniformly integrable.
Therefore, from (5.3), we obtain that

. E|Z¢|* ) ; rs(€;)
1 2D lim B |(W)S 5
im im Ege: | (W*) o

=E ii(Wi)sTs(ei)/ Tolda)

s a(z) (5.5)

n—00 ;{”(5) n—00 s(e; - MO,nfl)

where the last equality holds by the mixing convergence of (e; - Mo n—1) (see Lemma 3.7).
Hence, (5.1) is proved.

Part 2: we next prove (5.2). We have the following calculation
BIZLG) _ g Monaling)* (Z40))"
k(s)  (EeZ}(5))°

& ( (Z3G)°  rs(ed) Mo,n_lu,j)S)
(EeZ},(5)) rs(ei - Mon—1) lleiMon—1]*

N 2@ rs(ei)  Mon-1(i,j)°
[<(E§ZZ(.7'))S e >7“s(€z‘ - Mo 1) leiMo,n—1HS]

Ee: l(Wi)S rs(ei) MO’”_I(i’j)s] (5.6)

rs(ei - Mon—1) ||eiMopn—1||®
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By F-K condition A1, we have the bound

1 < Mo p-1(3,7)°
(dD)s = [leiMopn—1]l*

< D°.

By Theorems 4.16 and 4.17, we have o éE ().) — Wtin L*(Q%) when s > 1, and in L'(Q%)

VARE S
when s € (0,1]. Hence, the family of ((Egggj()j)) ) is uniformly integrable. Since the

function 7 lies between two positive constants, we get that

E@eil(ﬂ@i_ms)%( ra(e))  Mona(ing)”

]—>0, as n — o0.

EeZ}(5))* e - Mon—1) |leiMon—1||*
Therefore, from (5.6) we derive
_ E(Z}())) ; rs(e;) Mo -1(3,7)°
lim — 222 = lim E.e | (W")* J !
n—oo  K"(s) n—oo  Us (W rs(€i - Mon—1) |l€eiMon—1]|®

= lim E,e l(WZ)S rs(e) <M07n_1(i,j)s - (Un—l(j))s>1

n—r00 Q:* 7’5(61‘ : M07n—1) HeiMQn—le

provided that the limit exists. B

— (un-1(5))7] <

(3.18), we see that

MO,n—l(iaj)
'MOn 1”
|20 10 (7)vp—1(7)

ag,n—1u0(2)||vn—1]]
— 0, asn — oo.

S

‘MOn 1 { J
”ezMOn 1|5

— vn-1(J)

S

— Un-1(J)

Hence, by the dominated convergence theorem we get that

Therefore, from (5.7), provided that the limit exists, it follows that

. E(Z,(5)° ivs _ Ts(eq) \\s
Jim Tan(s) = lim Ko [(W ) m(vnﬂ(‘?)) ] (5.9)

Using again the dominated convergence theorem, we also obtain that

Ege: [(Wi)s(vn_l(j))s< rsle) _ _ralel) ))] 0, asn— . (5.10)

7’5(6,‘ : MO,n—l) rs(vn—l

Combining (5.9) and (5.10), it implies that

i B0 g, ((Wi)srs(ei)w>

n—00 Hn(S) n—o0 s Ts(vn—l)
= (WHsrg(e; <x’ej>s7r x
— Equ (Wres) | P (), (5.11)

the last step holds by Theorem 3.7. So this gives (5.2). O
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6. PRECISE LARGE DEVIATIONS

In this section we will prove Theorem 1.6 on the precise large deviation of || Z||. We
start with the following decomposition by telescoping: for any 1 < m < n,

n
Zn = ZmMpn-1+ Y (Zk — Ze—1Mp—1) My 1
k=m+1
= ZyMpn1+ Dy (6.1)

(recall that My, = My...My_1 if & < n, My, = the identity matrix if & > n, and
the empty sum is taken to be 0). Notice that the summands in > 7 ., are martingale
differences by the following lemma, which can be easily checked.

Lemma 6.1. [30]
(1) For any n > 0, we have
Eg[ZnH]?n] = Z,M,,. (6.2)
(2) For fizedn > 1, let
Wk,n = ZkMk,n—l for 0 <k <n, Wn,n =Zy. (63)
Then {Wk,n :0<k<n}isa Ri—valued martingale under Pe w.r.t. the filtration
{jk : 0 < k < n}

We will show that, with a suitable choice of m = m,,, for precise large deviations of Z,,
the reminder D,y , in the decomposition (6.1) is negligible, and Z,, behaves like Z,;, My, 5,—1.
To this end, we will make use of the following elementary bounds: for 0 < u < t,

P([Znll = 1) < P([|[Zm M 1] =t =) + (| D u), (6.4)
P([Znll = 1) = P([[Zm M1l = t + ) = P(| Din,nll = w), (6.5)
and we will need the estimation of the moments of ||Z!||, and that of || Z — Z_1 My_1||

appearing in D,, ,. Recall that Theorem 5.1 gives a precise estimation of the moments of
|| Z} || any order av > 0. Below we give an upper bound uniform for « in an interval.

\\/ \\/

Lemma 6.2. Assume the hypotheses of Theorem 1.6. Then, for any s > 0, there exist
constants 69 > 0 and ¢ > 0 (which may depend on s) such that for all a € [s,s + dp],
ie{l,---,d} andn >1,

B[ Zi %] < {cm a) if s<1andace€ls1], (6.6)

en®k(a)” if s> 1.

Moreover, there exist some constants 0y € (0, k(s)) and C € (0,00) such that for anyn > 1,
. . S

E (Hzg - Z;L_an,lu ) <63 (6.7)

Proof. Part 1: we first consider the case s < 1. Take any a € [s,1]. Since the function
x +— % is concave on [0, 00), the conditional Jensen inequality and (2.10) entails

E[| Z}1°] = E [Ee(| Z3]1")] <E (B¢l Z3])°]
= E[[BeZ3 ] = EfllesMon-1]] < lle:l|“E[[| Mon1]|°]
< (D*d)* ()" < (D*d)* T k(a)", (6.8)
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which proves (6.6). We now prove (6.7). In the following, for simplicity we just write Z,
instead of Z},. We need the following decomposition:

dan

Zp — L1 My, 1—2 Z (Nln 1 — Mn- 1(73'))7 (6.9)
r=1 [=1

where under P¢, the family of random variables {Nl’:n_1 — My—1(r,-) : r,l > 1} are i.id.
with zero mean, and independent of .%,,_1, and Z,,_ is %, _1-measurable. Let 0 < ¢ < s/2.
Then (s —¢) < k(s) because A(s) is strictly increasing in s € I'f, remarking that for
such s > 0, A’(s) > 0. Applying the inequality in Lemma 4.15 with p = 2= < 2 (because
e < s/2), writing E¢,,—1(-) = E¢(-|.#,-1) for the conditional expectation under P¢ given
Fn—1, we have, for some constant ¢ = ¢(d, p) > 0 whose value may change from line to line,

N d Zp—1(r)

)< (| X (Mo~ Maca ()
=1

)

s

575)‘

S

575)

Eep1 (HZ“ — 7 1M, 4

d
<Y Zua (B ([Nt = Mo (1)

d
< el Znall D Be (| Nt = Maa ()

Therefore, by Jensen’s inequality,

E(11Z0 — Zn-1Ma-i ||’

S‘*>>”1

; s S—¢€
o (i)
1
)> Hl ’ (6.10)

where the last equality can be seen by first conditioning on & and by using the i.i.d.
property of the sequence (&,). The last expectation in (6.10) is finite by the condition
maxi; j<d EMo(i,7)° < oo and the hypothesis (1.34), for ¢ > 0 small enough such that
p=3= < (6.10) with (6.8) we get (6.7).

We next consider the case s > 1. Below we will prove that: for any 8 € [1, s+ d] (with §
as in (1.35)) we have

< EKEM_I (|20 = Zn-1M s

= G| Zn-a | E[(ZE&(HZT ~ Mol )
r=1

E[|1Z, 7] < { Ay w(B)", it K(B) > w(1), (6.11)

dBnPR(1)", it 5(B) < K1),
for some continuous function d on [1,s + 0]. Note that (6.11) together with the condition
k(s) > k(1) entails (6.6).
For any n > 1, we have the following decomposition:

Zn = ZOMOn 1+ Z n—k+1 — Zn—an—k)Mn—k:—i—l,n—l' (612)
k=1
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By (6.12) and (2.10), together with the inequality (X721 z)? < (n + 1)5*1;1:5 for xp > 0,
we see that there exists a constant cg > 0 such that

n
E[ Za]*) < (n+ 17 (B[ ZoMon1|” + Y- El|Zo-rrt = ZooiMami|"E| Mo—t10-1]]”)
k=1

< (n+ 177 (es(B)" + Y Bl Znkir — Zn kMo i|| con(8)")
k=1

= cs(n+ 1)1 (k(A)" + zn: E||Zn k11 = Zn-i Mok 5(B)F). (6.13)
k=1

Using the decomposition (6.9) and Lemma 4.15 yields

d
B Zn — ZnaMoa]l*) < CoE[( Y2111 - rol) B Zoca 7, (6.14)

where §* = g V 1. Combining (6.13) and (6.14), we obtain the following estimate

n

E[[| Zul|*) < ea(n+ 1)~ (5(B)" + e(8) D Bl Zn—k ¥ 15(8)"), (6.15)

k=1

where o) = CoE|( L4y [|2] — Mo(r, ')||)B]

The above estimate is the key step in the proof of (6.11). From now we proceed by
induction on m such that g € (2™, 2m+1].

Assume first that 8 € [1,2], then 8* = 1 and E[|| Z,,_1||®"] = E[|| Zn_#|l] < E|Mo ... My,_j_1] <
c1r(1)"F, where ¢ is a constant. If x(8) > (1), from (6.15) we have

R()"Fi(8)")

NE

E[| Zu]|°] < es(n + )71 (k(8)" + c(B)er

=
Il
—

< es(n+ 1) (k(B)" + c(B)err(B)"n)

= ca(n+1)°7H(1+ c(B)ein ) w(B)". (6.16)

Therefore we obtain (6.11) when § € [1,2] and &(8) > k(1).
If g €[1,2] and k(B) < K(1), then again by (6.15),

E[| Zn]|) < ea(n + 17 (k(1)" + e(B)ers(1)™n)

=cg(n+ 1)5_1(1 +C(B)cln)m(1)". (6.17)

Hence, we also get (6.11) when 5 € [1,2] and x(8) < k(1).

We have therefore proved that (6.11) holds when j € [1,2].

Assume now that 8 € (2™,2™ %] for m > 1. We consider two cases. If k(3) > (1), then
by convexity x(5/2) < k() and by the induction hypothesis we have

E[l| Zn—ll”?] < d(8/2)(n — k)*"* max{r(1), x(8/2)}" . (6.18)
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Since 8* = (3/2, combining the above inequality with (6.15), we obtain

E{|Za1"] < can+ 1) (s(8 i A(B/2)(n — k) max{x(1), x(8/2)}"*(5)")

< cp(n+1)°

-1 H(ﬁ)n + C(ﬂ)d(5/2)/€(5)n Z (maX{ﬁ(;()éf(ﬁ/z)})”—k(n . k)5/2>
k=1

< ep(n +1)77 (k(B)" + c(B)d(B/2)r(B)"n/* )
= ca(n+ 1) (14 e(B)d(B/2)n**1 ) s(B)". (6.19)

This gives (6.11).
If k(B) < k(1), in this case x(8/2) < k(1) and by the induction hypothesis we have

E[l| Zn—sl*/2] < d(8/2)(n — k)/w(1)"". (6.20)

Combining this with (6.15), we get

n

El Zal’) < cp(n+1)° " (x(8)" 8) 3 d(B/2)n —)/*K(1 )"k (5)Y)
s(n+1)° 1(,% d(B/2)k z”: ’3/2)
p(n -+ 1P (w(1)" + e(B)d(B/2)s (1 >”nﬁ/2+1)
:cﬁ(n+1)ﬁ*1(1+c( Jd(B/2)n ) k(1) (6.21)

This implies (6.11) for this case. Hence, (6.11) is proved.
From (6.14) we obtain that

E[HZn - Zn—an—lns] HZ

[(ZHZl Mo(r)[) ] (6:22)
where s* = 5 V 1. Combining (1.35), (6.6) and (6.22), we get (6.7). 0
Since now, we set

m =m, = K|logn|, (6.23)

where |a] denotes the integer part of a € R, K > 0 is a constant which will be chosen large
enough. The following lemma gives an estimation of the deviation of D,, .

Lemma 6.3. Assume hypotheses of Theorem 1.6. Then there exist some constants bs €
(0,00) and 0 € (0,k(s)), such that for any t > 0 and n > 0, with m defined in (6.23),

B1Dmall >0 < 3 (=) (o)

ts \ k(s)




MULTI-TYPE BRANCHING PROCESS IN RANDOM ENVIRONMENT 57

Proof. In the following we assume that n is large enough, say n > ng, such that 0 < m < n.
(For n < ny, the inequality holds clearly by taking bs large enough.) For any ¢ > 0, we have

P(Dmnll = 1)
n n t
<SP > WZk = ZeaMyp—1) Mgl > Y. =15
2k
k=m+1 k=m+1

. t
<) P <||(Zk: — Zp1Mi—1) My 1 || > %2) ,
k=m+1

By the Markov inequality, using Lemma 6.2 and (2.10), there exist some constants bs €
(0,00) (whose value can change from line to line) and 6y € (0,x(s)) such that, for any

n >0,

- t
> P2~ ZiaMio) M| > 55 )

k=m+1
n t —S
<Y Bl - Zea M) Mo |- (573 )
k=m+1
n t —S
< Y B2 - Za M) E (M) (575 )
k=m-+1
n
< bs Z OF ki (s)"FE25t S
k=m+1

ot 3 () g

k=m+1

< bsk(s)"t™° </<&(98))m ,

where 0 € (6p, (s)). This gives the conclusion. O

Now we shall analyse the quantity ||Z,, My, »—1| in the decomposition (6.1). We have,
for any u,t > 0,

B ([1Zn M -] > €')

Z,
=P (“MMm7n_1 HZmH 2 et)
m

HZﬂ>éw%M<¢)

Z.
—pQ\nzM .
[ Z]

Hzm>dJ%w>w)

Z,
S
1 Zm]|
=: Ji(t,u) + Jao(t, u). (6.24)

We will prove that, with suitable ¢ = ¢(n) and v = u(n), the term Jy is small (see Lemma
6.4), and the term J; gives the main contribution.

Fix s € (I7)°. Let ¢ = A’(s) > 0. Let {0, }n>1 be any sequence of real numbers satisfying

60| < C6ny Y > 1,
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where C' > 0 is a constant, {8, }n>1 is an arbitrary given sequence of real numbers such that
0 < 6, = o(n"'/2). We will first focus on estimating J2,,, we have the following lemma:

Lemma 6.4. Under the hypotheses of Theorem 1.6, we have, with m defined in (6.23), as
n — 0o,
. . P e—nA*( )—sndn,
Jop =P (HZ;an,n—IH > eaton) || Zi || > ematm ) =0 <\/ﬁ . (6.25)

Proof. Using

emq—i—mﬁ emq—‘rmﬁ

{ HZrlnH > 1} _ fj { ”Zrzn” e (el,el+1]}, (6.26)
=0

and the independence of Z! and My -1, we get

VA en(a+dn) 122 |l
Jan < P |7 Mmp—1| = — m E(el,elﬂ}
> (”HZM mot| > Tz G

+8p)—mg—mP —1-1 HZi I I _l+1
\ZZ(:]P(HHZZH m,n— 1H> n(q+0n)=mg—m 7(@1%6(6’6 ]

< ZP <HMm,nl|| > en(q+5n)—mq—m5—l—1’ HZmH c (el,el+1]>

1>0 ematm”
<SP ([ M| > ettt =mammP =0 p (| 72 || > ematm®el) (6.27)
>0

Recall that the Fenchel-Legendre transform A* of A(s) = logk(s) satisfies, for ¢ = A’(s)
with s > 0,

A*(q) = sq — A(s).
Using the Markov inequality, the first term of (6.27) can be bounded as follows:
F (Han—lﬂ = e”(q+5n)—mq—m5—l—1)
[Han 1||s} % e Sng—sndntmsq+m’sts(i+1)
< ek (8)"™ x e snasndntmsgtm?sts(itl)

_ Csean* (q)efA(s)mfsn5n+mSQ+3mﬁ+Sl‘ (628)

By Lemma 6.2, there exist some constants dy and ¢g > 0 such that for any « € [s, s + do],
E[|Z},]1%] < conr(a)". (6.29)

Let ¢ € (0,dp) and recall the Taylor expansion: A(s 4+ ¢) = A(s) + ¢e + %A”(a), for some
a € [s,5 +¢]|. Taking ¢ = ¢(s,d) = max(sup,e(s 545 A”(a), co), and using again Markov’s
inequality for the second term in (6.27), we get, for any ¢ € (0, dp),

P(”Z:n” > el]m-&-m@el) < E[HZ}TLHs-i-a]e—q(s-i-a)m—(s—i-a)mB—(s-i—a)l

C( ) s+6[l€(5 + 2,5)]me—q(s—&-a)m—(s-&—g)m»@e—(s—i-a)l

( ) s+66mA(s+5)e—q(s—&—s)m—(s—f—s)mﬁe—(s—f—a)l

s+5/€(5)mq‘3”m2efq‘(”mf(sﬂ)m[3 e~ (sl (6.30)

N

cm
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Combining (6.28) and (6.30) we obtain

sz < Z CcsC ms+5€—nA* (q)e—A(s)m—snén—i—msq—i—smB—&—sl . H(S)mecmEQe—qsm—(s+a)m66—(s+a)l

=0

—nA*
5€ (@) —snép+cme?

< csem®t —em’, (6.31)

O
We next handle the term
T =P (| Z5 My || = €00 | 21| < ematm?). (6.32)
Lemma 6.5. Under the hypotheses of Theorem 1.6, we have, with m defined in (6.23), as
n — 0o,
= Zrin i ||s
o) ey, (B () 12001°)
1o~ e +o(1) |. (6.33)
sos\/2mn K(s)mrs(eq)

Proof. Set L,, = Lemq+mﬁj, with m defined in (6.23). Using the independence of Z!, and
M,y n—1, we rewrite Ji 5, as follows:

ha= X P(ZnMuna]| > 0, 2}, = 2)

z:1<||z||<Ln

- Y P <HHzHMm”1H > e"<q+5n—'°gnz'>> P(Zi, =2)

z:1<||z||<Ln
2 _ _log 2] _log ]
= Z P <H””Mm7n1H = e(” m)(g+6n gn )+m(g+6n gn )>
21<|[7][<Ln o
xP(Z}, = =)
z _ .
= 5 B[ M| 2 e ) (21, = 2), (0:34
21<2<Ln o
where [,, is defined by

n 1
by = I(s) =~y Mo Logllzl] (6.35)

n—m n—m n—m

which satisfies

sup  |lp| = o(n™1/?).
Izll€[1,Ln]

By the large deviation result from [74, Theorem 2.1 and Eq. (2.4)], we have,

P (HZM 71H > e(n—m)(q+ln)>
[E I

7, (Hz\l> — J;il(’;(j)m) exp (—(n — m)A*(q + 1n)) (6.36)
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where 75 = %, SUP||.||>1 [€1,n(2)| = 0, and
l2
A (q+1,) = A*(q) + sl + Py (14 e2,(2)) with sup lean(2)] — 0, (6.37)
95 Izl €1, L]

uniformly in all sequences (8,),>1 such that &, < C6, for all n > 1 (see [74, Lemma 4.1]).
As — 1 and I2(n — m) — 0, it follows that

P (HH; My | 2 e<nm><q+zn>>

o (HZH) mexI’(_(”—m)(A*(Q)Hln))’ (6.38)

where sup|;jcn,z, [€3,n(2)] = 0. Remark that, with the definition of /,,, and the fact that
A*(q) = sq — A(s), we have

(n —m)(A™(q) + sln) = n(A"(q) + 56n) +mA(s) — slog ||z]]. (6.39)
From (6.34), (6.38) and (6.39) we deduce that the term .J; ,, defined by (6.32) satisfies

1—|—€ n\%) _nA*(q)—snd, —mA(s) — 7
ho= 3 Mmoo, () o (2, < 2).

21<||2||<Ln 598 2mn

n—m

where sup| e,z [€5,n(2)| = 0. Therefore for any e € (0, 1), there is ng = no(e) > 0 such
that, for all n > ng, Ji, lies between (1 £ E)J{m, where

1 * Z”L
J/ _ = —nA*(g)—sndn -mR sq . 6.40
b o, o i(s) 1Z:.1l 125" {1<1Z,11<Ln } (6.40)

For the last expectation, we have

Zi % 1
E( (HZZ H) 1Zml {1<z¢n<Ln}>
r ZZ TS _ ZZ

where the second term is o(m(s)m), as will be seen in Lemma 6.6 below. Therefore, (6.40)

and (6.41) imply the desired result (6.33).
(Il

Lemma 6.6. Assume hypotheses of Theorem 1.6. The following assertion holds, with m
defined in (6.23) and as n — oo:

E (12.1°2{1Z5,]l > La}) = o(s(s)™). (6.42)
Proof. Using again the decomposition (6.26), we get
E 1z 1{1Z5]l > e })

< S E(IZI{ermt e < |25 < e+
=0

< Z esqursmﬁes(lJrl)P(HZjnH > equrmBel) ) (643)
>0
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Combining (6.30) and (6.43) we know that there is a constant ¢ = ¢(s, ) such that for any
€ (0,9),

E (| Z5 I 1{)1Z5]| > e+ })

B 2 _ — B _
< Zesqm+sm 6s(l—l—l) -Cms+6ﬁ(8)m cme® —gsm (s+e)m e (s+e)l

e
>0
_ s+5 m _cme2—embP
Ze (s)™e
>0
1
= e R(s) e (6.44)
— €

Taking ¢ = (logn)~"7 with n > 1 — /3, we obtain (6.42).

O
We now prove that the expectation in (6.33) converges to a constant.
Lemma 6.7. Assume conditions of Theorem 1.6. Then
E(r () I1200°) 1 .
Oy = li 12:] = Ege: (W) € (0,00). 6.45
Z nl—>n;o K(S) rs(ez) VS(TS) Qs ( ) ( 700) ( )

To prove Lemma 6.7, we need the following technical result:

Lemma 6.8.

(1) For any § > 0,n € (0,1), there is a constant C = C(d,n) > 0 such that for any
R -valued random variable,

E(Xlog" X) < C(EX)'(B(X))". (6.46)
(2) Assume A1. When 0 < s < 1, the condition (1.34) implies condition H2. When
s = 1, the condition (1.35) also implies condition H2.

Proof. (1) By Holder’s inequality E|X;Xo| < (E|X1|P)"P(E|X|%)"? with p = 1/(1 — n)
and ¢ = 1/n, and the elementary inequality (log™ z) < C2" for some constant C' = C(6,7)
and all z > 0, we get

E(Xlog* X) = E(X'™1 X"log" X) < (EX)'"(E(X (log* X)1/"))"
< C(EX) (B (6.47)

(2) Using (1) for X = i((];) under the law P¢, we obtain for all 1 <4,j < d,

Zi(4) Zi() Zi() "
E{ L log™ 1,,}<C’[E< ) , 6.48
\3noti ) ' Mol ) Moli, ) (649
Taking expectation at both sides, we get that for all 1 < 4,5 < d,
Zi() Zi(j) { < Zi() )H‘T
E e; 10 " < C]E €7 ]E e
. (MO(ZJ) & Mol j) O [\ Mo(i, 5)
n
CC.E|Mati, ) (Be(2i0) ) . (6.49)

where C; is a constant, and the last step holds by Al.
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When 0 < s < 1, taking n = we obtain that for all 1 < 4,5 < d,

.
Zi(j) Zi())
Eg: <Mol< 7 o8 Molu,j))<003E[<Eg<zl<y>>”5)

| (6.50)

So when s € (0,1), (1.34) implies H2, and when s = 1, (1.35) also implies H2.

@ S
When s > 1, then (1.35) implies Eqe: (Jj;(%)) < 00, so that H2 holds. 0

Proof of Lemma 6.7. By the definition of the measure Q%, we have

Sz (22N
E ||z@|ls>=E< < )( v | Bzl
( (Hmy) " 12i01) \lEezi]) "
- S
_E(r (2 IZull )" cotoglestton-1
1Zi11) \lEeZi]

= k(s)"rs(ei)Eges s <II§72H> 1Zi) \°
AN Vol 0 Ts(eiM()’n_l) HE&Z%” .

Dividing by (s)"rs(e;) we get

= Zi 1|8 = Z3 i s
E(n () 1200) () (12 )Y (651)
r(s)"rs(ei) G\ rslei - Mon—1) \ |[EeZy |

We will use Theorem 4.19 to prove that

123
EeZ:]

— W' in L¥(Q%) when s > 1, and in L'(Q%) when s € (0, 1]. (6.52)

To this end we just need to prove that the conditions of Theorem 4.19 are satisfied under

those of Theorem 1.6. This is easily seen by Lemma 6.8. Hence, ”I‘é@'” %\ Wi in prob-

ability as n — +o0o . Therefore, the convergence of ”I!: ”” in L°(Q%) is equivalent to the

uniform integrability of (( HIU:&”L'H) ), so that ( é Converges in L'(Q%):

Zvll s 1\S
2| () — O

(6.53)

Using (6.53) and the fact that the function rs lies between two positive constants, from

(6.51) we get
OGNy (E) ). o

n—oo K’(S)n'rs(ez) n—o0 8 7’5(61 MO,nfl

provided that the last limit exists. The existence of this limit will be established below.

We now prove that in the last expression, fs( ) /rs(ei - Mon—1) can be replaced by

A
Ts(Un-1)/7s(vn—1). Using the identity § — § = % and the fact that r, and 7, lie
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between two positive constants, we see that for some constant ¢ = ¢(s) > 0,

_ YA
Ts (HZZH)  Ts(vn-1)

7'5(61‘ : MO,n—l) Ts(vn—l)

<C(

Therefore, for some constant ¢ = ¢(s) whose value can change from line to line,

_ VA
"s (iuzZn)  7s(vn-1)

7 (Z0/1Z3) = o)

+ |75 (vn—1) = rs(ei - Mo,n_l)!). (6.55)

EQ? rs(€i- Mon—1) 7s(vn—1) (W

< cBgei |75 <”§2H> - fs(vn,1)|(Wi)s + cEqei Urs(ei Sug 1) — (e - M07n,1)|(Wi)s}
|z s .

< oy H i~ vt V| g (ot — €0 Mo | 0V
i 7 5 s

< cBger ”HZZH — V1| (W) Ty | + cBeger [[[von1 — e - Mo | (W], (6.56)

where the last inequality holds since 75 and 75 are 5-Holder continuous with respect to the
the L' norm || - || (by Lemma 2.2). By Theorem 4.12 we see that for all ¢ > 0, as n — +o0,

Q¢ (H HZ‘H — vn_lH >e, Wi> 0) — 0. (6.57)

We now also see that by (3.48), under the changed measure Q¢,

€; - M07n_1 — Un—1 njoo 0 Q? a.s.. (658)
Moreover, we know that,
Ege: (W')* < o0. (6.59)

Combining (6.56)-(6.59), and using the dominated convergence theorem, we get

Zi
"s (IIZZH)  Ts(vp1)

' Ts(ei : MO,n—l) Ts(vn—l)

(WH* -0 asn — oo. (6.60)

Therefore we get

i e, ( Ts (Hgﬁ) (Wz)s) = lim Enc; (fs(vn—l) (Wz)s)
)

n—o0 s Ts(ei : MO,n—l n—o0 s Ts(vn—l)
1 .
= —E,e: (W), 6.61
Vs(rs) Qs (W ) ( )

the second equality holds by Theorem 3.7. With (6.54), this implies (6.45).
[l

We are now ready to finish the proof Theorem 1.6 on the precise large deviation of || Z%||.
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Proof of Theorem 1.6. We begin with the decomposition (6.1). Notice that for any (d,)
with 0, < Cd,, for all n > 1, and any ¢ € (0, 1], we have

P[IZ,] > €7 ] < P{|Z5, Min-all = "7 =%] + P[|| D] > €770 (1 — 7).

(6.62)
We first deal with the second term in the right-hand side. From Lemma 6.3, choosing
t = 6™t with § > 0, and setting 7 := %S) < 1, we obtain, with m = K|logn] and
1
K> —2logn?

P[HDm,nH > 66nq+n6n] < C(S_ST]me_nA*(Q)_SWSn
5fs€an*(q)fsn6n
= 1). 6.63
() (6.63)
We next deal with the first term in the right-hand side of (6.62). From (6.33) in Lemma
6.5, and Lemma 6.7, we know that the term J; ,, defined by (6.32) satisfies

Cer(ei) —nA*(q)—

Jip = —2 A @) =sndn (] 4 (1)) as n — oo 6.64
e (1+0(1) (6.60)
For the estimation of J5,, defined by (6.25), combining Lemma 6.4 and (6.64), we obtain
that, for any constant C' > 0, uniformly in (,) with §,, < C4, for all n > 1,

; C ) *
P HanMm,an > enlaton) | — L(e)e_"A (@=sm0n (1 4 o(1)) as n— co. (6.65)
sosV2mn

From (6.65) (applied to 6, = d, —&/n), and to the constant C + Cp, where Cy satisfies
1/n < Coby, for all n > 1), we see that for any constant C' > 0, uniformly in e € (0,1] and
(6n) with 6, < C9y, for all n > 1, as n — oo,

) C eS¢ X
B2 Mo 1| 3 ent7n=e] = CLIE nctonin(y (1)) (.60
S

We now prove the upper bound of the desired large deviation probability. Combining
(6.62), (6.63) and (6.66) yields that for any &’ > 0, there is ng = ng(e’) (which may depend
also on the given constant C' > 0 and the initial sequence (J,), such that for all n > ng and
any € € (0,1],

\/ﬁenA*(q)esn6"P[”Z;|| > enq+n6n] < CZT‘S(ei) 655(1 + E/) + (1 . 675)758/' (667)
SOV 2T

For the lower bound, we can use a similar argument: using the inequality that for any
e € (0,1],

BIZL] > €] > B[|| 25, My, - Moy || > €7 5E] — B[|| D] 2 €0 (e — 1)].

we conclude that, for any & > 0, there is ng = ng(¢’) such that for all n > ng and any
e € (0,1],

. , C ,
\/ﬁenA (q)esn6nIP>[”Z;LZH > enq—‘rnén] > ZTs(ez) e—se(l _ 6/) _ (65 _ 1)—55/‘ (6.68)
SO\ 21
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Ase € (0,1] and &' > 0 are arbitrary, from (6.67) and (6.68), we conclude that, uniformly
in () with §,, < C6, for all n > 1, as n — oo,

) ng+n CZTS €i) _nA*(q)—sn
P[||Zi| = e"vTn] ~ e %m)le A% (@)=sndn
. C(S) —TlA*(q)
= e , (6.69)

where, by Lemma 6.7, the constant C(s) € (0,00) has the expression

= ( Zm i s
) - 2L iy E (((”@)(uz)mu )
Ts(ei)

- WEQ?-(W")S. (6.70)

0
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