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I. EQUATIONS OF THE MODEL
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∂tu∥ i = −{ϕ, u∥ i} −

{
ψ,
u2∥ i

2

}
− (ΩiτA)

2ρ2∗
n

{ψ, τipi + pe}+ Ud∆⊥ũ∥ i (6)

where ψ is the poloidal magnetic flux, ϕ the electro-
static potential, pe and Te the electron pressure and tem-
perature, pi and Ti the ion pressure and temperature,
n the electron density (quasi-neutrality is assumed) and
u∥ i/e the ion and electron parallel fluid velocities, with

u∥ e = u∥ i −
J∥

nΩiτA
. The definition of the generalized

vorticity is

W = ∆⊥(ϕ+ τiΩiτAρ
2
∗pi) (7)

meaning that here the Boussinesq approximation is ap-
plied, and imposes a condition for the equilibrium pro-
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files, which is always satisfied in simulations unless clearly

stated: ∂xϕeq = −ΩiτAρ
2
∗
∂xpi eq

neq
. Applying the Boussi-

nesq approximation means that when evaluating the term
∇ · (nupol) the density is considered as constant every-
where it appears (including the diamagnetic drift ap-
pearing in upol). The parallel current density is J∥ =
∆⊥ψ. A “∼” above the symbol of the field indicates
that only the fluctuating part of the field is retained.
α in Eq. 2 is an index for the sum over the perpen-
dicular geometrical coordinates, since the explicit ex-
pression of the second term on the RHS of Eq. 2 is:
{∇αϕ,∇αpi} = {∂xϕ, ∂xpi} + {∂yϕ, ∂ypi}. The curva-

ture is K =
(
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(
1
B

)
× b

)
, with b = B

B .
Note that the model explicitly depends on the electronic
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TABLE I. Normalization used for the equations of the model.
Quantities with subscript “0” are reference values at the res-
onant surface. vA = cB0√

mn0
is the Alfven velocity at resonant

surface. L⊥ is a characteristic perpendicular length of the
system. K3 and K2 are paremeters introduced to manipulate
linear spectrum.

η 1 · 10−5 ρ2∗ 1.66 · 10−4

µ 5 · 10−4 K1 −0.5 [−1]

χ⊥ e/i 5 · 10−5 K2 = K3 −3 · 10−1

χ∥ e 5.0 · 102 Ly 6π

χ∥ i 8.0 · 100 τi = Ti/Te 1.0

D 1 · 10−4 ΩiτA 3.12 [6.24]

Ud 5 · 10−5 Lx 10

TABLE II. Dissipative and dimensionless parameters used for
the 2D non-linear simulations in slab geometry. The value of
ΩiτA in brackets is for the higher-β case. The value of K1 in
brackets is for the stronger drive case.

beta through the relation βe 0 = 2(ΩiτA)
2ρ2∗

II. PARITY ANALYSIS THROUGH COMPLEX
ARGUMENT DIFFERENCES

Since the paper employs an unconventional way to de-
fine the parity of the modes, using the average argument
of the complex-valued functions, rather than comparing
values across a center of symmetry, here is provided some
more insight on this point. Fig. 1 shows the eigenfunc-
tions of two different simulations in the linear phase: one
interchange unstable (shown with circles), the other tear-
ing unstable (shown with empty squares). The left-axis
shows the normalized asbolute value of the mode, while
the colorscale shows the difference between the phase of
the function at any given radial position to the phase of
the function at a chosen radial position (in this case the
x = 0 position). Note that the slight asymmetry in the

absolute value of the interchange unstable mode is an
effect due to the cubic terms when the equilibrium pres-
sure profile is not flat (in the tearing unstable simulation
this profile was flat), an effect that will be investigated
in a paper currently in preparation. As evident, an even
mode (i.e. an unstable tearing mode) has constant phase
across the resonant position, whereas the interchange un-
stable mode has a phase change of π/2 across the reso-
nant position. In these linear simulations, these phase
differences will be exact, as is evidenced by the average
values < |∆φ|/2π > computed and shown in Fig. 1.In
the non-linear simulations of the paper, these averaged
values will not be exact as is the case in this linear exam-
ple, but lower average phase differences indicate a more
relevant tearing parity of the mode, whereas higher val-
ues indicate dominant interchange parity (i.e. that parity
of the mode changes more across the radius, as is the case
in the interchange parity simulations).

FIG. 1. Comparison of the linear modes for two different
simulations: one interchange unstable (shown with circles),
the other tearing unstable (shown with empty squares). The
asymmetry in the absolute value of the interchange unstable
mode is due to the cubic terms.

III. THE COALESCENCE PROCESS

Here are shown some figures to illustrate the differ-
ence between simulations that show coalescence (weaker
magnetic shear ∂xBeq = 0.01 and slightly stronger insta-
bility drive γ∗ = 0.018) and those that don’t (stronger
magnetic shear ∂xBeq = 0.02 and slightly weaker insta-
bility drive γ∗ = 0.015). These simulations were not
directly used in the paper, but clearly illustrate the dif-
ferent behaviours of the two regimes, while also having
very similar instability drives, thus highlighting the role
of the shear in the dynamics. Using the isocontours of the
magnetic potential ψ one can see how in the linear phase
(Figs. 2 and 3) both simulations are unstable to inter-
change modes, with the simulation with weaker magnetic
shear showing radially broader modes. In the early non-
linear phase, the simulation with stronger magnetic shear
(Fig. 4) retains dominant interchange parity in its modes,
whereas the simulation with weaker magnetic shear (Fig.
5) has modes with noticeably more tearing-like parity.
Fig. 6 shows the late non-linear phase of a simulation
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that undergoes coalescence (this one part of the set used
in the paper), with turbulent regions enclosed within the
magnetic islands that have formed non-linearly. Fig. 7
shows the late non-linear phase of a simulation run with
the same parameters as the simulation giving Fig. 6 but
without including the cubic terms in the dynamics, show-
ing their crucial role in allowing the mechanism described
in the paper to take place. Figs. 8 - 12 show a sequence
of isocontours for the simulation with γ∗ = 0.049 and
∂xBeq = 0.02 (zoomed in to the region x ∈ [−3, 3]) to
more clearly illustrate the merging of structures from
small to large scales. Figs. 13 - 14 show a zoomed-in
detail of the isocontours for two simulations in the non-
linear phase, where the one undergoing coalescence can
be seen having regions with fluctuations of ψ of the same
sign aligning horizontally, effectively changing the parity
of the mode.
Note: γ∗ is the growth rate of the most unstable mode
in the linear phase.

FIG. 2. Isocontours of ψ for a simulation with γ∗ = 0.015
and ∂xBeq = 0.02, that will not undergo coalescence, showing
interchange parity in the linear phase.

FIG. 3. Isocontours of ψ for a simulation with γ∗ = 0.018
and ∂xBeq = 0.01, that will undergo coalescence, showing
interchange parity in the linear phase.

FIG. 4. Isocontours of ψ for a simulation with γ∗ = 0.015
and ∂xBeq = 0.02, that will not undergo coalescence, showing
interchange parity in the early non-linear phase.

FIG. 5. Isocontours of ψ for a simulation with γ∗ = 0.018
and ∂xBeq = 0.01, that will undergo coalescence, showing
tearing-like parity in the early non-linear phase.

FIG. 6. Isocontours of ψ in the late non-linear phase of a
simulation with γ∗ = 0.083 and ∂xBeq = 0.02 that shows
coalescence. Notice the X-points at y ≈ 3π and y ≈ π.
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FIG. 7. Isocontours of ψ in the late non-linear phase of a sim-
ulation with γ∗ = 0.083 and ∂xBeq = 0.02 where the cubic
terms were not included in the dynamics (compare to
Fig. 6). Notice that the modes retain interchange parity and
remain limited in width.

FIG. 8. Isocontours of ψ in the late linear phase for the
simulation with γ∗ = 0.049 and ∂xBeq = 0.02.

FIG. 9. Isocontours of ψ in the early non-linear phase for the
simulation with γ∗ = 0.049 and ∂xBeq = 0.02.

FIG. 10. Isocontours of ψ in the fully developed non-linear
phase for the simulation with γ∗ = 0.049 and ∂xBeq = 0.02.

FIG. 11. Isocontours of ψ in the late non-linear phase for the
simulation with γ∗ = 0.049 and ∂xBeq = 0.02.

FIG. 12. Isocontours of ψ at the latest point available in
the non-linear phase for the simulation with γ∗ = 0.049 and
∂xBeq = 0.02.
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FIG. 13. Zoomed in detail of the isocontours of ψ for a sim-
ulation with γ∗ = 0.015 and ∂xBeq = 0.02, that does not
undergo coalescence, showing that the fluctuations of ψ (in
most cases) change sign across the resonant position, main-
taining a dominant interchange parity.

FIG. 14. Zoomed in detail of the isocontours of ψ for a sim-
ulation with γ∗ = 0.018 and ∂xBeq = 0.01, as it is under-
going coalescence, showing how the fluctuations of ψ of the
same sign tend to align horizontally, changing the phase of
the mode.


