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Abstract

A novel coalescence process is shown to take place in plasma fluid simulations, leading to the

formation of large-scale magnetic islands that become dynamically important in the system. The

parametric dependence of the process on the plasma β and the background magnetic shear is

studied, and the process is broken down at a fundamental level, allowing to clearly identify its

causes and dynamics. The formation of magnetic-island-like structures at the spatial scale of the

unstable modes is observed quite early in the non-linear phase of the simulation for most cases

studied, as the unstable modes change their structure from interchange-like to tearing-like. This is

followed by a slow coalescence process that evolves these magnetic structures towards larger and

larger scales, adding to the large-scale tearing-like modes that already form by direct coupling of

neighbouring unstable modes, but remain sub-dominant without the contribution from the smaller

scales through coalescence. The presence of the cubic non-linearities retained in the model is

essential in the dynamics of this process. The zonal fields are key actors of the overall process,

acting as mediators between the competitive mechanisms from which Turbulence Driven Magnetic

Islands can develop. The zonal current is found to slow down the formation of large-scale magnetic

islands, acting as an inhibitor, while the zonal flow is needed to allow the system to transfer energy

to the larger scales, acting as a catalyst for the island formation process.

Magnetic islands are a well-studied phe-

nomenon in plasma physics, being the prod-

uct of magnetic reconnection, a process that

leads to the re-organization of the magnetic

configuration and lowers the overall internal

energy of the system. Magnetic reconnec-

tion itself is a phenomenon of interest to the

whole domain of magnetized plasma physics,

as it leads to localized heating and changes

in the magnetic field topology, thus strongly

affecting the properties and dynamics of the

plasma [1–3]. In case the system allows for
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it, the newly formed magnetic structures can

form subsets of nested flux surfaces that can

act as a localized confinement region, the

magnetic island itself.

Despite the large volume of work done on

magnetic islands [4–8], there are still open

questions about the fundamental proper-

ties of these structures and the dynamics

of reconnection, namely how exactly turbu-

lence drives reconnection, thus forming Tur-

bulence Driven Magnetic Islands (TDMIs),

what are the differences in the dynamics for

a plasma that undergoes reconnection at dif-

ferent plasma β = 2µ0 p
B2 regimes (where p is
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the plasma pressure, B the magnetic field

strength and µ0 the vacuum permeability

constant) and how do zonal fields (i.e. ax-

isymmetric flows and currents) interact with

magnetic islands. Of particular interest for

this work are the dynamics of turbulent re-

connection [7, 9–11], the generation of mag-

netic islands by turbulence [12–15] and the

interaction of magnetic islands with zonal

fields [16–19].

In this letter, the generation of magnetic is-

lands by turbulence is shown in systems with

varying plasma β, magnetic shear and insta-

bility drive. The relation of the new pro-

cess to those previously explored in the lit-

erature [12, 13] is addressed, and, as will be

detailed, this new process comes in addition

to, and supercedes, previous processes lead-

ing to TDMI formation, in particular in near-

marginal regimes relevant to low-β plasmas.

The core finding of this paper is illustrated

in Fig. 1, where the transition of the system

from the linear interchange instability to the

non-linear formation of TDMIs through coa-

lescence is shown as a sequence of isocontours

of the field ψ at different times.

To demonstrate the presence of these

mechanisms and assess their importance, a

reduced 6-field fluid model is considered, de-

veloped starting from the Braginskii fluid

equations [20, 21], allowing to describe both

small-scale phenomena, like interchange in-

stabilities and the deriving turbulence, and

large-scale ones, like magnetic islands and

zonal fields, on the time scales needed to

study (resistive) magnetic reconnection. The

model evolves 6 dynamic fields: the magnetic

potential ψ, the electrostatic potential ϕ, the

electron and ion pressure pe/i, the density n

and the ionic parallel velocity u∥. Reduction

of the system to single-helicity “2D” slab ge-

ometry allows studying the fundamentals of

the process in a simplified and generic en-

vironment, where the only requirement is a

strong background magnetic field that allows

defining the geometry of the system in ref-

erence to a chosen magnetic helicity (that

identifies a “resonant position” [4, 22]). The

background magnetic field is used to define

a parallel and a perpendicular direction and

establish drift-ordering expansions [23] (that

are used to derive the model), that allow to

study slow processes ω/Ωi ≪ 1, where Ωi is

the ion cyclotron frequency and ω the charac-

teristic timescale of the studied phenomenon.

The model being a “reduced” model means

that fluctuations of the magnetic field in

the parallel direction are considered to be

higher order corrections to the dynamics, i.e.

B̃∥/B0 ≪ B̃⊥/B0 < 1. The ∼ indicates fluc-

tuations, the parallel “∥” and perpendicular

“⊥” directions are defined relative to the to-

tal magnetic field, and ∂zBz = 0, with z be-

ing the direction of the dominant component
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of the background magnetic field. Thus (af-

ter normalization) one can write the fluctua-

tions of the magnetic field as B̃ = ∇× (ψẑ).

In slab geometry, the parallel derivative of a

generic function f can be expressed in a con-

venient form keeping into account the fluc-

tuations of B̃ = B̃⊥ through the Poisson

brackets: B̃ · ∇f = {ψ, f} = (∇ψ ×∇f) · ez

where ∇ is the gradient and ez the direc-

tion of the background out-of-plane magnetic

field. The explicit expression for the Pois-

son bracket in slab geometry is: {ψ, f} =

(∂xψ ∂yf − ∂xf ∂yψ). Here, x is the radial di-

rection, y the periodic poloidal direction and

any field f can be decomposed according to

f =
+∞∑

m=−∞
fm(x) exp(2iπmy/Ly + φ).

The full expression of the flux divergence

terms is retained in the model, meaning that,

in reduced notation, the parallel derivatives

are given by the product of 3 fluctuating

fields, e.g. ∇∥(pu) = p∇∥u∥ + u∥∇∥p =

p{ψ, u∥} + u∥{ψ, p}. Such terms, also used

in other models [24, 25], are referred to as

“cubic terms” [26], and it has been shown

[21] that they can significantly impact the dy-

namics. Velocities in the system are normal-

ized to the Alfvén velocity at the reference

position vA = B0√
µ0mn0

, lengths are normal-

ized to a characteristic but arbitrary perpen-

dicular length scale L⊥, the magnetic field

is normalized to the reference value B0 and

both pressure and density are also normalized

to the reference values at the resonant mag-

netic surface. A more detailed description

of the model, including simulation parame-

ters, is provided in the supplementary mate-

rial and/or in the references [21]. This model

is implemented in the fluid code AMON [27].

For the simulations of this work, only the in-

terchange instability is present, driven by the

coupling of the equilibrium ion pressure gra-

dient to the curvature of the magnetic field.

Having a single-helicity system implies that

there is only one resonant position, where the

magnetic field determines the reference helic-

ity, which allows for clearer analysis of the

mechanism. To limit the number of free pa-

rameters, the only background gradients in

the system are those of the ion pressure and

of the magnetic field. Note that in order to

have a net 0 perpendicular equilibrium drift

one has to impose ∂xϕeq = −ΩiτAρ
2
∗

∂xpi eq
neq

.

The magnetic field is linearly stable to the

tearing mode, which is confirmed by com-

puting, at the resonant position x = 0 the

parameter ∆′ ≤ −1.9 [28, 29]. This value

of ∆′ is obtained by using a Harris-sheet

background magnetic field with sufficiently

weak gradient. The resistivity η = 10−5 im-

plies a typical time-scale for resistive recon-

nection τη = L2
⊥/η ≈ 104 τA for a typical

L⊥ = 0.5, meaning that phenomena occur-

ring on time-scales faster than τη are due

to turbulent dynamics. The simulations are
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FIG. 1. Sequence of isocontours of ψ taken from

the simulation with β = 1.28% and ∂xBeq = 0.02

showing the coalescence process taking place

from the late linear phase (top) to the non-linear

phase (bottom).

thus gradient-driven, though the modem = 0

is self-consistently evolved, allowing for sat-

uration dynamics to take place, should they

be present.

Non-linear simulations are run scanning

the parameter space as shown in Fig. 2. All

simulations are interchange unstable. This

identifies a threshold in β and s = ∂xBeq |x=0

Beq |x=0
=

∂xBeq|x=0, the magnetic shear, for the for-

mation of TDMIs. The definition of the

magnetic shear varies in the literature, here

Beq is the total equilibrium magnetic field,

including the constant out-of-plane compo-

nent, that appears at the denominator when

writing By as a function of the total mag-

netic field in a mono-helicity system, hence

|Beq|x=0| = 1 and s measures the inverse

of the length scale of the variation of the

“poloidal” magnetic field, but results pre-

sented in this paper are independent of the

definition of the magnetic shear. Additional

simulations have shown that the threshold is

not related to the growth rate of the most un-

stable mode, but rather to the physical mech-

anisms acting at different shears, since simu-

lations with very similar growth rates of the

most unstable mode did or didn’t show the

formation of TDMIs depending on magnetic

shear.

Notice that the weaker the magnetic shear,

the more likely the appearance of TDMIs,

reinforcing the point that the structures pre-

sented here do not originate from tearing [28].

The non-linear dynamics of the system fur-

ther weaken the magnetic shear, and non-

linear de-stabilization of tearing can also be

ruled out.

What is actually meant by “formation of TD-

MIs” is illustrated in Fig. 3, where the radial

structure of the mode m = 14 for two sim-

ulations with β = 1.28% but different mag-

netic shears ∂xBeq = 0.02 and ∂xBeq = 0.04

are compared. Since the modes are complex
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valued, the plot uses the absolute value of

the function to represent its magnitude, and

the colour scale to represent the phase dif-

ference of the mode at that particular posi-

tion to the phase at the resonant position.

For a mode with interchange parity, in a lin-

ear simulation, the eigenfunction of ψ is odd

(meaning that the real and imaginary parts

are odd), corresponding to an even absolute

value with a change in phase across the res-

onance, while for tearing parity the phase is

constant across the resonance, corresponding

to an even eigenfunction. Since simulations

are non-linear, the words “even” and “odd’

are not to be understood as exact proper-

ties, but refer to the “dominant” component

of the function, which does not necessarily

match the linear one. Focusing on ψ, as the

formation of magnetic islands is directly vis-

ible through this field, Fig. 3 refers to t =

1700τA (i.e. early in the non-linear phase)

in two simulations where, at that particular

time, the mode m = 14 had the highest en-

ergy: the simulation that develops TDMIs (

∂xBeq = 0.02 ) has a broad region of weakly

varying phase around the resonance, whereas

the simulation that doesn’t form TDMIs has

a clear variation in phase across the reso-

nance. Averaging the absolute values of these

phase differences ∆φ = (φ − φres)/(2π) for

−1 ≤ x ≤ 1, where the amplitude A of the

modes satisfies A/Amax ≥ 0.1, gives the aver-

age ⟨|∆φ(x)|⟩x∈[−1,+1] values in Fig. 3, show-

ing a noticeable lower average phase differ-

ence when TDMIs form. Using the phase in-

formation to quantify the parity of the modes

also allows to compensate for the shift of

the resonant position in the non-linear phase,

that would act as the symmetry center to

define the parity of the mode. Performing

this analysis over time and for all modes

shows this behaviour of the average phase dif-

ference to be consistent over time, at least

for all modes with mode-number m <∼ m∗

(m∗ being the mode-number of the linearly

most unstable mode). Thus, in simulations

where the formation of TDMIs is observed,

modes develop, on average, more tearing-like

structures in their non-linear evolution, even

though they start out with interchange par-

ity.

Whether this change in structure of the un-

stable modes takes place determines whether

or not the large-scale magnetic islands will

form. What allows this change in structure

is a combination of factors, including the ve-

locity shear, whose role, along with that of

the zonal current, will be expanded upon in

the following section. However, suppressing

the fluctuations (and the equilibrium) of the

mode ϕ0 does not prevent the change in par-

ity, so the mechanism requires also the pa-

rameter dependencies illustrated in Fig. 2

and the cubic non-linearities retained in the
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model. This latter point has been verified

by running simulations without cubic non-

linearities, that don’t show change in par-

ity of the unstable modes. Indeed, in sim-

ulations without cubic terms, one recovers

the results from the literature [10, 13]: di-

rect coupling of the mode m∗ with the mode

m∗ ± 1 drives non-linearly an m = 1 mode

with tearing parity, whose growth rate sat-

isfies γ ≈ 2γ∗. However, such modes never

become dynamically important. Only if the

unstable modes (with m ≈ m∗) change par-

ity, will a clearly identifiable magnetic island

form in the system, after the non-linear en-

ergy transfer across scales takes place. The

small-scale islands that form at the unsta-

ble scales merge (coalesce) into larger islands

over time, allowing the sub-dominant low-

m modes, formed by direct coupling, to be-

come dynamically relevant and form large-

scale magnetic islands. Thus without the

mechanism described here, no large-scale is-

land would be visible in the system (see the

supplemetary material for figures illustrating

this process).

The role of the cubic terms (and partially

of β and ∂xBeq) can be understood by fo-

cusing on the pressure term in Ohm’s law:

ΩiτAρ2∗
n

{ψ, pe}. In an interchange unstable sys-

tem, the parity of ψm∗ in the linear (and early

non-linear) phase is odd, and non-linear dy-

namics form modes m = 0 of pressure and

density that also have odd parity (to give

profile flattening). The Poisson bracket of

two odd functions is odd, multiplied by nm=0

leads to an even term, at the same m∗ of the

linear instability. This changes the parity of

the unstable mode.

It is also important to remark that the phase

change described here happens on much

faster time-scales than the resistive time-

scale (in the late linear phase it’s possible to

quantify the average behaviour of the phases

described above), and thus is attributed to

non-linear (turbulent) behaviour. The non-

linear energy transfer also occurs on time-

scales faster than the resistive one, so that

overall the process is quicker than the resis-

tive time-scale.

Summarizing, the novelty of the process de-

scribed here is the fact that the change in

structure of the unstable modes is allowed by

a combination of the background parameters

and the presence of the cubic terms. Through

the above non-linear dynamics, small-scale

TDMI form. They allow the otherwise sub-

dominant large-scale TDMIs formed by the

direct coupling described in the literature

[12, 13, 15] to appear in the system.

These simulations only allowed seeing islands

with m = 2, while one might expect to

observe islands with m = 1: for simula-

tions with strong instability drive, the islands

reached the boundaries of the domain, re-
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FIG. 2. Summary of results for 2D slab

non-linear runs of linearly unstable interchange

where the plasma β and background magnetic

shear were varied. Green circles represent sim-

ulations that showed the formation of magnetic

islands and at least the initial phases of coales-

cence, while simulations indicated with red “X”s

didn’t. The mode number m∗ and the corre-

sponding growth rate γ∗ on top of the symbols

refer to the most unstable mode. Circled simu-

lations are used in Fig. 3

gardless of the size of the latter, before the

mode m = 1 formed, while for simulations

with weak drive, the non-linear energy trans-

fer slows down progressively, rendering the

computational cost of observing the m = 1

mode prohibitive. The strong instability case

might point to a missing saturation mecha-

nism in our simulations, but this will have to

be addressed in future studies.

The non-linear dynamics of the system

are dominated by the interaction among the

structures at the largest scales. These struc-

FIG. 3. Radial structure and phase differences

of the mode m = 14 of ψ for two non-linear sim-

ulations with β = 1.28% but different magnetic

shear as indicated in the legend (∂xBeq = 0.02

forms TDMIs, ∂xBeq = 0.04 doesn’t). The dif-

ferences in phase with the reference value at the

resonance are computed across the radius, along

with the average ⟨|∆φ|/2π⟩, over the portion of

the radius between the two dashed vertical lines

at x = ±1. Notice that for ∂xBeq = 0.02 the

mode has more even (tearing-like) parity. A no-

ticeable lower average phase difference shows up

consistently through simulations that form TD-

MIs for all modes with m < m∗.

tures are the TDMI (with poloidal mode-

number m = 2), the zonal current (i.e. mode

ψm=0) and the zonal flow (i.e. mode ϕm=0).

The fluctuations of the mode ψ0 form a ra-

dial region around the resonance where the

poloidal magnetic field and its shear vanish.

In the non-linear phase, the flow becomes

strongly sheared at the resonance, which is

expected since that is where the instability is

driven, and also at the radial position where

the magnetic island has its maximum radial
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width. As the island grows in width, this

latter region of sheared flow moves with the

growing island away from the resonant sur-

face, which is indicative of a strong interde-

pendence between the magnetic island and

the localization of the velocity shear.

Shown in Fig. 4 is the time evolution of

the energies of the (selected) modes of ψ and

the zonal flow (ϕ0) for the simulation with

∂xBeq = 0.01 and β = 1.28%. It’s visible

how in the linear phase the linearly unstable

modes (the curve labeled as ψΣ is obtained

by summing the energies for all modes with

10 ≤ m ≤ 40) grow and drive, by non-linear

coupling, the large-scale modes (ψ2, ψ3, ψ4).

A period of interaction with the zonal fields,

visible in the quick oscillations of the zonal

current ψ0, enhances the energy transfer from

the small to the large scales. In simula-

tions that did not show the formation of

TDMIs this phase is missing, and the zonal

fields have much “smoother” energy dynam-

ics. Furthermore, in simulations that did not

form TDMIs, the large-scale modes remain at

low energy levels, while here a shift in the en-

ergy distribution is visible quite early in the

non-linear phase. The importance of modes

m = 0 on the dynamics of coalescence has al-

ready been highlighted also in other contexts

such as in [5]. Late in the simulation the

mode ψ2 becomes dominant, and the large-

scale modes acquire significantly larger en-

ergies than the turbulent scales. One could

expect the mode ψ1 to become dominant over

time, but, as already addressed, this was not

observed.

To further address the role of the zonal fields,

variations on the simulations were run where

the fluctuations of the zonal fields were sup-

pressed either through the use of a stronger

dissipation only to the mode m = 0 of the

electrostatic potential ϕ from the beginning

of the simulations, or by completely eliminat-

ing fluctuations of the mode m = 0 of ψ or of

ϕ from a certain time in the non-linear phase

(once the m = 2 magnetic island was already

dominant) onwards. When the zonal flow is

suppressed for a simulation that has already

reached the non-linear phase, it is observed

that the coalescence is halted at the current

wave-number, and the island’s width stops

evolving, indicating that the zonal flow is re-

sponsible for the transfer of energy at larger

scales (i.e. the coalescence), acting as a cat-

alyst for the formation of TDMIs. This is an

unusual behaviour for zonal flows, that usu-

ally move energy towards the smaller scales

by shearing apart larger eddies [17], but it’s

also peculiar that in these simulations the

properties of turbulence aren’t much affected

by the disappearance of the zonal flow.

Suppression of the zonal current for a sim-

ulation that has already reached the non-

linear phase does the opposite, accelerating
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the transition of energy to larger scales, while

strongly suppressing turbulence. This can

be understood as the re-establishing of the

background magnetic shear, that limits the

region where turbulence can develop. Thus

the zonal current acts as an inhibitor to the

formation of TDMIs, slowing down the co-

alescence by creating the low-shear region,

that favours the accumulation of energy at

the turbulent scales.

It has long been known from gyrokinetic

analytical calculations [30] and simulations

[31] that zonal flow saturation is not dom-

inated by fluid dissipation. Given the im-

portant role of zonal flows described above,

one should check that our results are not re-

liant on zonal flow dissipation. Starting sim-

ulations anew with varied dissipation for the

mode ϕ0 shows, as expected, the existence of

two regimes of zonal flow saturation (ideal

and collisional). Specifically, increase of the

dissipation of the zonal flow by a factor 50

doesn’t lead to any effect, while a further fac-

tor of 5 finally gives a factor ∼ 1/5 on zonal

flow saturation levels. The simulations dis-

cussed in this paper are therefore in the ideal

regime, where both zonal fields saturate at

similar levels regardless of the magnitude of

the dissipation.

In conclusion, this paper shows how the

formation of TDMIs can happen through a

process never observed before that involves

FIG. 4. Evolution of the energies for the simula-

tion with ∂xBeq = 0.01 and β = 1.28%. For the

magnetic potential ψ multiple modes are shown

to highlight the different phases of the simula-

tion, while for the electrostatic potential ϕ only

the mode m = 0 (i.e. the zonal flow) is shown.

The curve labeled as ψΣ is obtained by summing

the energies for all modes with 10 ≤ m ≤ 40.

small-scale islands forming at the unstable

scales and then merging to progressively

larger scales. This happens through a

coalescence process that allows the otherwise

negligible large-scale islands formed by direct

non-linear coupling to become dominant.

Coalescence occurs at a later time than the

direct coupling of the most unstable modes

reported in the literature (e.g. [13]), and,

since it requires energy transfer across scales,

is slower than the direct coupling (direct

coupling takes ≈ 10(γ∗)−1, in Fig. 4 this

would be t ≈ 800τA, while coalescence takes

≥ 50(γ∗)−1), but it modifies the dynamics of

the system fundamentally, and, in particular,

leads to much larger magnetic islands than

otherwise observed. Simulations that form
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magnetic islands, unlike those that don’t,

undergo a change in the radial structure

of the magnetic potential ψ, rendering the

phase of the mode more uniform over the

radial coordinate (Fig. 3). The equilibrium

magnetic shear of the system, and the

presence of the cubic terms in the model,

are crucial in allowing this change in parity,

and thus the coalescence, to take place. This

process is of particular importance for fusion

plasmas, since it allows the formation and

growth of magnetic islands independent of

neoclassical physics, and it might feedback

into the dynamics of NTMs. The latter are

expected to pose a threat to future devices,

operating at higher β than existing ones

(and than explored here), in particular since

the source of the seed islands is, in some

cases, unexplained [32]. On the other hand,

astrophysical plasmas occur more often in

conditions where β ≈ 1, such that pressure

fluctuations can play a much larger role

on the dynamics of the system, allowing

the cubic terms to impact the dynamics

much more significantly, making the process

described here relevant.

The TDMI is capable of driving a strongly

sheared poloidal flow at the position where

its separatrix has its maximum radial width,

and the presence of the zonal flow is needed

for the coalescence process to continue

throughout the simulation. The zonal flow

is mostly driven by the turbulence and the

magnetic islands, rather than being regu-

lated by dissipation. Given the strong role

in the establishment of Internal Transport

Barriers [33, 34] played by zonal fields, this

might be an unexpected positive outcome of

the presence of TDMIs. The zonal current,

instead, slows down the coalescence process,

favouring the development of small-scale

turbulence by creating a region of weak

magnetic shear.

SUPPLEMENTARY MATERIAL

The supplementary material to this letter

contains the equations of the model, includ-

ing normalizations and parameters used to

run the simulations. There is also a series of

figures illustrating the change of phase and

the coalescence through the isocontours of

the magnetic potential ψ, as well as the cru-

cial role played by the cubic terms, and an

explanation of the use of phase information

to analyze the parity of the modes.
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