
HAL Id: hal-04833623
https://hal.science/hal-04833623v1

Submitted on 12 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

VeriFogOps: Automated Deployment Tool Selection and
CI/CD Pipeline Generation for Verifying Fog Systems

at Deployment Time
Hiba Awad, Thomas Ledoux, Hugo Bruneliere, Jonathan Rivalan

To cite this version:
Hiba Awad, Thomas Ledoux, Hugo Bruneliere, Jonathan Rivalan. VeriFogOps: Automated Deploy-
ment Tool Selection and CI/CD Pipeline Generation for Verifying Fog Systems at Deployment Time.
SAC ’25: Proceedings of the 40th ACM/SIGAPP Symposium on Applied Computing, Mar 2025,
Catania, Italy. �10.1145/3672608.3707854�. �hal-04833623�

https://hal.science/hal-04833623v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

VeriFogOps: Automated Deployment Tool Selection and CI/CD
Pipeline Generation for Verifying Fog Systems at Deployment

Time
Hiba Awad

IMT Atlantique, LS2N (CNRS), Inria Rennes, Smile
Asnières-sur-Seine and Nantes, France

hiba.awad@smile.fr

Thomas Ledoux
IMT Atlantique, LS2N (CNRS), Inria Rennes

Nantes, France
thomas.ledoux@imt-atlantique.fr

Hugo Bruneliere
IMT Atlantique, LS2N (CNRS)

Nantes, France
hugo.bruneliere@imt-atlantique.fr

Jonathan Rivalan
Smile

Asnières-sur-Seine, France
jonathan.rivalan@smile.fr

Abstract
Fog Computing consists in decentralizing the Cloud by geograph-
ically distributing computation, storage, network resources, and
related services. Among other benefits, it allows reducing band-
width usage, limiting latency, or minimizing data transfers. How-
ever, Fog systems engineering remains challenging and quite often
error-prone. Following best practices in software engineering, veri-
fication tasks can be performed before such systems are concretely
deployed. Works already exist on verifying non-functional prop-
erties of Fog systems at different previous steps of the life cycle.
This paper goes one step further and presents the VeriFogOps ap-
proach. This approach allows to automatically select deployment
tools, based on expressed Quality of Service (QoS) requirements,
and then generate relevant CI/CD pipelines supporting the deploy-
ment of Fog systems. We implemented and validated our approach
via two realistic use cases, considering different QoS solutions and
deployment tools. This work, developed in direct collaboration with
our industrial partner Smile, goes towards the direction of a more
comprehensive support for the entire life cycle of Fog systems, from
design to actual deployment and execution.

CCS Concepts
• Software and its engineering→ Software verification and
validation; Software development process management; •
Computer systems organization→ Cloud computing.

Keywords
Verification, Deployment, CI/CD pipeline, Automation, Quality of
Service, DevOps, Fog Computing
ACM Reference Format:
Hiba Awad, Thomas Ledoux, Hugo Bruneliere, and Jonathan Rivalan. 2025.
VeriFogOps: Automated Deployment Tool Selection and CI/CD Pipeline
Generation for Verifying Fog Systems at Deployment Time. In The 40th
ACM/SIGAPP Symposium on Applied Computing (SAC ’25), March 31-April 4,

SAC ’25, March 31-April 4, 2025, Catania, Italy
© 2025 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in The 40th ACM/SIGAPP
Symposium on Applied Computing (SAC ’25), March 31-April 4, 2025, Catania, Italy,
https://doi.org/10.1145/3672608.3707854.

2025, Catania, Italy. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3672608.3707854

1 Introduction
Fog computing [16, 31] is a paradigm aiming to decentralize the
Cloud by geographically distributing computation, storage and net-
work resources, as well as related services. It is at the crossroads
of complementary areas such as Cloud computing [4], Edge com-
puting [23], and IoT [15]. In practice, large data centers in core
networks, and micro data centers or computing-enabled devices
at the edge of networks, are used in a collaborative way within a
single large-scale geo-distributed system called Fog system.

Recent work has shown that Fog systems are often very difficult
and expensive to engineer and then manage [1, 16]. While some
works already target the verification of properties on Fog systems at
different steps of the life cycle [5, 10, 30], it is still challenging to en-
sure an appropriate Quality of Service (QoS) [29] when configuring
these Fog systems before their deployment. This is notably due to
their distributed and heterogeneous nature, limited computational
resources, and dynamic environments. These characteristics make
it difficult to efficiently handle resource allocation, security aspects,
latency control or reliability (among others). Thus, an important
objective is also to allow the verification of QoS requirements at
deployment time. This was confirmed by the feedback we received
from our industrial partner Smile, based on their own experience in
customer projects. To this end, following best practices in software
engineering, a key capability is to automate the selection of the
most suitable deployment tool and related configuration according
to provided QoS requirements. Moreover, Fog systems can target
many different application domains and can possibly rely on vari-
ous deployment solutions. As an answer, in this paper we propose
the VeriFogOps generic approach for deployment tool selection and
automated CI/CD pipeline generation.

To fulfill this objective, the proposed iterative approach mostly
contributes two new components that rely on 1) The use of CI/CD
pipeline, combined with different types of (deployment tools and
QoS solutions) couples, to select the most appropriate deployment
tool and corresponding deployment configuration file for a given
Fog system, 2) The use of this deployment configuration file, along
with associated deployment instructions, in order to automatically

https://orcid.org/0009-0005-3271-298X
https://orcid.org/0000-0002-6136-6757
https://orcid.org/0000-0002-5987-2175
https://orcid.org/0000-0002-3779-556X
https://doi.org/10.1145/3672608.3707854
https://doi.org/10.1145/3672608.3707854
https://doi.org/10.1145/3672608.3707854

SAC ’25, March 31-April 4, 2025, Catania, Italy Hiba Awad, Thomas Ledoux, Hugo Bruneliere, and Jonathan Rivalan

generate a CI/CD pipeline that enables the verification of QoS re-
quirements and the automated deployment of this Fog system via
the selected deployment tool. To evaluate our approach, we provide
an implementation that we validate in the context of three differ-
ent use cases from the literature. On these use cases, we consider
two different types of QoS solutions (related to security issues and
deployment costs respectively) with different deployment configu-
ration files. As a result, and based on various deployment instruc-
tions, we show that we are able to automatically select the most
suitable deployment tool and corresponding configuration as well
as to generate the related CI/CD pipeline.

The paper is organized as follows. Section 2 presents the gen-
eral background and motivation for our work, resulting in three
research questions. Section 3 introduces the overall VeriFogOps
approach. Then, Section 4 focuses on the automation support we
propose for deployment tool selection and CI/CD pipeline genera-
tion. Section 5 illustrates the practical validation we performed in
the context of three different use cases from the literature. Then,
Section 6 summarizes the current Gitlab-based implementation of
the proposed approach and implementation. Section 7 discusses the
current capabilities and limitations of our work. Finally, Section 8
elaborates on the related work, while Section 9 concludes the paper.

2 Background and Motivation
As introduced in Section 1, verifying QoS requirements after de-
ploying Fog systems can quickly become challenging and expensive.
As a consequence, it is necessary to consider alternative approaches
to better support the verification of QoS requirements before the
actual deployment of these systems.

This idea is directly reflected by the current Shift-Left trend
in the software industry [25]. The Shift-Left approach advocates
for the identification and resolution of bugs as early as possible
during the engineering process. A practical illustration of the Shift-
Left approach is the DevSecOps paradigm [18] which intends to
deal with the security concerns before operation processes. The
overall objective is to improve the quality of the engineered systems
while reducing the time spent to resolve problems later in the
system’s life cycle. Going in this direction, recent work provided
some approaches for verifying QoS requirements during different
engineering phases by relying on various techniques [5, 13, 33].
However, up to our current knowledge, there are only few existing
approaches verifying QoS requirements at deployment time.

In the industry, several solutions have already been developed
to tackle deployment-related QoS requirements. Indeed, the ecosys-
tem is rich and quite heterogeneous in terms of deployment tools
(e.g., Terraform1, Kubernetes2Ansible3, Chef 4) and associated QoS
solutions. For instance, the InfraCost5 motto is "Shift FinOps Left
With Infracost": it enables a Shift-Left (i.e., prior to deployment)
approach to infrastructure costs by providing cost estimates for
Terraform, an infrastructure-as-code tool. Another example is tfsec6
which provides a security scanner based on the static analysis of

1https://www.terraform.io/
2https://kubernetes.io/
3https://www.ansible.com/
4https://www.chef.io/
5https://www.infracost.io/
6https://aquasecurity.github.io/tfsec/

Terraform code. Because of this diversity, there is a risk of being
limited by or even locked in a particular deployment tool.

As a consequence, and as confirmed by the experience of our
industrial partner Smile, there is the need for a global generic ap-
proach that support such a rich deployment ecosystem in an auto-
mated way. The popular DevOps paradigm already advocates for
the automation of both development and operation activities [12].
To support this, CI/CD pipelines are essential automation com-
ponents [2]. Such pipelines consist in series of steps automating
the software workflow by building, testing and deploying the cor-
responding code in a regular and iterative way. In our context,
obtaining CI/CD pipelines well-adapted to our QoS requirements
verification needs appear to be fundamental [32].

Based on this overall analysis, we propose in this paper to address
the following Research Questions (RQs):

RQ1 How to support in a generic way a rich and heterogeneous
DevOps ecosystem while verifying QoS requirements before
deployment?

RQ2 Which automation components (e.g., roles, pipelines, lan-
guages) are needed to support this DevOps ecosystem and
QoS requirement verification?

RQ3 How to validate these automation components and corre-
sponding generic approach for different QoS requirements
across various Fog application domains?

3 An Approach for Deployment Tool Selection
and Automated CI/CD Pipeline Generation
(RQ1)

As introduced in Section 1, the objective of the VeriFogOps approach
is twofold. First, it aims at supporting the automated selection of
the most relevant deployment tool and deployment configuration
file, according to QoS requirements expressed by a Fog System
Architect (FSA) in charge of the concerned Fog system. Second, it
aims as using the result of this selection in order to automatically
generate a corresponding CI/CD pipeline, that verifies these QoS
requirements before actually performing the Fog system’s infras-
tructure deployment. During the process, the FSA collaborates with
both DevOps engineers (i.e., development experts) and SysOps en-
gineers (i.e., system experts). Figure 1 provides an overview of the
VeriFogOps approach.

0 The Fog System Architect (FSA) is the main actor. Ideally, this
role should be held by an engineer or a group of engineers having
knowledge and experience in terms of both Fog infrastructures
(including their non-functional characteristics) and the targeted
application domains (smart cities, industrial IoT, etc.). Thus, the
FSA is notably in charge of specifying the QoS requirements for
the concerned Fog system.

1 The FSA begins using the Deployment Tool Selection com-
ponent by specifying Deployment instructions within one single
declarative file. In this file, the FSA specifies the different QoS
requirements expected to be verified before the Fog system’s de-
ployment. Associated rules, selection priorities and corresponding
deployment status are also indicated at this step.

2 Then, the FSA specifies (from scratch) or retrieves (from other
solutions such as VeriFog [5, 6]) various Deployment configuration
files wished to be verified. The FSA also identifies the various

https://www.terraform.io/
https://kubernetes.io/
https://www.ansible.com/
https://www.chef.io/
https://www.infracost.io/
https://aquasecurity.github.io/tfsec/

VeriFogOps: Automated Deployment Tool and CI/CD Pipeline for Verifying Fog Systems at Deployment Time SAC ’25, March 31-April 4, 2025, Catania, Italy

Deployment Tool Selection

Multiple deployment solutions evaluation pipeline

Deployment
Solutions

Evaluation

Fog System
Architect

Selection CI/CD Pipeline

QoS
Solution A

InfraCost,
kics, etc.

Terraform,
Ansible, Chef,

etc.

2
Deployment

Configuration
file

Deployment Tool A

Deployment
Configuration

Deployment Tool B

Deployment
Configuration

Deployment Tool n

Deployment
Configuration

DevOps
Engineer

Deployment Tool

Deployment
Configuration

4

3
2

1

0

1

Deployment
Instructions

0

Infrastructure Deployment

Single deployment solution verification pipeline

Domain-oriented
CI/CD Generator

Domain-
oriented
CI/CD

Deployment
CI/CD Pipeline

Failure Report

Deployment Done

6 7 8

SysOps
Engineer

5

Specifies

Input/Output

Valid

Invalid

Legend

Repository

File

Deployment Tool

Deployment
Configuration

QoS
Solution B

QoS
Solution n

Deployment
Instructions

9

Figure 1: Overview of the VeriFogOps approach, deployment tool selection and automated CI/CD pipeline generation for Fog
systems (the circled numbers correspond to numbered paragraphs in the text).

Deployment tools to be considered within the selection process.
These tools are used to actually deploy the system infrastructure
according to specific types of Deployment configuration files.

3 The DevOps Engineer then comes into play, as an expert in
deployment tools and corresponding QoS solutions for verifying
QoS requirements. The DevOps engineer examines the Deployment
configuration files and associated Deployment tools (proposed by
the FSA) to identify appropriate QoS solutions. These solutions are
designed to ensure that a given deployment configuration meets the
expressed QoS requirements. Each type ofDeployment configuration
file / Deployment tool comes with associated QoS solutions dedicated
to particular kinds of requirements. As a result, combinations are
formed (e.g., Deployment tool A, QoS solution A) and described in
a repository within a CI file called Deployment Solutions Evalua-
tion. This choice of QoS solutions is directly guided by the QoS
requirements specified in the Deployment instructions. It can also
be influenced by technical constraints, such as the availability of a

given QoS Solution for a particular Deployment tool. Note that the
engineering effort from the DevOps engineer may be required only
once, e.g., when the architecture of the Fog system is first defined.
This effort can also be reused over multiple projects, provided that
they share common QoS requirements and deployment tools.

4 The Deployment solutions evaluation created by the DevOps
engineer is executed by a CI/CD Pipeline having three stages. The
"build" stage sets the appropriate environment to run the different
verification tests. It also ensures that the deployment configuration
files exist and are not empty. The "test" stage verifies the selection-
related QoS requirements specified by the FSA in the Deployment
instructions file. The output of this stage is then analysed in the
last "select" stage. At this point, the CI/CD Pipeline automatically
identifies the Deployment tool and corresponding Deployment con-
figuration file providing the best results.

SAC ’25, March 31-April 4, 2025, Catania, Italy Hiba Awad, Thomas Ledoux, Hugo Bruneliere, and Jonathan Rivalan

5 After selecting the most appropriate Deployment Tool and
Deployment configuration file, the resulting information is trans-
ferred to the Infrastructure Deployment component along with the
Deployment Instructions originally specified by the FSA.

6 In this component, the Domain-oriented CI/CD Generator
takes theDeployment Instructions as input in order to generate a cor-
responding Domain-oriented CI/CD descriptor file. Such a Domain-
oriented CI/CD Generator can be notably based on templates tar-
geting several different deployment tools and QoS requirements. It
can also be further extended according to the needs.

7 The generated Domain-oriented CI/CD file describes the three
stages of the CI/CD Pipeline to be executed. The "build" stage
presents the environment to run the verification of the QoS re-
quirements indicated by the FSA. Then, the "test" stage describes
the verification tests to be performed, along with their rules and de-
ployment status as specified in the Deployment Instructions. Finally,
the "deploy" stage indicates the actual Deployment Configuration
file to be deployed with the selected Deployment Tool.

8 From the Domain-oriented CI/CD file, a CI/CD Pipeline is
automatically created for a specific CI/CD platform. This CI/CD
Pipeline then automatically executes all the stages specified in the
Domain-oriented CI/CD file. After execution, there are two possi-
bilities depending on the obtained results and tests status. In the
first case, we have a Deployment Done: all mandatory tests success-
fully passed, or there were no mandatory tests. Similarly, all other
stages have been successfully completed, so the pipeline is valid
and the deployment is considered a success. In the second case, the
pipeline stopped and a Failure Report is produced: at least one of
the mandatory tests failed. For example, a given value exceeded
one of the thresholds mentioned in the Deployment Instructions file.

9 Finally, a SysOps Engineer can check this Failure report and
react accordingly. He is an expert in deployment tools and infras-
tructure constraints who is able to manually edit the Deployment
Configuration files whenever needed. Depending on the type of
failure, the SysOps engineer can decide 1) to directly modify the
Deployment Instructions file, by changing the rules or status of the
failed test, in order to maintain the pipeline and obtain a successful
deployment, or 2) to change the selected Deployment configuration
file, eventually by also triggering another iteration of the Deploy-
ment Tool Selection process. Although a collaboration may occur
between the SysOps engineer and the FSA in case of a failing deploy-
ment, the former is able to autonomously modify the configurations.
The performed updates can allow the reconciliation between the
intent of the originalDeployment Configuration and newly appeared
requirements concerning the targeted deployment environment
(e.g., prices, security policies or API changes). Such an evolution
may be quite frequent and sometimes unforeseen.

4 Language and Automation Components
Dedicated to Deployment Tools (RQ2)

We now focus on the main components we propose in the VeriFo-
gOps approach to support interactions with configuration files at
deployment time. In what follows, we provide more details on the

simple language we designed for expressing the required Deploy-
ment Instructions. Then, we describe further the two core capabili-
ties of VeriFogOps, namely the automated selection of deployment
tools and the generation of corresponding CI/CD pipelines.

4.1 Deployment Instructions
In VeriFogOps, we propose a simple declarative language for ar-
chitects and engineers to describe the QoS requirements to be 1)
considered for deployment tool selection and 2) verified before
actual deployment. All this information is encapsulated within a
given file called Deployment Instructions. Having such a single file
notably allows for an easier sharing during the whole deployment
preparation process. As presented in Section 3, the main purpose
of the Deployment Instructions file is for the FSA to specify QoS
requirements, associated rules, selection priorities and deployment
status. With these information, our components can then verify and
guarantee before actual deployment that the selected Deployment
Configuration file can satisfy the expressed QoS requirements.

To introduce the proposed language, Figure 2 shows an example
of a basicDeployment Instructions file describing verification instruc-
tions for three main QoS requirements relevant for Fog systems:
configuration syntax, security and cost.

Figure 2: Excerpt of the YAML textual notation of the pro-
posed Deployment Instructions language.

Each individual instruction has a name and can be expressed
by a set of rules specifying the value of different CI/CD variables.
For example, such a variable can be a threshold for the maximum
number of security problems allowed (e.g., CRITICAL_PROBLEMS).
The selection_priority indicates whether the concerned QoS require-
ment has to be considered (or not) for the deployment tool selection
process. When provided, the corresponding value indicates the pref-
erence in case of more than one suitable deployment tool (i.e., 1
is more priority than 2). For example, if a deployment tool A ex-
cels in cost efficiency while deployment tool B offers a superior
security level, the selection_priority, where a lower value indicates
a higher priority, will determine the final choice. Finally, the de-
ployment_status element indicates whether the QoS requirement
check is "optional" or "blocking" for deployment. In the first case, an
invalid check does not prevent the rest of the deployment pipeline

VeriFogOps: Automated Deployment Tool and CI/CD Pipeline for Verifying Fog Systems at Deployment Time SAC ’25, March 31-April 4, 2025, Catania, Italy

from being executed. In the second case, it directly stops execution
of the deployment pipeline.

4.2 Deployment Tool Selection
As presented in Section 3, the main purpose of the Deployment Tool
Selection component is to verify QoS requirements for different
Deployment Configuration files corresponding to various types of
Deployment tools and using different QoS solutions. To this end, a
DevOps engineer takes as inputs the Deployment configuration files
and the Deployment instructions in order to build a CI file called
Deployment Solutions Evaluation. This file mostly specifies the set
of stages for the CI/CD pipeline to build, test and select the most
suitable Deployment Tool. Based on these inputs and the expertise of
the DevOps engineer, different QoS Solutions are then investigated
corresponding to the expressed QoS requirements. For example,
if the Deployment Tool is DT1, and the verification test specified
in the Deployment Instructions is cost, the DevOps engineer can
specify in the Deployment Solutions Evaluation file DT1:cost as a
QoS Solution for corresponding Deployment configuration files. This
way, the DevOps engineer can indicate in the Deployment Solutions
Evaluation file different Deployment Tool – QoS solution pairs for
verifying specific QoS requirements. After that, this file is ready
to provide and execute a Selection CI/CD Pipeline. Figure 3 shows
this pipeline and its three main stages ("build", "test" and "select")
considering Cost and Security as QoS requirements.

Figure 3: Deployment Tool Selection Pipeline.

This pipeline first verifies in the "build" stage the existence of the
Deployment Configuration files. In the "test" stage, each of the indi-
cated QoS Solutions is automatically executed on the corresponding
Deployment Configuration file. The results produced by each QoS
Solution are then analyzed and compared against each other. Fi-
nally, in the "select" stage, the pipeline determines the most suitable
Deployment Tool and corresponding Deployment Configuration file
according to the previous results and selection priority.

4.3 CI/CD Generation
Once the most appropriate Deployment Tool selected, the corre-
sponding Deployment Configuration and Deployment Instructions
files trigger the Domain-oriented CI/CD Generator. Based on these
files, the Domain-oriented CI/CD Generator produces a Domain-
oriented CI/CD file by combining several embedded templates. As a
result, it creates a corresponding Deployment CI/CD Pipeline that
automatically executes the required stages.

Figure 4 shows the resulting pipeline composed of three main
stages: "build", "test", and "deploy". In the "build" stage, the Deploy-
ment configuration file – selected by the Deployment Tool Selection
component – is first injected. Then, the "test" stage performs the

Figure 4: Deployment CI/CD pipeline.

expected verification based on the QoS requirements initially ex-
pressed by the FSA via the respective QoS Solutions. Finally, the
"deploy" stage is triggered once the "test" stage has been success-
fully completed. As a result, the Fog system described in the selected
Deployment Configuration file is actually deployed by relying on
the corresponding deployment tool.

5 Practical Applications in Different Domains
and for Different QoS Requirements (RQ3)

To validate the proposed approach (cf. Section 3) and related au-
tomation support (cf. Section 4), we evaluated VeriFogOps in the
context of various examples of Fog systems belonging to different
application domains. To this end, we considered two distinct use
cases: Smart Campus [1] and Smart Parking Lot [7]. To illustrate the
generic aspect of our approach, we experimented with two different
types of QoS requirements which are particularly relevant in the
context of Fog systems, namely security and cost. Table 1 shows
the corresponding pairs Deployment Tool – QoS Solution.

In the following, we provide for each use case 1) a summary of the
general context, 2) the result of the deployment tool selection, and 3)
the result of the automated deployment based on previous selection.
The full implementation of our approach, associated automation
support, and application to these use cases is available in an open
source repository (cf. Section 6 for more details).

5.1 Smart Campus with No Priority
Fog system. The first use case is taken from a recent survey of the
state-of-the-art in terms of existing Fog Modeling Languages [1].
In this survey, Smart Campus is used as a motivating example
introducing the main elements of a Fog system. This particular Fog
system is mainly composed of two distinct distributed applications
dedicated to smart surveillance and smart bell notification. These
applications are made available as loosely coupled micro-services
which are natively designed to be mutually shared.

Deployment tool selection. For this use case, we take as initial
inputs two different Deployment Configuration files associated with
two Deployment Tools: Terraform and Kubernetes. As introduced
before, we considered two important QoS requirements which are
security and deployment cost. Figure 5 shows the corresponding
Deployment Instructions file as specified by the FSA.

Then, in theDeployment Solutions Evaluation file, the DevOps En-
gineer associates 1) Terraform with Kics (for security) and Infracost
(for cost) and 2) Kubernetes with Kics (for security) and Kubecost
(for cost). Based on all these inputs, the Selection CI/CD Pipeline
compares the security results of each deployment configuration
file against the thresholds specified in this Deployment Instructions

SAC ’25, March 31-April 4, 2025, Catania, Italy Hiba Awad, Thomas Ledoux, Hugo Bruneliere, and Jonathan Rivalan

Table 1: Applications of the VeriFogOps approach.

Use Case Name Deployment tool Verified Selection Property QoS Solution Return Type

Smart Campus, Smart Parking Terraform Cost Infracost Table
Kubernetes Cost Kubecost Table
Terraform & Kubernetes Security Kics List + Table

Figure 5: Excerpt of the Deployment Instructions file for the
Smart campus system.

files, as well as the estimated costs in order to select the least ex-
pensive solution. As no priority is indicated within the Deployment
Instructions file, the pipeline selects the Deployment Configuration
having the minimum number of critical security issues under the
thresholds and also being the cheapest one in terms of deployment
cost. Note that, in case the above evaluation step returns several
possible results, the pipeline consider by default as a priority the
first QoS requirement mentioned in the Deployment Instructions
file. The results of the selection are shown in Table 2.

Table 2: Results of the Deployment tool selection for the
Smart Campus system.

Deployment tool
(configuration file) QoS Solution Results

Terraform
Kics Critical issues 0

High issues 16
Infracost 201.56$

Kubernetes
Kics Critical issues 0

High issues 30
Kubecost 261.69$

In this use case, Terraform, combined with Kics and Infracost,
emerged as the most suitable option with only 16 high security is-
sues and a cost of 202 USD. The output provided by our Deployment
Tool Selection component is shown in Figure 6.

Automated Deployment. Given that Terraform is the most
suitable tool for this scenario, the corresponding Deployment Con-
figuration file is used as the input for the Infrastructure Deployment
component.We assume that the originalDeployment Instructions file
also includes configuration syntax as a blocking requirement, with
cost and security treated as optional requirements. In this use case,

Figure 6: Excerpt of the result of the Deployment Tool selec-
tion for the Smart Campus system.

the Domain-oriented CI/CD Generator produces a Domain-oriented
CI/CD file for the Gitlab platform. This file integrates Infracost for
cost estimation, Tfsec for security detection, and Tflint for configu-
ration syntax checking. Note that we initially used Kics during the
selection process due to it being compatible with both Terraform
and Kubernetes. However, the SysOps Engineer can decide to use
Tfsec instead of Kics in this stage as it offers more detailed and
specific detection capabilities tailored for Terraform configurations.
We considered in the updated Deployment Instructions file a budget
of 250 dollars and a maximum allowable lint issues threshold of 5.

Figure 7 gives a partial example of the obtained results in terms
of cost. Notably, 46 Cloud resources have been detected and the
estimated deployment cost for 20 of them is displayed. For each one
of these 20 resources, the instance usage per month, the storage
that will be used, and the monthly cost are provided. The other
detected Cloud resources appear to be free of charge, and are simply
ignored when computing the total monthly deployment cost for the
whole project. Note that 10 syntax issues were detected (i.e., more
than the maximum allowed number of 5) thus blocking the pipeline
execution. As a consequence, the SysOps Engineer needs to decide
whether to modify the Deployment Instructions file (e.g., to allow for
10 syntax issues or more) or directly the Deployment Configuration
file in Terraform following the provided syntax recommendations.
Once the problem solved, the pipeline execution can continue until
the actual deployment using Terraform.

5.2 Smart Parking Lot with Cost Priority
Fog System. The second use case is a solution for drivers to be
more efficient when looking for a slot for their vehicles in a parking
lot [7]. The solution describes an example of a Fog system which
detects vehicles in each zone of the parking lot, and indicates avail-
able spaces to the drivers via a smart LED screen at the entrance.
This system uses IoT devices to detect the presence of parked vehi-
cles in each zone, and communicates the related data to the other
components of the system in real-time.

Deployment tool selection. For the Smart Parking Lot use
case, we followed the same process as for the Smart Campus use
case. Thus, we took as initial inputs two different Deployment Con-
figuration files associated with two Deployment Tools: Terraform

VeriFogOps: Automated Deployment Tool and CI/CD Pipeline for Verifying Fog Systems at Deployment Time SAC ’25, March 31-April 4, 2025, Catania, Italy

Figure 7: Partial example of results – Cost verification in Smart Campus with Infracost for Terraform.

and Kubernetes. We also considered two important QoS require-
ments which are security and deployment cost. Figure 8 shows the
corresponding Deployment Instructions file as specified by the FSA.

Figure 8: Excerpt of the Deployment Instructions file for the
Smart Parking system.

Then, in the Deployment Solutions Evaluation file, the DevOps
Engineer associates 1) Terraform with Kics (for security) and In-
fracost (for cost) and 2) Kubernetes with Kics (for security) and
Kubecost (for cost). In this use case, we assume that the cost is the
main QoS requirement, having the highest priority set compared to
security. Following the same approach than for the Smart Campus
use case, the results of the selection are shown in Table 3.

In this use case, Terraform, combined with Kics and Infracost,
also emerged as the most suitable option. Although the Kics result
for Kubernetes was also below the threshold, the pipeline selected
Terraform as it is the cheapest option (232 USD). This is due to the
priority given to the cost requirement compared to the security one.
The output provided by our Deployment Tool Selection component
is shown in Figure 9.

Automated Deployment. Given that Terraform is the most
suitable tool for this scenario, the corresponding Deployment Con-
figuration file is used as the input for the Infrastructure Deployment
component. We assume that the original Deployment Instructions
file includes a cost requirement as blocking (maximum budget of

Table 3: Results of the Deployment tool selection for the
Smart Parking system.

Deployment tool
(configuration file) QoS Solution Results

Terraform
Kics Critical issues 0

High issues 46
Infracost 231.79$

Kubernetes
Kics Critical issues 0

High issues 22
Kubecost 287.86$

Figure 9: Excerpt of the result of the Deployment Tool selec-
tion for the Smart Parking system.

200 USD) and a security requirement as optional (maximum number
of high-level problems of 17). Figure 10 shows the results obtained
from the performed security verification. All the nodes were tested
(i.e., no blocks were ignored), 23 nodes of the system did not have
any security issues (i.e., 23 blocks passed) and 163 potential prob-
lems were detected: 46 are critical, 47 are highly risky, 1 is moder-
ately risky and 69 are presenting a low risk. The number of detected
security problems exceed the indicated threshold. However, as the
security requirement is optional, it is not blocking the execution
of the pipeline. Nevertheless, pipeline execution failed in this case
due to a blocking cost verification. As a consequence, the SysOps
Engineer needs to decide whether to modify the Deployment In-
structions file (e.g., to augment the maximum budget) or directly
the Deployment Configuration file in Terraform (i.e., to reduce the
number of instances according to the verification indications col-
lected before). Once the problem solved, the pipeline execution can
proceed towards the actual deployment using Terraform.

SAC ’25, March 31-April 4, 2025, Catania, Italy Hiba Awad, Thomas Ledoux, Hugo Bruneliere, and Jonathan Rivalan

Figure 10: Partial example of results – Security verification
in Smart Parking with Tfsec for Terraform.

6 Implementation
Based on our own experience, technical expertise and previous
work [5, 6], we decided to implement the proposed VeriFogOps
approach within the Gitlab platform7. However, the approach itself
is fully technology-independent, and could be implemented within
any other suitable technical environment. For example, an alterna-
tive implementation could be developed by our partner company
Smile by leveraging typical solutions such as Jenkins8.

In the current implementation, we mostly considered Kuber-
netes and Terraform as Deployment Tools. Respectively, Dockerfile
and Terraform YAMLs are used as the descriptive formats for the
corresponding Deployment Configuration files. As presented earlier
in Section 4, the language we proposed to specify the Deployment
Instructions files also has a YAML syntax.

For the Deployment Tool Selection component, we implemented
the CI file in GitlabCI9 (another YAML notation) and used it in
the Gitlab platform in order to execute the Selection CI/CD Pipeline.
For the Infrastructure Deployment component, we implemented
the Domain-oriented CI/CD Generator using several GitlabCI tem-
plates. The generator also integrates bash scripts combining these
templates together based on the QoS requirements specified in the
Deployment Instructions file. As a result it generates a GitlabCI file,
i.e., the Domain-oriented CI/CD file. For example, in the context of

7https://about.gitlab.com/platform/
8https://www.jenkins.io
9https://docs.gitlab.com/ee/ci/

the Terraform Deployment Tool, we implemented templates/support
for Infracost (for cost requirements), Tfsec (for security require-
ments), and Tflint10 (for configuration syntax requirements).

All the described resources are available in two open source
repositories for the Deployment Tool Selection11 and Infrastructure
Deployment12 components. This includes the implementation of
these components in the Gitlab platform, examples of Deployment
Configuration files for the use cases and Deployment Tools we men-
tioned, a corresponding example of a Deployment Instructions file,
the complete source code of Domain-oriented CI/CD Generator, and
an example generated Gitlab Domain-oriented CI/CD file.

7 Discussion
As mentioned before in Section 1 and Section 2, and later discussed
in Section 8, the work presented in this paper leverages previously
existing work regarding Fog systems, verification and automated
deployment. However, its focus on QoS verification at deployment
time makes it quite original compared to the current state-of-the-
art. For example, we have not seen in the literature many solutions
targeting explicitly the deployment tool selection phase. The idea
of considering QoS requirements during such a selection phase,
and even after for automating the actual deployment phase, is also
original. We believe it is a relevant way of preventing from en-
countering unforeseen QoS-related problems after the deployment
of the Fog systems. Finally, we argue that the automation of the
overall process allows the engineers to gain some useful time they
can possibly allocate to other important engineering activities.

The proposed VeriFogOps approach is generic because it sup-
ports the verification of different QoS requirements with different
deployment tools and in the context of potentially any kinds of het-
erogeneous Fog systems (targeting various applications domains).
This notably includes QoS requirements that are usually consid-
ered as critical in Fog systems, such as security and cost. Still, it
is important to note that our intent is not to support by default
in the current implementation of our approach all possible QoS
requirements and deployment tools. This is the reason why we
designed our approach as extensible so that 1) deployment instruc-
tions files can be refined in order to add the needed information
regarding other QoS requirements than those mentioned in the
paper and 2) additional deployment tools and QoS solutions to the
ones considered in the paper, can be managed within the CI/CD
pipelines whenever required by the engineers.

As a more global observation, genericity and extensibility (such
as in the proposed approach) are key characteristics when address-
ing other phases of the Fog system’s life cycle (complementary to
the deployment time discussed in this paper). Automation is also
a particularly important core aspect of VeriFogOps, as validated
by our industrial partner Smile. Indeed, we provide both the au-
tomated selection of the most suitable deployment tool and the
automated generation of domain-oriented CI/CD pipelines. Such
pipelines can then be used in order to verify and ultimately deploy
the targeted Fog systems. The work presented in this paper shows
that providing such an automation support is actually feasible in

10https://github.com/terraform-linters/tflint
11https://gitlab.com/hiba.awad1/DDTS
12https://gitlab.com/hiba.awad1/TerraCI

https://about.gitlab.com/platform/
https://www.jenkins.io
https://docs.gitlab.com/ee/ci/
https://github.com/terraform-linters/tflint
https://gitlab.com/hiba.awad1/DDTS
https://gitlab.com/hiba.awad1/TerraCI

VeriFogOps: Automated Deployment Tool and CI/CD Pipeline for Verifying Fog Systems at Deployment Time SAC ’25, March 31-April 4, 2025, Catania, Italy

practice. Moreover, it illustrates how current state-of-the-art tools
(e.g., those mentioned in Section 2 and Section 6) can be concretely
integrated to form a DevOps ecosystem really suitable for our indus-
trial partner. To conclude concerning automation and integration,
VeriFogOps provides the opportunity to leverage further, in other
contexts and for various purposes, the different artifacts we select
and/or generate (i.e., configuration files, CI files, CI/CD pipelines).

8 Related Work
8.1 Verification at Deployment Time
In modern distributed systems, such as Cloud and Fog systems,
configurations are continuously deployed over time. In this context,
misconfigurations [8] or configuration dependencies [24] are major
sources of functional and reliability problems. As a consequence,
solutions have already been proposed in order to detect such prob-
lems earlier, for instance at pre-deployment time through the use
of model-checking or formal methods [11, 14, 22, 26, 27]. How-
ever, these solutions mostly focus on security-related issues and do
not currently allow the verification of multiple QoS requirements.
Other approaches such as SMADA-Fog [17] rely on techniques like
simulation and linear optimization for deployment purposes. Still,
they focus on specific goals (e.g., improving the system’s overall
performance) rather than on supporting various types of QoS re-
quirements. With VeriFogOps, we intend to provide a more generic
and extensible approach addressing different QoS requirements
while possibly considering a prioritisation between them.

In parallel to these academic research efforts, Shift-left testing
has recently attracted the attention of the DevOps community in
industry (e.g., DevSecOps [18]). Shift-left testing is an agile software
development strategy that allows engineers to discover their code
problems (e.g., security issues) early in the engineering process. A
study of Shift-left testing in DevOps [20] already identified its main
benefits, challenges, and best practices in the context of DevOps
environments. In a complementary way, another work analyzed
the benefits of using a Shift-left solution for organizations [28]. The
VeriFogOps approach described in this paper follows a similar path
for verifying Fog systems at deployment time.

8.2 Automated Deployment
While traditional deployment activities most often require human
intervention, the deployment of modern distributed systems, such
as Fog systems, demands an increasing level of automation. As
complexity, heterogeneity or dynamicity increase, approaches with
underlying processes and tools are thus needed for supporting a
more controlled and automated deployment [3].

For example, CloudCAMP [9] provided a generative program-
ming approach integrated into an automated deployment and man-
agement platform for Cloud applications. As a result, it transforms
partial specifications into deployable IaC code possibly targeting dif-
ferent Cloud providers. However, contrary to our approach, Cloud-
Camp does not intend to support verification activities nor modern
Fog systems. A more recent work proposed to rely on an automated
CI/CD pipeline in order to deploy web applications [19]. Using a
Gitlab file, the Docker Compose configuration of the web applica-
tion is verified with three security tests detecting vulnerabilities.
Then, the configuration can be deployed accordingly by the CI/CD

in the Gitlab platform. However, unlike VeriFogOps, the proposed
solution does not provide the possibility to parameterize these tests
and only supports security concerns.

In another work [21], Azure DevOps is used to provide code
management while developing and deploying the target system
through a CI/CD pipeline for the Microsoft platform. This solu-
tion supports automated testing and validation using the Eggplant
testing tool in order to ensure code quality. However, the provided
pre-deployment process requires users to manually approve or re-
ject deployments. In our approach, this is fully automated thanks
to the expression of priorities on the expressed QoS requirements.
Moreover, the proposed solution focuses only on code quality while
our approach can also be used to verify other QoS requirements.

Overall, the previously existing solutions are not intended to
support the verification of different types of QoS requirements,
more particularly at deployment time. In addition, they do not na-
tively target Fog systems, and do not come with a selection step
concerning the most relevant deployment tool and corresponding
deployment configuration file to be used. Despite the use of auto-
mated CI/CD pipelines in some cases, these solutions do not offer
neither the possibility to parameterize the QoS requirements to
be verified. The main objective of the VeriFogOps approach we
propose in this paper is to make a step in this direction.

9 Conclusion and Future Work
In this paper, we proposed VeriFogOps as an automated deployment
tool selection and CI/CD pipeline generation approach for verifying
Fog systems at deployment time. This approach is intended to facil-
itate the engineering activities of both Fog system architects and
DevOps/SysOps engineers. In practice, we provide a generic and
automated approach for selecting the most suitable deployment
tool and related deployment configuration file, while ensuring that
the QoS requirements expressed by the architects can be satisfied.
Once the deployment tool and deployment configuration file are
selected, we provide a CI/CD generator that automatically produces
a dedicated CI/CD pipeline in order to deploy the target Fog sys-
tem. Interestingly, this pipeline also ensures that the previously
expressed QoS requirements are automatically verified before the
actual deployment of the Fog system. This is achieved by 1) com-
bining deployment tools with QoS solutions in order to perform the
QoS requirements verification that guides the selection of the most
suitable deployment tool and related deployment configuration
files, and 2) considering deployment instructions that incorporate
the expressed QoS requirements into an automatically generated
CI/CD pipeline that then performs the actual deployment of the
target Fog system. We already applied our approach and its current
implementation in practice in the context of two different use cases.
As a result, we had to consider Terraform and Kubernetes as deploy-
ment tools, combine them with Kics, Infracost and Kubecost as QoS
solutions, and generate CI/CD pipelines for the Gitlab platform.

In next steps, we plan to continue generalizing the use of our
approach and its main principles in different phases of the Fog sys-
tem’s life cycle. For example, still at deployment time, VeriFogOps
could be extended to support a more optimal resource management
by also considering allocation and/or provisioning requirements
(among others). Moreover, at execution time, VeriFogOps could be

SAC ’25, March 31-April 4, 2025, Catania, Italy Hiba Awad, Thomas Ledoux, Hugo Bruneliere, and Jonathan Rivalan

completed in order to be used for dealing with the self-adaptation
(e.g., reconfiguration) of the target Fog systems. Overall, this would
allow the FSA and the DevOps/SysOps engineers to build more
manageable, resilient and evolutive Fog systems.

On the longer term, an important objective is the integration
of VeriFogOps and the generated CI/CD pipelines into real-time
monitoring DevOps CI/CD pipelines that operate post-deployment
(i.e., at execution time). The resulting "augmented" pipelines will
notably have to support the building, maintenance, and monitoring
of the deployed Fog systems in a more continuous and automated
manner. From an industrial perspective, and as particularly interest-
ing for our industrial partner Smile, continuous verification appears
to be a promising path towards the iterative improvement of the
QoS of Fog systems during their whole life cycle. We believe that
generic and automated approaches such as VeriFogOps can lead to
significant time, energy, and cost savings when engineering large
and complex Fog systems.

Acknowledgment
This work was funded by the French Agence Nationale de la Recher-
che Technologique (ANRT) under a Cifre PhD grant and by the
French Agence Nationale de la Recherche (ANR) under grant ANR-
20-CE25-0017 (SeMaFoR project).

References
[1] Abdelghani Alidra, Hugo Bruneliere, and Thomas Ledoux. 2023. A Feature-based

Survey of Fog Modeling Languages. Future Generation Computer Systems 138
(2023), 104–119.

[2] SAIBS Arachchi and Indika Perera. 2018. Continuous Integration and Continuous
Delivery Pipeline Automation for Agile Software Project Management. In 2018
Moratuwa Engineering Research Conference (MERCon). IEEE, Piscataway, New
Jersey, United States, 156–161.

[3] Jean-Paul Arcangeli, Raja Boujbel, and Sébastien Leriche. 2015. Automatic de-
ployment of distributed software systems: Definitions and state of the art. Journal
of Systems and Software 103 (2015), 198–218.

[4] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al.
2010. A View of Cloud Computing. Communications of the ACM 53, 4 (2010),
50–58.

[5] Hiba Awad, Abdelghani Alidra, Hugo Bruneliere, Thomas Ledoux, Etienne
Leclerq, and Jonathan Rivalan. 2024. VeriFog: A Generic Model-based Approach
for Verifying Fog Systems at Design Time. In The 39th ACM/SIGAPP Symposium
on Applied Computing (SAC’24). ACM, New York, NY, USA, 1252–1261.

[6] Hiba Awad, Abdelghani Alidra, Hugo Bruneliere, Thomas Ledoux, and Jonathan
Rivalan. 2024. VeriFog: A Generic Model-based Approach for Verifying Fog
Systems at Design Time and Generating Deployment Configurations. SIGAPP
Applied Computing Review 24, 3 (2024), 18–36.

[7] Kamran Sattar Awaisi, Assad Abbas, Mahdi Zareei, Hasan Ali Khattak, Muham-
mad Usman Shahid Khan, Mazhar Ali, Ikram Ud Din, and Sajid Shah. 2019.
Towards a Fog-enabled Efficient Car Parking Architecture. IEEE Access 7 (2019),
159100–159111.

[8] Salman Baset, Sahil Suneja, Nilton Bila, Ozan Tuncer, and Canturk Isci. 2017.
Usable declarative configuration specification and validation for applications,
systems, and cloud. In Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference: Industrial Track (Las Vegas, Nevada) (Middleware ’17). Association
for Computing Machinery, New York, NY, USA, 29–35.

[9] Anirban Bhattacharjee, Yogesh Barve, Aniruddha Gokhale, and Takayuki Kuroda.
2018. CloudCAMP: Automating the Deployment and Management of Cloud
Services. In 2018 IEEE International Conference on Services Computing (SCC). IEEE,
Piscataway, New Jersey, United States, 237–240.

[10] Antonio Brogi and Stefano Forti. 2017. QoS-aware deployment of IoT applications
through the fog. IEEE internet of Things Journal 4, 5 (2017), 1185–1192.

[11] Claudia Cauli, Meng Li, Nir Piterman, andOksana Tkachuk. 2021. Pre-deployment
Security Assessment for Cloud Services Through Semantic Reasoning. In Com-
puter Aided Verification, Alexandra Silva and K. Rustan M. Leino (Eds.). Springer
International Publishing, Cham, 767–780.

[12] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. 2016.
DevOps. IEEE Software 33, 3 (2016), 94–100.

[13] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar Buyya.
2017. iFogSim: A toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing environments.
Software: Practice and Experience 47, 9 (2017), 1275–1296.

[14] Petar Kochovski, Pavel D. Drobintsev, and Vlado Stankovski. 2019. Formal Quality
of Service assurances, ranking and verification of cloud deployment options with
a probabilistic model checking method. Information and Software Technology 109
(2019), 14–25.

[15] Shancang Li, Li Da Xu, and Shanshan Zhao. 2015. The Internet of Things: a
Survey. Information systems frontiers 17 (2015), 243–259.

[16] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A.
Polakos. 2018. A Comprehensive Survey on Fog Computing: State-of-the-Art and
Research Challenges. IEEE Communications Surveys and Tutorials 20, 1 (2018),
416–464.

[17] Nenad Petrovic and Milorad Tosic. 2020. SMADA-Fog: Semantic model driven
approach to deployment and adaptivity in fog computing. Simulation Mod-
elling Practice and Theory 101 (2020), 102033. Modeling and Simulation of Fog
Computing.

[18] Roshan N Rajapakse, Mansooreh Zahedi, M Ali Babar, and Haifeng Shen. 2022.
Challenges and Solutions when Adopting DevSecOps: A Systematic Review.
Information and software technology 141 (2022), 106700.

[19] Thorsten Rangnau, Remco v. Buijtenen, Frank Fransen, and Fatih Turkmen. 2020.
Continuous Security Testing: A Case Study on Integrating Dynamic Security
Testing Tools in CI/CD Pipelines. In 2020 IEEE 24th International Enterprise Dis-
tributed Object Computing Conference (EDOC). IEEE, Piscataway, New Jersey,
United States, 145–154.

[20] V Shobha Rani, A Ramesh Babu, K Deepthi, and Vallem Ranadheer Reddy. 2023.
Shift-Left Testing in DevOps: A Study of Benefits, Challenges, and Best Practices.
In 2nd International Conference on Automation, Computing and Renewable Systems
(ICACRS). IEEE, Piscataway, New Jersey, United States, 1675–1680.

[21] Farhana Sethi. 2020. Automating software code deployment using continuous
integration and continuous delivery pipeline for business intelligence solutions.
International Journal of Innovation Scientific Research and Review 2 (2020), 445–449.
Issue 10.

[22] Ilia Shevrin and Oded Margalit. 2023. Detecting Multi-Step IAM Attacks in AWS
Environments via Model Checking. In 32nd USENIX Security Symposium (USENIX
Security 23). ACM, Anaheim, CA, 6025–6042.

[23] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
Computing: Vision and challenges. IEEE internet of things journal 3, 5 (2016),
637–646.

[24] Sebastian Simon, Nicolai Ruckel, and Norbert Siegmund. 2023. CfgNet: A Frame-
work for Tracking Equality-Based Configuration Dependencies Across a Software
Project. IEEE Transactions on Software Engineering 49, 8 (2023), 3955–3971.

[25] Larry Smith. 2001. Shift-Left Testing. Dr. Dobb’s Journal 26, 9 (Sept. 2001), 56, 62.
[26] Riza O. Suminto, Agung Laksono, Anang D. Satria, Thanh Do, and Haryadi S.

Gunawi. 2015. Towards Pre-Deployment Detection of Performance Failures
in Cloud Distributed Systems. In 7th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 15). USENIX Association, Santa Clara, CA, 8.

[27] Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine Ang, Owolabi Legunsen,
and Tianyin Xu. 2020. Testing Configuration Changes in Context to Prevent
Production Failures. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). ACM, New York, New York, United States, 735–751.

[28] Srinivas Aditya Vaddadi, Ramya Thatikonda, Adithya Padthe, and Pandu
Ranga Rao Arnepalli. 2023. Shift Left Testing Paradigm Process Implementation
for Quality of Software Based on Fuzzy. Soft Computing Online (2023), 1–13.

[29] William Tichaona Vambe, Chii Chang, and Khulumani Sibanda. 2020. A Review
of Quality of Service in Fog Computing for the Internet of Things. International
Journal of Fog Computing (IJFC) 3, 1 (2020), 22–40.

[30] Cecil Wöbker, Andreas Seitz, Harald Mueller, and Bernd Bruegge. 2018. Foger-
netes: Deployment and Management of Fog Computing Applications. In NOMS
2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. IEEE,
Piscataway, New Jersey, United States, 1–7.

[31] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali,
Amirreza Niakanlahiji, Jian Kong, and Jason P. Jue. 2019. All One Needs to Know
About Fog Computing and Related Edge Computing Paradigms: A Complete
Survey. Journal of Systems Architecture 98 (2019), 289 – 330.

[32] Fiorella Zampetti, Salvatore Geremia, Gabriele Bavota, andMassimiliano Di Penta.
2021. CI/CD pipelines evolution and restructuring: A qualitative and quantitative
study. In 2021 IEEE International Conference on SoftwareMaintenance and Evolution
(ICSME). IEEE, Piscataway, New Jersey, United States, 471–482.

[33] Polona Štefanič, Matej Cigale, Andrew C. Jones, Louise Knight, and Ian Taylor.
2019. Support for full life cycle cloud-native application management: Dynamic
TOSCA and SWITCH IDE. Future Generation Computer Systems 101 (2019),
975–982.

	Abstract
	1 Introduction
	2 Background and Motivation
	3 An Approach for Deployment Tool Selection and Automated CI/CD Pipeline Generation (RQ1)
	4 Language and Automation Components Dedicated to Deployment Tools (RQ2)
	4.1 Deployment Instructions
	4.2 Deployment Tool Selection
	4.3 CI/CD Generation

	5 Practical Applications in Different Domains and for Different QoS Requirements (RQ3)
	5.1 Smart Campus with No Priority
	5.2 Smart Parking Lot with Cost Priority

	6 Implementation
	7 Discussion
	8 Related Work
	8.1 Verification at Deployment Time
	8.2 Automated Deployment

	9 Conclusion and Future Work
	References

