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Highlights
Optimized CNN-based denoising strategy for enhancing longitudinal monitoring of heart failure
Salman Almuhammad Alali,Amar Kachenoura,Laurent Albera,Alfredo I. Hernandez,Cindy Michel,Lotfi Senhadji,Ahmad
Karfoul

• Reliable long-term remote heart monitoring based on an optimized denoising and classification pipeline.
• Pretrained CNN kernels as a powerful tool for denoising heart vibration signals of cardiac implant in the gastric fundus.
• Machine Learning classifier as a mean to evaluate the segmentation accuracy in the absence of a ground truth.
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A B S T R A C T
Cardiac vibration signal analysis emerges as a remarkable tool for the diagnosis of heart conditions.
Our recent study shows the feasibility of the longitudinal monitoring of chronic heart diseases,
particularly heart failure, using gastric fundus implants. However, cardiac vibration data, captured
from the implant, positioned at the gastric fundus, can be highly affected by different noises and
artefacts. This study introduces a novel methodology for addressing denoising challenges in the
longitudinal monitoring of chronic heart diseases, using gastric fundus implants. More precisely, a
novel method is designed, by repurposing pre-trained convolutional neural network models, originally
designed for classification tasks, with adequately chosen convolution filters. The proposed approach
efficiently tackles noise and artefacts reduction in the acquired accelerometer signals. Moreover,
the integration of additional Hilbert and Homomorphic envelopes enhances the implant’s ability to
better segment heart sounds, namely S1 and S2. The quality assessment of this denoising strategy
is performed, in the lack of ground truth, by rather evaluating its impact on a classification stage
that is introduced to the proposed pipeline. Compared to standard denoising matrix factorization and
tensor decomposition-based methods, results on a real 3D accelerometer dataset acquired from a set
of pigs, with and without heart failure, demonstrate the efficacy of such a proposed optimized CNN-
based approach with the best balance between enhancing the segmentation accuracy and preserving
a maximum usable record.

1. Introduction
Heart Failure (HF) stands as a perilous global health

concern, exacerbated by the aging population and impact-
ing approximately 15 million individuals in Europe, with a
notable medium-term mortality rate [1, 2]. The occurrence
of Severe Heart Failure Decompensation (SHFD) frequently
results in recurrent hospitalizations, presenting significant
health and economic challenges [3]. Consequently, various
national health systems are actively working to alleviate
the burden of repetitive hospitalizations associated with
HF [4, 5]. In addressing this issue, early identification of
SHFD proves crucial [5, 6]. A comprehensive understanding
of heart function and its conditions combined with long-term
monitoring and diagnosis of these functions are paramount
for reliable early detection of SHFD [7].

Heart functions encompass two primary mechanisms:
mechanical and electrical which can be captured, respec-
tively, using ElectroCardioGram (ECG) and PhonoCardio-
Gram (PCG) recordings [8] (an example of these record-
ings is provided in Figure 1. The mechanical facet involves
the systolic contraction and diastolic relaxation, generat-
ing two main components, S1 and S2, which respectively
correspond to the first and the second heart sound in the
PCG signal [9, 10]. Regarding the electrical mechanism, it
coordinates the timing of muscle contractions [10]. These
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two mechanisms are highly disrupted in the case of HF,
where a modification in muscle contractions and alterations
in heart sound patterns are to be noticed. Detecting these
alterations is crucial for timely intervention and effective
management of heart conditions [11]. Traditionally, ECGs
and PCGs signals are recorded in a non-invasive manner via
chest-placed sensors [12]. While these methods are effective
for short-term monitoring and diagnosis, their non-invasive
acquisition manner has limitations in continuous, long-term
monitoring due to the need for external equipment and
patient compliance.

Alternatively, Implantable Cardiac Electronic Devices
(ICEDs) are increasingly acknowledged as reliable solutions
for the longitudinal monitoring of heart conditions [13].
These devices incorporate micro-implantable accelerometer
sensors, which provide the advantage of indirectly capturing
heart sounds, specifically, S1 and S2 waves which offer
a valuable visualization of the mechanical activity of the
heart, as discussed in previous studies [14, 15, 16, 17, 18,
19]. Indeed, capturing S1 and S2 heart sounds is essen-
tial for assessing heart valve functionality and mechanical
performance, vital for diagnosing conditions resulting from
mechanical cardiac dysfunctions, such as HF, which might
be undetectable through ECG monitoring. In this context,
several studies in our research group have confirmed the
ability to characterize heart functions using cardiac vibration
signals that are captured using 3D ACCelerometer (ACC)
sensors [20, 21, 22, 17, 18, 19]. The relevance of recent
work in monitoring heart functions through the processing
and segmentation of cardiac vibrations using heart vibration
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Figure 1: Synchronized Electrocardiogram (ECG) and AC-
Celeration (ACC) signals highlighting the R-peak, systole, and
diastole periods and also the peak-to-peak amplitudes of S1
and S2 sounds.

signals from 3D ACC sensors in a gastric fundus implant
has been established [19]. However, the efficacy of this
approach was impacted by the relatively elevated noise levels
present at the gastric site. More specifically, only 68% of the
recorded data were utilized in [19] due to the presence of
high-level gastric noise. This, in turn, results in less effective
monitoring of heart functions.

Therefore, our primary motivation is to improve the
monitoring of heart functions by utilizing 3D ACC signals
from a gastric implant. In pursuit of this goal, the contribu-
tion of the current study is enhancing the overall processing
pipeline recently developed by our group and illustrated in
Figure 2 by incorporating a Convolutional Neural Network
(CNN)-based filtering step thereby increasing the number
of accepted records. The essence of our approach lies in
the CNN’s capacity to extract features from the network
input, particularly in the early convolution layers, which are
presumed to be highly correlated with the target pattern.
Furthermore, in conjunction with the CNN-based filtering,
a robust heart event detection step utilizing both Hilbert
(Hilb) and homomorphic (Homo) envelopes is employed.
The efficacy of the proposed CNN-based approach is eval-
uated based on accepted recordings and the capacity of
the segmented S1 and S2 waves to classify the analyzed
database into normal and abnormal categories. A perfor-
mance comparison study, with conventional matrix factor-
ization techniques such as Principal Component Analysis
(PCA) [23], Canonical Correlation Analysis (CCA) [24],
Independent Component Analysis (ICA) [25], and the tensor
Canonical Polyadic Decomposition (CPD) approach [26], is
also conducted.

2. Dataset
The dataset in this study was acquired using an innova-

tive gastric implant prototype [27] used in the previous work
of our research group [19]. In a few words, this implant,
depicted in Figure 3, comes in two models, V1 and V2,
which were utilized to capture synchronized ECG and 3D
ACC signals. Specifically, the V1 model was employed to
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Figure 2: Data Processing Chain Diagram - Illustrates the
processing pipeline for acquired data: black for the ECG signal
processing steps, light yellow for the ACC (accelerometry)
signal processing steps, and gray for shared signal processing
steps [19].

obtain data from healthy pigs, while the V2 model was uti-
lized to record ECG and 3D ACC signals from pigs afflicted
with heart failure. It’s important to note that the equipment
used in both V1 and V2 implants is completely identical.
The modifications made to the V2 implant were limited to
improve the energy consumption and reducing the implant
size (see [19] for more details). These technical refinements
do not affect the signal acquisition, processing capabilities,
or signal quality. Consequently, the implant version does not
introduce any variability or act as a confounding factor in the
analysis of ACC signals. Both V1 and V2 models provide 3D
ACC signals at a consistent sampling frequency of 4 kHz.
More precisely, animal data were collected from 4 healthy
pigs and 3 pigs with HF over a period of 14 days using an
implant positioned in the gastric fundus.

This animal dataset is significantly affected by noise
and artefacts originating from various sources. For instance,
one artefact is introduced from gastric site activities. The
mechano-physiological actions of gastric and surrounding
muscles, along with respiratory movements, affect the ac-
celerometer. Other artefacts, such as pig growls and atypical
digestive sounds and movements, may also occur during the
data acquisition process. Additionally, another noise arises
from the implant itself. During each hourly data collection,
the implant shifts from sleep to active mode for a 30-second
period, generating low-frequency noise during this transi-
tion. This noise has the potential to saturate the amplifier,
rendering the initial second of each record unreliable and
thus disregarded during data processing. An illustration of
a heart ACC signal obtained from the thorax and another
acquired from the gastric implant is presented in Figure 4
(a) and Figure 4 (b), respectively. Consequently, the presence
of all these noises and artefacts makes the handling of this
dataset very challenging.

3. Background
This section outlines the workflow recently proposed in

our research group [19], for segmenting S1 and S2 heart
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Figure 4: Heart vibration signals: a) Clean cardiac vibrations
acquired from the thorax, and b) Noisy cardiac vibration signals
acquired from the gastric fundus. The red rectangle highlights
odd peaks, potentially caused by pig growls or gastrointestinal
movements

sounds. As depicted in Figure 2, this detection approach
relies on using the acquired synchronized ECG and ACC
signals of the seven pigs. More precisely, for each record
being introduced to the above-mentioned workflow, the fol-
lowing steps are applied. (i) Baseline removing is firstly
applied to ECG, the 3D ACC signals (i.e., ACC𝑥, ACC𝑦,
ACC𝑧) and the associated ACC norm signal denoted by
ACC𝑁 =

√

ACC2
𝑥 + ACC2

𝑦 + ACC2
𝑧. Typically, a robust

locally weighted linear regression technique is applied on
ECG and each ACC component for baseline removal [28].
(ii) Band-passe filtering is then performed on ECG signals

in the frequency band [20 − 50 Hz] to highlight the R-
peak followed by a local normalization based on mini-
mum/maximum values as suggested in [28]. ACC signals
are also filtered in the frequency band [20 − 40 Hz], to
target the maximum energy of local cardiac accelerometer
signals. (iii) Cardiac cycles segmentation is done using the
modified Pan–Tompkin QRS detector [29]. R-peaks are then
identified, allowing for the mapping of ECG segmentation
onto the synchronized ACC signals. It is noteworthy that as
resulting cycles might have different lengths, their respective
durations were aligned to the median lengths for consistency.
(iv) Correlation and coherence analysis of the segmented
ACC was conducted. Then a coherent mean cycle is com-
puted for each ACC axis as the average of those ACC cy-
cles whose correlation coefficient exceeds 0.6. (v) Cardiac
sound segmentation step segments the coherent mean cycle
into the S1 and S2 heart sounds by utilizing an algorithm
that analyzes both absolute and squared envelopes [21]; then
a dynamic threshold is applied to identify local instants of
heart sounds across each ACC axis. Subsequently, a fusion-
weighted algorithm integrates these detection instants [19],
identifying the final onset and offset times of S1 and S2.

Finally, the quality of the recordings was evaluated after
applying the processing steps described earlier. This post-
processing step aims to select only the recordings with an
acceptable SNR that permits a robust segmentation of S1
and S2 [19]. In more detail, this post-processing process
focuses on two main acceptance criteria: a) the percentage of
coherent ECG and ACC cycles, and b) the contrast between
S1 and S2 relative to the background noise. Specifically, the
contrast of an event is defined as the ratio of the standard
deviation of the useful signal (S1/S2) to the background
noise, which includes the interval from the end of S1 to
the start of S2. An event contrast ratio of 2 or more is
deemed significant, indicating that S1 and S2 are distinctly
discernible against the background. Therefore, a recording
is considered acceptable if it contains at least three coherent
ECG cycles and two ACC cycles, and if the contrast of S1
and S2 with respect to the background noise is equal to or
greater than two. Recordings that do not satisfy these criteria
are rejected. Hence, after this quality assessment process,
only about 68% of the data collected over a 14-day period
was retained. This is essentially due to the high noise levels
at the collection site, which is not conducive to accurate
detection of the exact moments marking the start and end
of heart events.

4. Methodology
To tackle the noise challenge in the intricate dataset

under consideration, the original homemade workflow [19],
as illustrated in Figure 2, was revisited in this study. This
reassessment aims to ensure a more reliable cardiac cycle
segmentation and effective denoising of heart sounds. An
overview of the modified workflow is depicted in Figure 5.
The main contributions of this study are the following:
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Figure 5: The comprehensive diagram illustrates the full pipeline applied to the dataset. Black boxes denote the ECG signal
pipeline, while light yellow boxes represent the ACC signals pipeline, and gray boxes indicate processing steps shared between the
ECG and ACC signals

• Increasing the number of accepted records by incor-
porating a CNN-based denoising step into the original
workflow as illustrated in Figure 5. Specifically, a pre-
trained low-cost CNN model initially developed for
classification tasks is repurposed for denoising ACC
signals with kernels being adequately chosen.

• Enhancing the cardiac sound segmentation by consid-
ering additional envelopes, such as Hilb and Homo.

• Introducing a machine learning-based classification
module for evaluating the quality of cardiac sound
segmentation.

A more detailed description of these contributions will be
provided in the subsequent sections.
4.1. Standard denoising methods

Traditional denoising techniques that have been investi-
gated in the current study are categorized into a) Matrix
factorization-based methods such as Principal Compo-
nent Analysis (PCA) [30], Canonical Correlation Analysis
(CCA) [24] and the widely recognized Independent Com-
ponent Analysis (ICA) method known as Efficient FastICA
(EFICA) [31]. All the above-mentioned methods were ap-
plied to a matrix of ACC signals with dimensions specified
as (number of axes × number of time samples), where the
number of axes is three (i.e., ACC𝑥, ACC𝑦, ACC𝑧) and the
length of the signal is 116000 samples ( corresponding to
29 sec with a sampling frequency of 4KHz). b) Tensor

decomposition-based methods such as Canonical Polyadic
Decomposition (CPD) [26, 32]. As tensor-based methods
necessitate a multidimensional representation of the data,
a three-order data tensor of size (Number of axes × Cycle
duration × Number of cycles) is constructed in the current
study. This is achieved by initially creating a set of space-
time matrices, each of size (Number of axes × Cycle dura-
tion), where each matrix captures a segmented cycle over the
three ACC axes. Subsequently, these space-time matrices are
stacked sequentially to form the data tensor.
4.2. Deep learning-based denoising

CNN models are recognized for their capability to filter
out noise and extract valuable features from data through
different filters, known as kernels [33, 34]. This enables
CNNs to capture both the context and the patterns present in
both the signal and the noise [35]. Our objective is to identify
the most effective kernel in a CNN model for achieving the
highest noise rejection ratio at the level of the feature map.
As the noise level directly affects the classification quality
of healthy and HF pigs in our context, our approach relies
on resorting to a pre-trained low-cost but efficient CNN
model designed for such classification tasks. Subsequently,
a block of very few convolution layers with the best filter is
used to denoise the ACC signals. Details on the pre-trained
CNN model and the choice of the best kernel are extensively
discussed hereafter.
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Figure 6: Architecture of the proposed convolutional neural
network (CNN).

4.2.1. CNN training for classification
In order to train the network for the classification task, a

1D-CNN model was constructed. Figure 6 shows that the
proposed network comprises two one-dimensional convo-
lutional layers. The first layer consists of 16 convolutional
filters (i.e., kernels) each with a length of 3, followed by a
ReLU activation function and a layer normalization. Subse-
quently, the second layer consists of 32 filters also with a
length of 3, followed by the ReLU activation function and
a layer normalization. Afterward, an Average Pooling (AP)
layer, a Fully Connected (FC) layer, a softmax layer, and
finally, an output layer, are used.

To train the CNN model, the dataset described in sec-
tion 2 is used. The norm axis signal ACC𝑁 is the only
time series being introduced to the input of the 1-D CNN
to differentiate between healthy and HF pigs. All ACC𝑁signals underwent simple pre-processing steps before being
introduced to the network. These pre-processing steps in-
clude centering and baseline removal as suggested in [28].

Recall that the dataset comprises signals acquired from
7 pigs (3 healthy and 4 with HF). According to Table 1,
the data set, consisting of 999 records, exhibits a significant
variation in the number of records among the pigs. For
instance, the 7th pig has only 50 records, whereas the 4th
one has substantially a higher number of records (i.e., 316
records). To ensure reliable training of the neural networks
especially in the case of limited datasets, the data augmenta-
tion technique is used in this study as its relevance has been
confirmed in various CNNs. The data augmentation process
applied to the dataset involves overlapped segmentation,
a common technique in biosignal processing. Specifically,
from each 29-second recording, we use a 20-second sliding
window to extract multiple segments. Each new 20-second
segment is obtained by shifting the sliding window forward
by 1 second. This 1-second shift allows for the generation of
a new segment, and the sequence is repeated until the end of
each recording. As a result, 10 distinct 20-second segments
are generated from each original recording, effectively in-
creasing the size of the dataset by a factor of 10.

To guarantee a training process that is not only effective
and reliable but also generalizable, a Leave-One-Out (LOO)
pig cross-validation approach was employed. In this method-
ology, for each training sweep, the 1D-CNN is trained on

the records of only 6 pigs out of 7 ones. Subsequently, the
trained model is evaluated using the data from the remaining
7𝑡ℎ pig, which serves as the test subject. Upon completing
this process for all the 7 subjects, the classification results
from the seven distinct models are accumulated into one
confusion matrix. This method allows for the assessment
of the model overall performance and its generalization
capabilities to unseen data, thereby verifying its applicability
and reliability in real-world scenarios.

Obtained classification results in terms of sensitivity,
specificity, F-score, and accuracy are respectively 0.9813,
0.9935, 0.9844, and 98.93%. These results suggest that the
proposed 1D-CNN can capture, from very noisy ACC sig-
nals, reliable features permitting an efficient distinction be-
tween the healthy and HF classes of records. Indeed, this
suggests that the ACC data hold valuable information for
diagnosing heart conditions, particularly in the context of
HF.
4.2.2. Pre-trained CNN as a denoising filter

It’s known that in sophisticated CNN-based models with
deep architectures, the filters in the early layers of the net-
work tend to detect simple patterns, whereas those in deeper
layers identify more complex and comprehensive ones. This
hierarchical learning approach enables CNNs to understand
data at multiple levels [36, 35]. In this study, as mentioned
earlier, the objective is to utilize the CNN model as a denois-
ing filter while retaining most of the information related to
S1 and S2 waves. Consequently, a low-cost 1D-CNN model,
consisting of only two convolutional layers as depicted in
Figure 6, is employed. Using the pre-trained 1D-CNN as a
denoising filter entails selecting the optimal kernels for both
convolution layers. To this end, a greedy search strategy to
evaluate the filters associated with the two convolution layers
of the pre-trained 1D-CNN is adopted. The best-learned
filter in the CNN model is determined based on its ability
to effectively reject noise while preserving the shape of the
S1 and S2 waves thereby providing the highest acceptation
ratio of the ACC records (i.e., the filter that permits the
most accurate segmentation of S1 and S2). The retained best-
learned filters together with the two convolution layers can
be integrated to form a CNN-based denoising block that
is applied after a baseline removal pre-processing step as
shown in Figure 7. It is worth mentioning that the same
greedy search strategy is also applied to select the best
component (or set of components) when the PCA, CCA,
EFICA, and CPD methods are applied.
4.3. Envelopes

As stated in Section 3, the segmentation of cardiac
cycles into the primary heart waves, S1 and S2, follows
the methodology outlined in [21]. This method relies on
computing both the absolute (Abs) and squared (Sqr) en-
velopes. Additionally, alongside the Abs and Sqr envelopes,
which are calculated entirely in the time domain, the Hilb
and Homo envelopes, derived in the frequency domain, are
also utilized. This approach is illustrated in Figure 8 (a).
Despite being calculated in the frequency domain, these
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Figure 8: (a) The coherent mean cycles over the three ACC
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(Sqr), Hilbert (Hilb) and Homomorphic (Homo) envelopes
along with their corresponding four detected time instants for
both S1 and S2 waves (𝑡𝑆1𝑜𝑛 , 𝑡𝑆1𝑜𝑓𝑓 , 𝑡𝑆2𝑜𝑛 and 𝑡𝑆2𝑜𝑓𝑓 ). (b) the
final instants for the heart event, as detected by the detection
weighted algorithm [21, 19].

additional envelopes yield meaningful results in the time
domain. Note that, the Hilb envelope is obtained from the
Hilbert transform of the ACC signal [37], while the Homo
envelope is generated by low-pass filtering the natural loga-
rithm of the analytic ACC signal computed using the Hilbert
transform [38, 9]. Figure 8 (a) shows the four envelopes –
Abs, Sqr, Hilb, and Homo – calculated for the coherent mean
ACC cycles across the X, Y, and Z axes. Each of these four
envelopes provides, for each event over the three denoised
ACC axes, four possible detection instants. Consequently,
this yields a total of 12 detections for each individual instant
associated with the heart events. The final instants for each
point 𝑡𝑆1𝑜𝑛 , 𝑡𝑆1𝑜𝑓𝑓 , 𝑡𝑆2𝑜𝑛 and 𝑡𝑆2𝑜𝑓𝑓 , shown in Figure 8 (b), are
determined using the fusion-weighted algorithm [21, 19].
This strategy enhances the robustness of the heart sound seg-
mentation for S1 and S2, thereby enabling the preservation
of larger recordings (see 6 for more details).

5. Evaluation criteria
Evaluating the quality of S1 and S2 segmentation on the

dataset at hand is challenging due to the absence of ground
truth annotations for heart events. This makes a conventional
evaluation of our segmentation pipeline impractical. Several
studies [39, 40, 41] clearly demonstrate that enhancing seg-
mentation quality through appropriate preprocessing gen-
erally improves classification performance. In other words,
effective denoising directly influences segmentation quality,
which in turn affects classification accuracy. Building on this
concept, we propose to evaluate the segmentation quality of
S1 and S2 waves using a criterion based on classification
metrics (healthy vs. HF). In this manner, the classification
task serves as a hint of ground truth, as the most accurate
classification (in terms of Sensitivity, Specificity, Precision,
F-Score, and Accuracy) of heart records corresponds, as we
expect, to the most precise segmentation quality. In turn,
the most precise segmentation quality indicates the most
effective denoising approach. This relationship underscores
the importance of robust segmentation techniques in enhanc-
ing the overall performance of classification algorithms for
heart-related data.

As the characteristics of heart mechanical events, specif-
ically S1 and S2, are essential for detecting cardiac abnor-
malities [42, 43], features associated with these events are
mainly used to differentiate between healthy and pathologi-
cal records. The selected features include the onset and offset
instants, durations, peak-to-peak amplitudes of S1 and S2
heart events, and the ratio between peak-to-peak of S1/S2.
These features are clinically significant in diagnosing heart
failure, as addressed by several studies [42, 44, 45]. The
available class labels with the set of the aforementioned
features are then introduced to learn a simple classifier as
extensively described in Section 6. This classification task
will be conducted exclusively on records that meet the accep-
tance criteria as outlined in [19]. More specifically, records
must exhibit at least 2 coherent cycles in the ACC data and
a contrast of S1 and S2 with respect to the background that
exceeds 2 in the cardiac cycle.

6. Results
This section presents the main findings of the current

study. Initially, it explores the impact of the proposed 1D-
CNN denoising technique on the acceptance rate of cardiac
records obtained from the gastric implant. This impact is
quantified using a hint of ground truth that is made possible
thanks to a classification step of healthy vs. HF records. It’s
important to recall that only the records deemed acceptable
following the denoising step are considered for segmenting
both S1 and S2 waves. Subsequently, their various associated
features, as described earlier for classification purposes, are
computed as illustrated in the proposed pipeline depicted in
Figure 5.

As far as the classifier is concerned, various algorithms
are examined, including Logistic Regression (LR), Support
Vector Machine (SVM), Random Forest (RF), K-Nearest
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Table 1
Distribution of accepted records per pig for each denoising method

Class Pig
Total

number
of records

Number of accepted records
Denoising method

ID - Ed-Ref [19] PCA CCA EFICA CPD CNN

Healthy

1 95 81 80 75 72 82 87
2 163 132 132 124 137 132 144
3 232 189 196 196 190 188 217
4 316 288 284 265 275 286 311

HF
5 70 57 54 55 57 59 46
6 73 66 61 64 63 67 53
7 50 46 43 40 34 46 48
All 999 859 850 819 828 860 906
- - 85.98% 85.08% 81.98% 82.88% 86.09% 90.69%

Neighbors (KNN), Adaptive Boosting (AdaBoost), and
Naive Bayes (NB). Each algorithm was tested with multiple
configurations to determine the most effective one for the
classification task. Following the conducted tests, the Naive
Bayes (NB) classifier with a triangular kernel is selected
for integration into our pipeline evaluation, as it exhibited
the highest classification performance and produced the
best overall results. A comparative study with the original
pipeline (without additional denoising block) and four tradi-
tional denoising techniques, namely PCA, CCA, EFICA and
CPD, is also provided.
6.1. Impact of denoising and used envelopes on

data quality
The data quality stands as an important aspect of the

current study since it shows the efficiency of the longitudinal
monitoring process in producing valuable records that can
reflect the actual heart conditions. Table 1 shows the dis-
tribution of accepted records both for individual pigs and
the entire dataset. This table shows a biased distribution,
with 806 records acquired from four healthy pigs and only
193 HF records from three pathological pigs. The initial
pipeline shown in Figure 2 utilized this dataset by accepting
553 healthy and 127 HF records, representing 68.07% of the
total dataset [19]. Records failing to meet the established
quality criteria, such as the number of coherent cycles and
contrast heart events (S1/S2) compared to the background
noise, were rejected from the dataset.

First, the current study investigates the impact of in-
corporating Hilb and Homo envelopes, as detailed in Sec-
tion 4, on the percentage of accepted records. This step was
taken before implementing any further modifications to the
initial pipeline depicted in Figure 2. The initial pipeline,
with Hilb and Homo envelops being incorporated into the
segmentation of S1 and S2, is referred to in the sequel as
the edited reference pipeline (in short, Ed-Ref [19]). The
Ed-Ref pipeline shows a record acceptance rate of 85.98%
(see Table 1). This rate comprised 690 records from healthy
subjects and 169 records from subjects with HF. In fact, the
use of the four envelopes (Abs, Sqr, Hilb, and Homo) rather
than the two ones (Abs and Sqr), resulted in exploiting the
dataset more effectively, leading to about an 18% increase in
the number of accepted records compared to the reference
pipeline [19]. Consequently, all subsequent analyses and

evaluations of the considered denoising methods will be
conducted on the ED-Ref pipeline.

Regarding the denoising step in the proposed pipeline
depicted in Figure 5, various denoising strategies were ex-
plored, such as matrix factorization and tensor decomposi-
tion, each yielding different numbers of accepted records,
as illustrated in Table 1. The employment of matrix fac-
torization techniques resulted in the following record ac-
ceptance rates: PCA yielded 85.08% (692 healthy and 158
HF), CCA [24] led to 81.98% (660 healthy and 159 HF),
and EFICA [31] achieved 82.88% (674 healthy and 154
HF). For the tensor decomposition-based denoising strategy,
CPD achieved a record acceptance rate of 86.09% (688
healthy and 172 HF records). Now, with the pre-trained
CNN, including wisely selected filters, being used as a
denoising tool, a record acceptance rate of 90.69% (759
healthy and 147 HF) was obtained. Compared to the refer-
ence pipeline shown in Figure 2, the incorporated denoising
step together with the additional envelops (Hilb and Homo)
for S1 and S2 segmentation enhanced the records usability
by approximately 12% to 22% over the same monitoring
period, thereby providing more comprehensive insights into
heart conditions. The pre-trained CNN with those associated
learned filters, that are adequately selected, outperforms all
the other classical denoising strategies in terms of the record
acceptance ratio.
6.2. Impact of denoising on the quality of S1 and

S2 segmentation
In the subsequent stage of the conducted study, we fo-

cused on selecting features associated with the primary car-
diac events, S1 and S2, for classifying the records as either
healthy or pathological. The selected features include the
onset and offset instants, durations, peak-to-peak amplitudes
of the first (S1) and second (S2) heart events, and the ratio
between peak-to-peak of S1/S2 events as shown in Figure 1.
These features are clinically significant in diagnosing of
HF, as pointed out by several studies [42, 44, 45]. The
seven extracted features from each record are then assem-
bled into a seven-dimensional feature vector. This process
generates a dataset with 𝑁 records per scenario, as shown
in Table 1, where each record is represented by a seven-
dimensional feature vector usedfor training or testing the
classifier. In this study, two classical classification strategies
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are employed to evaluate the performance of the proposed
pipeline. The first strategy uses bootstrapping to assess the
model’s performance stability and reliability by repeatedly
sampling the dataset with replacement. The second strategy,
Leave-One-Subject-Out (LOO), is adopted to evaluate the
generalizability of the proposed methodology, providing a
stringent assessment of the model’s performance on entirely
new subjects.
6.2.1. Bootstrap classification strategy

Given the imbalance issue in our database, with healthy
records four times outnumbering pathological ones, it was
necessary to balance the dataset for unbiased classification
performance. To this end, all HF records were included but
only a number of HF records that is equal to the number
of healthy ones were randomly selected. Next, the dataset
was split into 90% as a training set and 10% as a testing
set. This process of random selection of HF records and
data splitting was performed over 100 independent trials.
Finally, the average classification performance across these
trials was computed. Recall that, the classification task was
designed to distinguish between healthy and HF cardiac
records, based on automatically extracted clinical features
of segmented S1 and S2 heart sounds using the proposed
pipeline shown in Figure 5. Obtained results are illustrated
in Table 2. According to this table, the pipeline Ed-Ref [19],
without any denoising step, achieved a Sensitivity of 0.772,
a Specificity of 0.830, a Precision of 0.809, an F-Score of
0.763 and an overall Accuracy of 0.776. The use of ma-
trix factorization-based methods (PCA, CCA, and EFICA)
marginally enhanced the classification quality, whereas the
CPD approach slightly deteriorated the classification per-
formance. Regarding the proposed 1D-CNN denoising ap-
proach, it significantly improved the results, achieving a
Sensitivity of 0.879, a Specificity of 0.938, a Precision of
0.935, an F-Score of 0.906 and an overall Accuracy of 0.909.
6.2.2. Leave-One-Subject-Out classification strategy

Besides, a non-pig specific strategy was also investigated
to ensure a more reliable and realistic assessment of the
proposed methodology. More precisely, given the limited
number of subjects in our dataset (7 pigs), we adopted a
Leave-One-Out (LOO) procedure. This involved training the
ML classifier using data from 6 pigs and testing it on the
left-out, unseen 7th pig. This ensures that the classifier was
trained on both classes before being tested. More precisely,
testing the 𝑃 𝑖𝑔𝛼 , 𝛼 = 1 ∶ 7, consists of classifying each
of its records as Healthy or HF. This process was repeated
seven times, with each pig serving as a test subject once.
Importantly, we did not calculate performance metrics sep-
arately for each individual test. Instead, after completing all
seven testing processes, we accumulated the results into a
single confusion matrix, and then the classification criteria
were calculated. As expected, the outcomes of this LOO pig
classification, as detailed in Table 3, show clearly that in all
cases the obtained performance is lower than that presented
in Table 2, especially in terms of Sensitivity, Precision, and

Table 2
Classification results with different denoising scenarios, the
results with 100 times bootstrapping strategy

Method Sensitivity Specificity Precision F-Score Accuracy

Ed-Ref [19] 0.722 0.830 0.809 0.763 0.776
PCA 0.755 0.852 0.836 0.793 0.803
CCA 0.74 0.807 0.793 0.765 0.773
EFICA 0.761 0.852 0.838 0.797 0.807
CPD 0.732 0.775 0.765 0.748 0.753
CNN 0.879 0.938 0.935 0.906 0.909

Table 3
Classification results with different denoising scenarios, the
results with leave one pig out strategy

Method Sensitivity Specificity Precision F-Score Accuracy

Ed-Ref [19] 0.615 0.842 0.488 0.544 0.797
PCA 0.626 0.875 0.535 0.577 0.829
CCA 0.626 0.878 0.553 0.587 0.830
EFICA 0.636 0.878 0.531 0.579 0.835
CPD 0.598 0.843 0.488 0.537 0.794
CNN 0.809 0.976 0.868 0.838 0.949

F-Score. Nevertheless, the obtained results clearly exhibit
that the proposed 1D-CNN based denoising method is still
very effective, even when a non-pig specific strategy is
adopted. Indeed, the use of filters learned from pre-trained
1D-CNN demonstrated the highest performance across all
metrics, with a Sensitivity of 0.809, a Specificity of 0.976, a
Precision of 0.868, an F-Score of 0.838 and an Accuracy of
0.949.

7. Discussion
Implantable gastric devices offer many advantages, in-

cluding continuous monitoring of chronic heart conditions
such as heart failure and the ability to effectively pick up
changes in heart rhythm, enabling timely intervention and
appropriate treatment adjustments. However, the main chal-
lenge for continuous heart condition monitoring using such
implants is challenging due to the inevitable multi-source
artefacts related to the gastric acquisition site, which pri-
marily affects the crucial ACC signals in extracting cardiac
events (S1 and S2), as stated by a previous work of our
research group [19]. In fact, two primary limitations are
identified in the data at hand: (i) the presence of noise and
artifacts in the ACC signals, hindering the accuracy of S1
and S2 wave segmentation, and (ii) the relatively limited
amount of accepted records overall the dataset. Improving
the quality of heart sound segmentation in data acquired
from implantable gastric devices for reliable heart condition
monitoring was hence the main concern of the current study.

This study addressed the previous work limitations by
introducing two contributions to the original pipeline de-
picted in Figure 2: (i) the use of filters of a pre-trained CNN
initially designed for a classification task as filters to remove
noise from ACC signals, and (ii) the integration of additional
envelopes (Hilb and Homo) in the segmentation step of S1
and S2 waves. Furthermore, due to the unavailability of
ground truth annotations for heart events (S1 and S2), we
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employed a strategy based on the evaluation of an ML clas-
sifier capable of distinguishing healthy from pathological
records. This served as an assessment criterion for evaluating
the effectiveness of various denoising methods in enhancing
the segmentation quality. Our assumption relies on the fact
that accurate differentiation between healthy and HF pigs
corresponds to precise segmentation of S1 and S2 waves.
Consequently, superior segmentation quality signifies the
most effective denoising approach.

The obtained results demonstrate the superiority of the
pre-trained 1D-CNN filter in terms of both the data ac-
ceptation rate (about 5% over the original pipeline without
denoising shown in Figure (2) and the classification one) for
all assessed statistical metrics and both considered denoising
strategies (i.e., matrix factorization and tensor decomposi-
tion based approaches). More importantly, the CNN-based
denoising approach is the only one that achieved signifi-
cantly better classification performance specifically in terms
of Accuracy and F1-Score compared to the utilization of the
other denoising methods in the case of bootstrapping and
LOO pig cross-validation approaches. This demonstrates the
generalization ability of the proposed CNN-based pipeline.
To the best of our knowledge, this work represents the first
instance of leveraging pre-trained CNN filters, originally
developed for a classification task, to address a completely
different challenge namely, the denoising task discussed in
this paper.

Even if the obtained results are very promising, some
limitations of the current study should be underlined: (i)
The first one is related to the selection criteria being used
for the choice of the best CNN filter. More precisely, in
this study, the best filter is chosen as the one that gives the
best record acceptance rate but this is without taking into
account the classification rate. One possible solution is to
choose the "best" filter as the one that produces the best
trade-off between enhancing the percentage of acceptable
records and the overall classifier performance. In the case of
large datasets, it is possible to learn the best filter by splitting
the data into training, validation, and test sets, and then se-
lecting the filter based on the performance computed over the
validation set. Note that, selecting the appropriate filters and
configuring the CNN may be context-dependent and needs
to be re-evaluated when applied to different datasets or appli-
cations. This limitation also affects other classical denoising
techniques. Regardless of the method being used (PCA,
CCA, EFICA, and CPD), determining the most relevant
component(s)/tensor rank is necessary; (ii) The second lim-
itation pertains to the dataset itself. Upon close examination
of the results presented in Table 2 and Table 3, it is apparent
that the overall accuracy achieved with the LOO pig scenario
surpasses that of the bootstrapping method in most cases. At
first glance, this outcome may appear unusual. This can be
explained by the significant bias of the dataset towards the
healthy class, which accounts for a number of examples that
is four times larger than those in the HF class. In this case, the
F-score criterion becomes more meaningful as it provides
a balanced measure of the classifier’s overall performance;

(iii) The third limitation to consider is that this study was not
evaluated on human data. This is currently justified by the
fact that testing such implantable devices directly on humans
during preclinical stages is ethically impermissible. How-
ever, extending these results to human data will be part of
future research efforts to advance this embedded technology
toward clinical application. It is worth noting that, the choice
of a pig as an animal model is motivated by several fac-
tors: pigs exhibit anatomical, physiology, metabolism, and
hemodynamic and electrophysiological features comparable
to those of humans. Additionally, pigs models, with various
heart pathologies, are also available [46, 47, 48, 49, 50].
Thus, pig models remain highly valuable for cardiovascular
research, particularly for preclinical testing and device de-
velopment [50]. The findings of this study hold promise for
successful outcomes in future human applications.

8. Conclusion
This study introduced a novel methodology, possibly

the first of its kind, leveraging pre-trained CNN models
originally designed for classification tasks to address denois-
ing challenges in the context of longitudinal monitoring of
chronic heart diseases, particularly heart failure, using an
implant located in the gastric fundus. By integrating addi-
tional Hilbert and Homomorphic envelopes and repurposing
pre-trained CNN filters for denoising purposes, significant
enhancements were observed in the implant’s ability to
effectively harness data. This resulted in improved reliability
in segmenting ACC signals into key cardiac events, namely
S1 and S2, thereby bolstering the implant’s performance in
monitoring cardiac conditions over time. Given the absence
of annotated data, a machine learning classifier utilizing clin-
ically significant features, including those associated with
S1 and S2 events, was employed to evaluate denoising effi-
cacy. Results indicated that the denoising method leveraging
pre-trained CNN filters yielded the most favorable balance
between enhancing segmentation accuracy and preserving
the maximum amount of usable data. Overall, the method-
ology outlined in this study has significantly enhanced the
capabilities of gastric fundus implants for long-term reliable
monitoring of cardiac conditions.
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