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One case example

In Figure 1 we present a particular solution obtained with 10 different features
and high SNR. In the first row of the graph, all biomarkers exhibit a single
trajectory, whereas in the second row, the actual configuration involves two sub-
trajectories. The estimated trajectories are represented by solid colored lines,
and the true trajectories by shaded gray lines, while subjects are color-coded
based on the estimated sub-group.

Our method successfully separates the different configurations and identifies
distinct sub-populations for all biomarkers. We also observe that some biomark-
ers have a very high probability of following a sub-trajectory, such as the first
one, while others have probabilities close to 50%; this occurs because the esti-
mated noise level is slightly higher than the actual noise level (0.5), making the
inclusion of a sub-trajectory less impactful on the posterior distribution.

The example also explains a curious behavior of the parameter describing
the sub-populations. It was observed that the greatest uncertainty is in the first
and last stages of the progression, while in the central part, uncertainties almost
appreoches to zero. This happens because the shape of the Sigmoids causes the
beginning and the end to be closer together than the middle part.

Fig. 1. The figure illustrates synthetic data: the true trajectory is in solid grey, and
the estimated trajectories are in solid colors, while subjects are color-coded according
to their estimated subgroup.
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1 EM for the optimisation

In this first Section of the appendix we give the mathematical details for per-
forming the EM-steps needed for the evaluation of the MAP of the posterior
distribution.

We decided to exploit the two level mixture model structure to implement
a multiple step approach. Indeed we perform iteratively the optimisation of the
parameters θ via Gradient Descent (GD) and a classical EM step for the param-
eters ξ and π.

For what concern the EM-step for the parameter ξ, we follow the same rea-
soning used for deriving the classical EM-step, i.e. we first derive the posterior
distribution for the split.

Let us introduce a new variable zb ∈ {0, 1} such that p(zb = 1) = ξb. There-
fore we can describe the posterior distribution for the auxiliary variable in terms
of other quantities:

γn
b = p(zb = 1 | xj

b) =
p(xj

b | zb = 1)p(zb = 1)

p(xj
b)

=
p(xj

b | θ0b )ξb
p(xj

b)
(1)

1− γn
b = p(zb = 0 | xj

b) =
p(xj

b | zb = 0)p(zb = 0)

p(xj
b)

=
p(xj

b | θ1:2b )(1− ξb)

p(xj
b)

(2)

where the conditioning on noise standard deviation is omitted for simplicity of
notation.

For performing the EM-step, we can consider to evaluate the gradient of the
posterior distribution w.r.t. the parameter of interest and setting it equal to zero:
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Thefereore, if we want to maximise the value for ξb we can equalise to zero
the loss function derivative, obtaining an iterative way to update the parameter:
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We observe that due to the fact that ξb is a mixture coefficient, it has to
be a value in range between zero and one; therefore not all values for the prior
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parameter β can be considered. In the next Session we are giving a sufficient
condition to ensure ξb to be in an appropriate range.

For what concern the parameters πn, the reasoning is similar, with the sim-
plicty given by the fact that it is a common EM algorithm.

Let us introduce a new variable νn ∈ {0, 1} such that p(νn = 1) = πn.
Therefore we can describe the posterior distribution for the auxiliary variable in
terms of other quantities:

Following the same reasoning
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For performing the EM-step, we can consider to evaluate the gradient of the loss
function and setting it equal to zero:
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Thefereore, if we want to maximise the value for πn we can equalise to zero
the loss function derivative, obtaining an iterative way to update the parameter:
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1.1 Bounds for prior parameter β

In this Section we derive a sufficient condition on the prior parameter β to allow
ξ to be a proper mixture coefficient for our model, i.e. between zero and one.

This Lemma is useful for the demonstration of the following result.
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Lemma 2. Given the model defined by:
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if the likelihood with two sub-trajectories is in average better than the one with
one trajectory, then
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from which we obtain the thesis.

Theorem 1. Given the model (7), if the likelihood with two sub-trajectories is
in average better than the one with one trajectory, ξ(k−1) ∈ [0, 1], ξ(k) is given
by (3), and β ∈ [0, N ], then ξ
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We observe that the upper bound can be written as:
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where the inequalities come from the previous Lemma 1 and Lemma 2.
This means that the bound for β holds if the model with two Sigmoids is in

general better than the one with one Sigmoid. This requirements is reasonable.
Therefore, if the ratio of sums on the right hand side is positive, it is true

that β < N is a good bound.

2 PPMI analysis

Parkinson’s disease (PD) is a progressive neurodegenerative disorder affecting
approximately 1% of the global population, making it the second most common
neurodegenerative disease after Alzheimer’s disease (AD) [?]. Externally, PD
manifests with a wide variety of symptoms that can differ significantly from per-
son to person; common symptoms include tremors, slowed movement (bradykine-
sia), rigid muscles, impaired posture and balance, loss of automatic movements,
changes in speech, and writing difficulties.

Analysing DP-MoSt’s solution on PPMI dataset, we provide the probability
of a split across clinical scores. We also show the estimated trajectories with solid
coloured lines, and show subjects based on their estimated sub-population. We
observe that the solution strongly depends on the choice of the prior parameters:

– Low prior parameters: when low prior parameters are considered, the method
tends towards overfitting, resulting in a high probability for all biomarkers
to present a split. Despite the similarities in the distribution of the sub-
populations to that of SuStaIn, with one sub-population being significantly
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Fig. 2. The figure illustrates by each row the results obtained with different order of
magnitude for the prior parameters of DP-MoSt. The first column shows biomarrker
trajectories with estimated sub-populations, while the second columnshows the com-
parison between the biomarkers values between DP-MoSt and SuStaIn.

more populated than the other, we cannot appreciate any similarity in tra-
jectories. The DP-MoSt’s population associated with lower TD_score is the
same that is related with lower PIGD_score, in clear contrast with the tra-
jectory provided by SuStaIn. The differences in biomarker trajectories can
be explained by the fact that our method includes longitudinal information,
making the trajectory evaluation more consistent.

– Normal prior parameters: when normal prior parameters are considered, DP-
MoSt associates high split probability to TD_score. DP-MoSt identifies a
sub-population with a high percentage of TD subjects (76%) and another
with a higher percentage of PIGD subjects (62%), providing a clinically
meaningful partitioning of the subjects.

– High prior parameters: When high prior parameters are used, our method
is less inclined to stratify the data into sub-populations, leading to no split
across biomarkers and resulting in a solution that essentially performs like
a logistic regression.
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DP-MoSt low DP-MoSt normal SuStaIn

Condition Sub-pop 1 Sub-pop 2 Sub-pop 1 Sub-pop 2 Sub-pop 1 Sub-pop 2

Intermediate 0.64 0.36 0.56 0.44 0.84 0.16
PIGD 0.83 0.17 0.38 0.62 0.78 0.22
TD 0.69 0.31 0.76 0.24 0.48 0.52

N data 73% 27% 56% 44% 72% 28%

Table 1. The Table shows the subdivision between different sub-populations consider-
ing two different regularisation parameters for DP-MoSt (low and normal) and SuStaIn.
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