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S1 Maze geometry and experimental parameters
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Figure S1: Left: Picture at t∗ = 0 s of the experiment conducted by Temprano-Coleto et al. [1], showing
a numbering scheme for the branches. Right: Graph of the mobility f(W ) found from (S4g), with the
sum truncated at n = 1000, plotted against the branch aspect ratio W in blue, with f(0.94) circled in
red. The sum (S4g) converges to 2 significant figures for n < 100 for the values of W shown. We take
W = 0.94 to be the aspect ratio of the branches of the maze.

We model the transport dynamics in the maze experiment conducted by Temprano-Coleto et al.
[1], as presented in their Fig. 2 and with the corresponding video showing the large maze at [1] (at
1:47 min). A picture of the experiment at what we define to be the initial time, t∗ = 0 s (with a star
denoting dimensional quantities), is shown in Fig. S1 (right), along with a branch numbering scheme. The
experimental conditions and protocol are detailed in [1]. In table SI we report estimated ranges of values
for the material parameters involved in the experiment. For the length of the solution path, the range of
values is estimated by measuring the shortest and longest direct line through the solution path. The error
associated with the measurement of lengths from image analysis is less than 1mm. The parameter values
related to the milk properties, the density ρ∗, the dynamic viscosity µ∗ and the nominal surface tension γ∗0
(assuming that only natural endogenous surfactant are present at the milk surface), are approximations
for the milk-cream mixture used in the experiment [1]. The lowest surface tension of the milk-cream
mixture γ∗c when the surfactant concentration is maximum during the experiment is estimated based on
a crude approximation for soapy water. The Marangoni force S∗ = γ∗0 − γ∗c , calculated from the values
γ∗0 and γ∗c , gives a sensible range of values. The viscosity of the milk-cream mixture is approximately 30
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Maze solving with surfactant dynamics

Parameter Symbol Units Estimated
range in

experiments

Length of solution path L∗
M 10−1 m 1.36− 1.84

Initial height of liquid film h∗0 10−3 m 3.0− 3.5
Acceleration due to gravity g∗ ms−2 9.8

Liquid density ρ∗ 103 kgm−3 0.98− 1.0[2]
Dynamic viscosity µ∗ 10−2 Pa s 3− 4 [3]

Surface tension of milk-cream mixture γ∗0 10−2 Nm−1 3− 5[4]
Surface tension of surfactant-laden interface γ∗c 10−2 Nm−1 2.0− 2.5

Marangoni force S∗ = γ∗0 − γ∗c 10−2 Nm−1 0.5− 3.0

Table SI: Table showing the relevant dimensional parameters of the maze experiment conducted by
Temprano-Coleto et al. [1]. The range of values for the Marangoni force, below the double lines, has
been calculated from other values in the table. The parameter values related to the milk properties are
approximations for the milk-cream mixture used in the experiment [1].

Dimensionless group Definition Model Estimated
assumption range in experiments

Aspect ratio of liquid film ϵ h∗0/L
∗
M ≪ 1 1.7× 10−2 − 2.4× 10−2

Inverse capillary number C ϵ2γ∗c /S
∗ ≪ 1 9.7× 10−4 − 1.0× 10−2

Bond number G ϵ2ρ∗g∗L∗
M

2/S∗ ≫ 1 10− 40

Reduced Reynolds number ϵ2Re ϵ2ρ∗S∗h∗0/µ
∗2 ≪ 1 1.6× 10−3 − 1.6× 10−2

Table SII: Table of relevant dimensionless groups for the maze experiments [1], calculated using the
dimensional parameter values from table SI.

to 50 times the viscosity of water. The main effect is to have slowed down the spreading dynamics of
the surfactant Marangoni driven flow compared to experiments with water as the liquid medium. The
red dye (red food color McCormick®) used as tracer in the experiments of [1] is water based and fully
miscible in the milk-cream mixture. The dye is slightly buoyant in the milk-cream mixture, such that it
remains at the surface to closely follow the exogenous surfactant spreading in the maze. We can notice
that the fronts of the red dye remain fairly sharp in the experiments, as seen on the videos and images.
This is due to the absence of external stirring or perturbations in the laminar flow, and slow molecular
diffusion processes. The typical diffusion length is estimated to be less than 1mm during the time of the
experiments, based on a conservative estimate of the surface diffusivity of 5×10−9m2s−1, which is of the
order of the spatial resolution in the images.

In table SII we report estimated values for non-dimensional groups. The model we use to simulate
the experiment is based on a one-dimensional (1D) lubrication theory approximation to Stokes flow (see
section S2). Inertial forces are dominated by viscous forces when the reduced Reynolds number ϵ2Re is
small, where ϵ ≪ 1 is the aspect ratio of the main flow path, which is consistent with the values taken
from table SI. The equation we use for the transport dynamics assumes that gravity dominates over
surface tension and surface tension gradients to maintain a flat surface. Any curvature effects of the film
surface associated for instance with the contact angle at the side contact lines are assumed negligible.
Accordingly, the Bond number G is found to be large and the inverse capillary number C small, which
is consistent with these assumptions.

The dimensionless length Li of branch i, for i = 0, 1, 2, . . . 37, is shown in table SIII, where we define
one unit as the length of the solution path L∗

M = 155mm. These lengths were calculated by counting
pixels from the video of the experiment [1], with all dimensional lengths measured with less than 1mm
accuracy. The maze video was taken directly overhead, minimizing optical distortion.
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Branch No. (i) 0 1 2 3 4 5 6 7 8 9 10 11 12
Li/10

−2 L0/10
−2 9.6 19 6.0 14 6.5 6.4 10 16 3.4 6.3 9.6 3.4

Branch No. (i) 13 14 15 16 17 18 19 20 21 22 23 24 25
Li/10

−2 6.5 13 3.2 3.2 9.9 6.7 6.6 3.2 6.5 13 6.5 13 6.5

Branch No. (i) 26 27 28 29 30 31 32 33 34 35 36 37
Li/10

−2 6.5 3.3 3.2 6.3 6.9 3.1 3.2 9.5 9.9 3.3 7.9 71

Table SIII: Table of the branch lengths of the maze, where one unit represents the length of the solution
path (L∗

M = 155mm). The branch are numbered based on the scheme showed in Fig. S1 (left). The
length of the inlet branch L0 is defined in section S2.2 as a function of δ, the ratio of endogenous to
exogenous initial surfactant concentration.

S2 The surfactant transport equation

The spreading of insoluble surfactant at the free surface of a thin two-dimensional (2D) layer of in-
compressible viscous fluid under the action of surface-tension gradients can be described by a nonlinear
diffusion equation, as we briefly explain. We use 2D Cartesian coordinates with horizontal coordinate
x∗. A liquid of viscosity µ∗ is confined between a horizontal solid wall and a free surface, at height
h∗(x∗, t∗) on which a surfactant with concentration Γ∗(x∗, t∗) is present at time t∗. The surface ten-
sion γ∗ of the free surface is assumed to diminish linearly as a function of Γ∗ for δΓ∗

c ≤ Γ∗ ≤ Γ∗
c

from a maximum value γ∗0 to a minimum value γ∗c , with δ the ratio of endogenous to exogenous initial
surfactant concentration such that δΓ∗

c is the endogenous surfactant concentration initially. We define
S∗ = γ∗0 − γ∗c . We consider the evolution of Γ∗ and h∗ over horizontal distances L∗

M that are much
larger than the characteristic film height h∗0, and define ϵ = h∗0/L

∗
M . Adopting scales appropriate to

lubrication theory, we define x = x∗/L∗
M , and t = ϵS∗t∗/(L∗

Mµ∗). We define the dimensionless film thick-
ness and surfactant concentration as h(x, t) = h∗/h∗0 and Γ(x, t) = Γ∗/Γ∗

c , respectively, and the surface
tension as γ = (γ∗ − γ∗c )/S

∗ = 1 − Γ. Then, when the reduced Reynolds number is sufficiently small
(ϵ2ρ∗S∗h∗0/µ

∗2 ≪ 1), the flow is governed by the coupled evolution equations [5]

ht − 1
2

(
h2Γx

)
x
− 1

3G
(
h3hx

)
x
+ 1

3C
(
h3hxxx

)
x
= 0, (S1a)

Γt − (ΓhΓx)x −
1
2G
(
Γh2hx

)
x
+ 1

2C
(
Γh2hxxx

)
x
= 0, (S1b)

where C = ϵ2γ∗c /S
∗ is the inverse capillary number and G = ϵ2ρ∗g∗L∗

M
2/S∗ the Bond number, which are

dimensionless parameters representing the strength of surface tension and gravity relative to surface ten-
sion gradients, respectively. Surface diffusion of surfactant and surface rheological stresses are neglected.
Spreading of surfactant from some initial condition can generate deflections of the free surface, although
h never exceeds 2 and cannot reach zero in the absence of disjoining pressure, with gravity suppressing
deflections at large times [5]. The limit G ≫ 1 is consistent with the experiment (Table SII). Expanding
h and Γ in powers of 1/G about the base state h = 1 and imposing no-flux conditions at the ends of the
domain, (S1), to leading order in ϵ, reduces to the nonlinear diffusion equation [6]

Γt =
1
4

(
ΓΓx

)
x
, (S2)

which can be rearranged as Γt = (Γ2)xx/8. This captures the essential features of self-induced spreading
of an insoluble surfactant on a thin film via Marangoni forces.

S2.1 Surfactant transport along a channel

The factor of 1/4 in (S2) is appropriate for a thin film, but it takes no account of the lateral no-slip
boundary conditions that constrain spreading along a channel in a maze having rectangular cross section
with finite width-to-height aspect ratio W . We refine the approximation to determine the mobility f(W )
of the surfactant as follows, where f → 1/4 in the thin-film limit in which W → ∞. We again assume (i)
no out-of-plane deflection of the air–liquid interface and no externally imposed pressure gradient, so that
the volume flux along the channel is uniformly zero, and (ii) the channel is long compared to its width
and height so that rapid lateral Marangoni spreading quickly eliminates lateral surfactant concentration
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gradients [7]. Under (i) and (ii), the axial velocity component u∗(x∗, y∗, z∗, t∗) is driven by a surfactant
gradient −Γ∗

x∗(x∗, t∗) moving the bulk liquid forward and a counter pressure gradient −p∗x∗(x∗, t) driving
a return flow in the bulk (arising via incompressibility from the no-interfacial-deflection condition and the
fact that the channels are closed at all ends), where y∗ and z∗ are coordinates spanning the cross-section
of the channel in the transverse and vertical directions, respectively. Adopting scalings introduced above,
the leading-order axial velocity component satisfies ∇2

⊥u ≡ uyy + uzz = px across the cross-section of
the channel, with u = 0 on the bottom and lateral walls of the channel (z = 0, y = ±W/2) and the
shear stress condition uz = −Γx on the interface at z = 1. Linearity allows the field to be decomposed
as u(x, y, z, t) = −px(x, t)u

b(y, z) − Γx(x, t)u
m(y, z) where ∇2

⊥u
b = −1 and ubz = 0 on z = 1, and

∇2
⊥u

m = 0 and umz = 1 on z = 1. Averaging u over the rectangular cross-section defines volume
fluxes Qb(W ) and Qm(W ), and condition (i) then requires 0 = −Qbpx − QmΓx, which determines px
in terms of Γx. Finally, the surfactant field is advected by the transversely-averaged surface velocity

us ≡ W−1
∫W/2
−W/2 u(x, y, 1, t) dy, which can be expressed as us = −pxu

b
s − Γxu

m
s . Eliminating px recovers

the nonlinear diffusion equation

Γt = f(W )(ΓΓx)x, where f(W ) = ums − (ubsQ
m/Qb). (S3)

In the limit of large W , ub = z − 1
2z

2, um = z, ubs =
1
2 , u

m
s = 1, Qb = 1/3 and Qm = 1/2 giving f = 1

4 .
For finite W , we use separation of variables to obtain the following expressions for ub, um, ubs, u

m
s ,

Qb, Qm and f :

ub(y, z) =− 1
2(z

2 − 2z)

−
∞∑
n=1

2 sin
[
(n− 1

2)πz
] [
sinh

[
(n− 1

2)π(y +W/2)
]
− sinh

[
(n− 1

2)π(y −W/2)
]]

sinh
[
(n− 1

2)πW
]
(n− 1

2)
3π3

; (S4a)

um(y, z) =−
∞∑
n=1

W (−1)n cos
(
2(n− 1

2
)π

W y
)
sinh

(
2(n− 1

2
)πz

W

)
(n− 1

2)
2π2 cosh

(
2(n− 1

2
)π

W

) ; (S4b)

ubs =
1
2 +

∞∑
n=1

2(−1)n[2 cosh [(n− 1
2)πW ]− 2]

sinh [(n− 1
2)πW ](n− 1

2)
4π4W

; (S4c)

ums =
∞∑
n=1

W tanh
[
2(n− 1

2)π/W
]

(n− 1
2)

3π3
; (S4d)

Qb =1/3−
∞∑
n=1

4(cosh [(n− 1
2)π]− 1)

sinh [(n− 1
2)πW ](n− 1

2)
5π5W

; (S4e)

Qm =
∞∑
n=1

W 2(cosh
[
2(n− 1

2)π/W
]
− 1)

2(n− 1
2)

4π4 cosh
[
2(n− 1

2)π/W
] ; (S4f)

f(W ) =
∞∑
n=1

W tanh
(
2(n− 1

2
)π

W

)
(n− 1

2)
3π3

−

∑∞
n=1

W 2(cosh [2(n− 1
2
)π/W ]−1)

2(n− 1
2
)4π4 cosh [2(n− 1

2
)π/W ]

1/3−
∑∞

n=1
4(cosh [(n− 1

2
)πW ]−1)

sinh [(n− 1
2
)πW ](n− 1

2
)5π5W

(
1

2
+

∞∑
n=1

2(−1)n[2 cosh [(n− 1
2)πW ]− 2]

sinh [(n− 1
2)πW ](n− 1

2)
4π4W

)
. (S4g)

Fig. S1 (left) shows that for W = 0.94, which is the approximate aspect ratio of the channel in the
experiment, f ≈ 0.15, which indicates a 40% reduction approximately in the surfactant mobility in
comparison to the wide-channel limit.

In addition to gravitational suppression of interfacial deflections, as used to derive (S2) from (S1),
surface tension can also have an significant role in suppressing deflections in a channel flow via pinning
of contact lines to the channel edges. Any interfacial deflection will have two components of curvature: a
short length comparable to the channel width; and a longer axial scale induced by competition between
viscous and capillary forces, as represented in (S2a). The former can be expected to dominate over the
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latter, as it acts over shorter lengthscales, and it will act alongside gravity in maintaining a near-uniform
liquid depth.

Transport of a single surfactant species in a shallow channel (S2) can be expressed dimensionally as
Γ∗
t∗ + (u∗Γ∗)x∗ = 0, where u∗ = −1

4(h
∗
0A

∗/µ∗)Γ∗
x∗ . Here A∗ = S∗/Γ∗

c is the activity of the surfactant
(the magnitude of the slope of the assumed-linear relationship between surface tension and surfactant
concentration). The equivalent model for a mixture of two surfactant species with concentrations Γ∗

1

and Γ∗
2 is Γ∗

i,t + (u∗Γ∗
i )x∗ = 0 for i = 1, 2 with u∗ = −1

4(h
∗
0/µ

∗)(A∗
1Γ

∗
1,x∗ + A∗

2Γ
∗
2,x∗), again assuming a

linear equation of state. Defining Γ∗ = (A∗
1Γ

∗
1 + A∗

2Γ
∗
2)/(A

∗
1 + A∗

2), A
∗ = A∗

1 + A∗
2 and summing the

evolution equations weighted respectively by A∗
1 and A∗

2 recovers exactly the evolution equation for a
single species Γ∗, equivalent to (S2). While for simplicity we assume that endogenous and exogenous
surfactant have identical properties in the present analysis, the model accommodates two non-diffusing
species with different activities.

S2.2 Surfactant transport in a maze

We now extend the 1D model to show that exogenous surfactant added to pre-existing endogenous
surfactant can simulate the maze-solving behavior seen in the experiments [1]. This behavior consists of
the exogenous surfactant spreading from the end of branch 0 (see numbering scheme in Fig. S1, left) to
the start of branch 37, while also not spreading to the end of the lateral branches.

To model the maze-solving behavior of the out-of-equilibrium surfactant field, we solve the simplified
time-dependent surfactant transport equation (S3) in a network of connected 1D domains (1DDs). Equa-
tion (S3) solves the transport of both the exogenous and endogenous surfactants, as they are assumed to
form a single field. Each 1DD represents one of the 36 branches of the maze, where the length of the ith
1DD, Li, is the length of the ith branch. These lengths are given in table SIII. Additionally, we simulate
the square branches 0 and 37 at the inlet and outlet of the maze, respectively, with two more 1DDs of
longer lengths. The length of the outlet 1DD, L37, is calculated to simulate the surface area of branch
37 in the experiment. Counting the number of pixels P ∗

37 constituting branch 37 in the image in Fig. S1
(left) and, for example P ∗

1 , the number of pixels that constitute branch 1, we define L37 = L1P
∗
37/P

∗
1 .

The length of the inlet 1DD simulating branch 0, L0, is estimated independently to represent the mass of
exogenous surfactant M∗

ex introduced in this branch at the start of the experiment, as discussed below.
We use subscripts to number the 1DDs, so that for example Γ0(x0, t) denotes the concentration in the

inlet 1DD, for 0 ≤ x0 ≤ L0 along the branch, and at time t. Each 1DD receives a coordinate direction
such that, for example, along 1DD i the coordinate direction is xi, and this coordinate increases in the
direction away from the junction nearest to the inlet 1DD. We solve the governing equation (S3) for the
surfactant transport equation throughout the 1D network along with the following initial, continuity and
boundary conditions, which simulate the conditions in the maze experiment,

Γ0(x0, 0) = 1 for all 0 ≤ x0 ≤ L0, (S5)

Γ1(x1, 0) =

®
1
2(1− δ) cos (πx1/xf ) +

1
2(1 + δ) 0 ≤ x1 ≤ xf ,

δ xf < x1 ≤ L1,
(S6)

Γi(xi, 0) = δ for all 0 ≤ xi ≤ Li, for i = 2, 3, . . . , 37. (S7)

∂

∂x0
Γ0(0, t) = 0,

∂

∂x37
Γ37(L37, t) = 0, (S8)

∂

∂xi
Γi(Li, t) = 0 (S9)

for all 1DDs i not connecting to a junction at Li,

Γj(0, t) = Γi(Li, t) (S10)

for every 1DD i terminating at a junction, and for all 1DDs j ∈ J(i) where J(i) is the set of all branches
such that xj = 0 locates the same junction as xi = Li. Finally,

∂

∂xi
Γi(Li, t) =

∑
j∈J(i)

∂

∂xj
Γj(0, t), (S11)
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for the same set of 1DDs as (S10). The initial, continuity and boundary conditions stated above, (S5)–
(S11), closely model the experimental conditions described in section S1. The initial condition in the
1DD representing the inlet branch, i = 0, is that the surfactant concentration is uniformly equal to
1 (S5). All the other 1DDs have a uniform surfactant concentration of smaller value δ < 1, which
represents the initial ratio of concentrations of endogenous surfactant to exogenous surfactant (S7). The
only exception is in the 1DD which connects the inlet 1DD to the rest of the maze, where a short section
of length xf = 0.032 smoothly connects the two uniform surfactant concentrations with half a cosine wave
(S6). The dynamics are driven by the gradient of the surfactant concentration, so we impose the initial
condition to be C1 continuous so that the initial velocity is defined everywhere. The smooth profile in
branch 1 has been added to avoid numerical issues at early times. Its influence on the overall transport
dynamics is negligible. The boundary condition at unconnected ends of 1DDs in the network is no flux
of surfactant, such as at the start of the inlet and end of the outlet branches (S8), and at the end of the
peripheral 1DDs (S9). At junctions where multiple 1DDs are connected, the conditions are continuity of
surfactant concentration (S10), and continuity of flux of surfactant (S11).

S2.3 Boundary between the exogenous and endogenous surfactants

As shown in [8], in the absence of surface diffusion, the front of exogenous surfactant, added to a surface
with a pre-existing endogenous surfactant concentration, moves like a material element transported at the
surface velocity generated through the surfactant-induced Marangoni stress. To simulate the experiment,
the evolution of the front location xj = Λ̃j(t) (the tilde denotes a simulated solution to avoid confusion
with the experimental data Λj) of exogenous surfactant in 1DD j, given (S3), satisfies

dΛ̃j(t)

dt
= −f(W )

∂

∂xj
Γ(xj = Λ̃j(t), t), (S12)

for all 1DDs j where a front exists. When Λj(t) = Lj , the front ceases to exist in 1DD j, and appears in
all 1DDs i ∈ J(j), where J(j) is the set of 1DDs originating at the head junction of 1DD j. The initial
conditions are that initially a front only exists in 1DD 1, and

Λ̃1(0) = xf , (S13)

and we impose that Λ̃i(tb) = 0 whenever the front in 1DD i appears at time t = tb. The equation (S12)
is solved simultaneously with (S3). The maze simulation is completed when Λ̃36 = L36.

S2.4 Key non-dimensional parameters in the model

The model has three unknown parameters to be determined empirically. The first is δ, the ratio of initial
endogenous surfactant concentration to the reference exogenous surfactant concentration. The second is
τend, which is the ratio of simulation completion time to experiment completion time tref . We use τend
to improve the comparison to the experiment of the dynamic behavior of exogenous surfactant along the
solution path (see section S6 for further details), but τend does not affect the model dynamics significantly.
The third a priori unknown parameter is L0, the length of the inlet 1DD. As detailed below, the length
L0 is used to simulate the mass of exogenous surfactant M∗

ex in the inlet branch 0.
Examining the video of the experiment [1], we observe complex dynamics occurring in the inlet branch

0 at early times. The exogenous surfactant is not added instantaneously, nor is it added to the entire
area initially occupied by the dye. Part of branch 0 is unoccupied by the dye, and remains unoccupied
throughout the duration of the experiment. Moreover, our quantitative analysis of how the dye front
moves at early times from branch 0 to branch 1 shows a very fast dynamics, with a short time scale
characteristically different from the dynamics throughout the internal branches of the maze. We assume
that this rapid dynamics is associated with the inlet branch being a large square, rather than a narrow
channel, such that the dynamics is mostly 2D, rather than 1D as assumed in our model. To avoid adding
unnecessary complexity to our model, we do not model this early time dynamics at the inlet branch as
it has limited impact on the long-time dynamics throughout the maze. We find that the overall maze
dynamics is well-captured by a 1D inlet branch, whose length is slightly different from the geometric
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value. Nevertheless, we still assume that the inlet branch is occupied uniformly by exogenous surfactant
at t = 0. Thus, the inlet branch length is chosen to represent the mass of exogenous surfactant deposited
at t = 0, rather than its geometric size. The actual size of branch 0 is not crucial to explaining the key
behavior of the experiment (unlike branch 37). The role of branch 0 is to act as a (finite) reservoir of
exogenous surfactant.

Owing to conservation of mass, we can estimate the exogenous mass of surfactant M∗
ex, which is used

to determine L0, by examining the video of the experiment at late times. At late times, the surface
tension throughout the maze approaches a constant value. Under the modelling assumption that the
material parameters of the exogenous surfactant are the same as the endogenous surfactant, this uniform
surface tension means that the concentrations of both species of surfactant also evolve to a constant
value, which we call Γ∗

u. Furthermore, under the assumptions that the surfactant species do not mix and
that the red dye closely follows the exogenous–endogenous interface, the endogenous surfactant occupies
the area of the maze which is white, and the exogenous surfactant occupies the area of the maze which is
red. Calling the dimensional masses of exogenous and endogenous surfactant M∗

ex and M∗
en respectively,

we make the approximations that

M∗
en ≈

∫
A∞∗

w

Γ∗
u dS∗ = Γ∗

uA
∞∗
w , and M∗

ex ≈
∫
A∞∗

r

Γ∗
u dS∗ = Γ∗

uA
∞∗
r , (S14)

where A∞∗
w and A∞∗

r are the surface areas of the maze not occupied by the dye, and occupied by the
dye respectively when the system reaches a steady state at the end of the video. The concentration Γ∗

u

cancels when calculating the ratio of masses, which we exploit to impose the condition that the ratio of
dimensionless masses in our model to be the same as the ratio of masses in the experiment. The non-
dimensional exogenous surfactant mass relates to the dimensional mass by M∗

ex = MexΓ
∗
cL

∗
MW ∗, where

W ∗ is the dimensional width of the maze branches, with a similar identity holding for the endogenous
surfactant mass Men. Thus, Mex/Men = A∞∗

r /A∞∗
w provides an identity for Mex in terms of δ

Mex = Men
A∞∗

r

A∞∗
w

= δ

[
N∑
i=1

Li − xf

]
A∞∗

r

A∞∗
w

, (S15)

where the quantity
î∑N

i=1 Li − xf
ó
is the total length of all the 1DDs in the model not initially occupied

by the exogenous surfactant. From the initial conditions, the exogenous surfactant mass satisfies

Mex =

∫ L0

0
Γ0(x0, 0)dx0 +

∫ xf

0
Γ1(x1, 0)dx1

=

∫ L0

0
1 dx0 +

∫ xf

0

ï
1

2
(1− δ) cos (πx1/xf ) +

1

2
(1 + δ)

ò
dx1 = L0 +

1 + δ

2
xf . (S16)

Using (S15) and (S16), the dimensionless length of the inlet 1DD (i = 0) can be estimated as

L0 = δ

[
N∑
i=1

Li − xf

]
A∞∗

r

A∞∗
w

− 1 + δ

2
xf , (S17)

where A∞∗
r and A∞∗

w , are measured from the video, the dimensionless lengths Li, i = 1, . . . , N are taken
from table SIII. We note that the precise value of xf (chosen as 0.032) has negligible impact on the maze
dynamics. The remaining dimensionless parameters δ and τend are determined through comparison with
the experiment (see section S6).

S3 Numerical methods

S3.1 Spatial discretisation

We model the transport dynamics in the maze by the time-dependent equation (S3) along a connected
network of 1DDs, subject to the initial, continuity and boundary conditions (S5)–(S11) presented in
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section S2.2. The endogenous–exogenous surfactant interface, assumed to be the front of the red dye, is
calculated through (S12) under the initial condition (S13). We solve a discretised approximation of the
continuum formulation of the problem on a network having the same topology as the maze, exploiting
the methodology of mimetic finite differences. We represent the maze as a directed graph. Every junction
and every unconnected end of a 1DD is represented by a vertex, and within each 1DD we add vertices
to refine the discretisation with oriented edges between them. The number of vertices Ni within the ith
1DD is chosen such that these vertices are equally spaced at a distance ∆xi = Li/(Ni + 1), where ∆xi
is as close as possible to a chosen global discretisation value ∆x such that it gives an integer Ni. This is
accomplished by

∆xi =
Li

round(Li/∆x)
. (S18)

As a convention, we choose the orientation of every edge to point away from the vertex nearest to the
inlet. Following the orientation of each edge, its vertex nearest to the inlet is designated as tail vertex,
and its other vertex is designated as head vertex. The topology of the directed graph is encapsulated by
its signed incidence matrix which is defined by

Aij =


+1 Edge i ∼ Vertex j| Edge i points towards Vertex j,

−1 Edge i ∼ Vertex j| Edge i points away from Vertex j,

0 Edge i ≁ Vertex j,

(S19)

with i and j two integers such that 1 ≤ i ≤ m, 1 ≤ j ≤ n for a graph with m edges and n vertices, and
where ∼ and ≁ mean ‘connected to’ and ‘not connected to’, respectively. Each row of A corresponds
to an edge of the graph and has exactly two non-zero entries: +1 corresponding to the head vertex of
the edge, and −1 corresponding to the tail vertex of the edge. We designate Au the unsigned incidence
matrix, which is the defined via Au(ij) = |Aij |. The labelling of edges and vertices is arbitrary. A subset
of adjacent vertices is represented by a vector (or chain) D of length n whose components are 1 for every
vertex in the subset and zero otherwise. Non-zero components of the chain AD identify the oriented
edges bounding the domain represented by D.

To define physically meaningful operators on the graph, we include metric information describing the
physical system represented by the graph. We define the edge length metric tensor as the diagonal matrix
of size m×m

L = diag(∆x0, . . . ,∆x0, . . . ,∆x1, . . . ,∆x1, . . .∆x2, . . . ), (S20)

where ∆x0, ∆x1, etc. are the lengths of the edges of the graph, each obtained from (S18), ordered the
same as the rows of A. We define the associated vertex length metric tensor as

V = diag
Ä
1
2A

T
uL1e

ä
, (S21)

where 1e is the m-vector (or chain) (1, 1, . . . , 1) identifying all the edges of the graph. The quantity Vjj

is half the sum of edge lengths of all edges connected to vertex j. We define Γv as the n-vector (co-chain)
of surfactant concentrations defined on the n vertices of the graph, and Γ2

v as the component-wise square
of this vector. The incidence matrix can be used as an operator which can act on Γ2

v. For instance, AΓ
2
v

is a differencing operation on Γ2
v that returns a co-chain of variables defined on the edges of the graph,

where the value on each edge is the difference of the square of the concentration on the bounding vertices
of the edge. Thus, using (S20) we can define a gradient operator on Γ2

v as L−1AΓ2
v. This is equivalent to

a second-order-accurate central-difference approximation of the gradient of Γ2
v defined at the midpoint of

each edge. We can therefore approximate the continuous flux −f(W )(Γ2)x/2 in the rearranged version
of (S3) by the discrete expression

qe = −f(W )

2
L−1AΓ2

v. (S22)

The flux qe is defined on the edges of the graph. The vector VΓv can be interpreted as the mass
of sufactant associated with each vertex. Then ⟨D,Γv⟩ ≡ DTVΓv can be interpreted as the mass of
surfactant in the simply connected domain represented by the chain D. Mass conservation at each
individual vertex (in the absence of sources and sinks) is expressed as

d

dt
VΓv = ATqe. (S23)

8
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Here, ATqe returns a co-chain of variables defined on the vertices of the graph giving the net amount
of flux entering each vertex. Indeed, each row of AT corresponds to a vertex of the graph, where the
components in the row are either +1 or −1 for each edge (corresponding to its column) pointing towards
or pointing away from that vertex, respectively. Equivalently, from (S23), −V−1AT is the analogue of
the divergence operator applied to all the vertices. Therefore, for a fixed metric V in time, the discrete
analogue of the surfactant transport equation (S3) in a maze of a given topology is

dΓv

dt
= V−1ATqe = −f(W )

2
V−1ATL−1AΓ2

v. (S24)

Left-multiplying (S24) by DTV gives

d

dt
⟨D,Γv⟩ = (AD)Tqe. (S25)

We recognise (AD)Tqe as the net flux entering the boundary of the domain represented by D. This
provides a discrete analogue of the divergence theorem on the graph. When implemented numerically,
this formulation conserves mass to machine precision.

S3.2 Temporal discretisation

We solve (S24) using a semi-implicit time-stepping finite-difference scheme. At the (k + 1)th time step,

we approximate Γ2
v as QΓ

(k+1)
v where Q = diag(Γ

(k)
v ). Therefore, (S24) can be approximated by

Γ
(k+1)
v − Γ

(k)
v

∆t
= −f(W )

2
V−1ATL−1AQΓ(k+1)

v . (S26)

The solution at the (k + 1)th time step is then obtained by solving the linear systemÅ
I+

f(W )

2
∆tV−1ATL−1AQ

ã
Γ(k+1)
v = Γ(k)

v , (S27)

where I is the n×n identity matrix. As discussed, the boundary conditions (S9) to (S11) are implemented
automatically within the formulation (S27). The initial conditions are imposed by projecting (S5)–(S7)

onto the vertices of the graph, whereby we obtain the initial concentration vector Γ
(0)
v . This is done using

the same order for the components of Γ
(0)
v as we have ordered the columns of A (this ordering is arbitrary

but must be consistent). The numerical scheme is found to converge with second-order spatial accuracy
following ∆x2, with ∆x → 0. This is consistent with Brio et al. [9], who found that the rows of (S24)
are a second-order accurate approximation of the Laplacian at each vertex of a graph.

Equation (S12) is solved simultaneously with (S27) to keep track of the fronts of exogenous surfactant.
We define Λ(k) as the vector of locations of exogenous surfactant fronts. This vector has the same
number of components as the number of edges in the graph. To impose the initial conditions (S13), every
component of Λ(0) is zero except the ⌊xf/∆x1⌋ components which represent the first ⌊xf/∆x1⌋ edges in
1DD 1, where ⌊a⌋ means the floor of a, returning the largest integer smaller than a. These components
of Λ(0) are set to ∆x1. We set the ⌊xf/∆x1⌋+ 1 component in 1DD 1 equal to xf −∆x1⌊xf/∆x1⌋.

We also equip our scheme with an indicator vector I(k) which has the same number of components
as there are edges. Each component is either 1 if a front of the exogenous surfactant is present in that
edge or 0 if not. We set the ⌊xf/∆x1⌋+ 1 component of I(0) in 1DD 1 to 1, and every other component
to 0. The numerical scheme which solves equation (S12), relating time-step k to k − 1, is

Λ(k) = Λ(k−1) − f(W )I(k) ◦ L−1AΓ(k−1)
v , (S28)

where ◦ is the component-wise product of vectors.
The jth component of I(k−1) ◦ Λ(k), if it is non-zero, corresponds to an exogenous surfactant front

within the jth edge of the graph. After time-step k we check whether every non-zero component of
I(k−1) ◦ Λ(k) is within some small tolerance ε of ∆xi, where i is the index of the 1DD where the edge

corresponding to the component is located. If |∆xi −Λ
(k)
j | < ε for this component j, we ‘hand over’ this

9
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surfactant front to the connecting edges by setting the component of I(k) for that edge to 0, and the
forward connecting edges to 1. The other components of I(k) remain the same as I(k−1). To reduce error

we also set the components corresponding to the forward connecting edges of Λ(k) to ∆xi−Λ
(k)
j . We also

take into account receding effects by testing whether or not the fronts have receded to the start of any
edge, in which case we pass the front location back to the previous edge following a similar algorithm.
The location of the exogenous surfactant front within any 1DD at time-step k is given by the sum of the
components of Λ(k) corresponding to the edges representing that 1DD. If we call J(i) the set of indices
corresponding to the edges discretising 1DD i, and we assume a uniform time step ∆t,

Λ̃i(k∆t) =
∑

j∈J(i)

Λ(k)(j). (S29)

S4 Linearisation and modal decomposition of the transport model

S4.1 Linear modes

We can approximate the nonlinear diffusion equation (S3) in the limit of small gradients of surfactant
concentration as a linear diffusion equation. If we assume that the surfactant concentration has the form
Γ = Γ̄+ Γ̂(x, t) where Γ̂ ≪ Γ̄, the nonlinear diffusion equation projected onto the discrete representation
of the maze (S24) becomes, to leading order,

dΓ̂

dt
= −κV−1ATL−1AΓ̂, (S30)

where κ = f(W )Γ̄, and we identify the Laplacian operator

κV−1ATL−1A. (S31)

If we define U = V1/2Γ̂ then (S30) becomes

Ut = −κV−1/2ATL−1AV−1/2U. (S32)

The operator κV−1/2ATL−1AV−1/2 is symmetric, and therefore has orthogonal eigenvectors, so that
UT

i Uj = δij for normalised eigenvectors Ui and Uj , with distinct eigenvalues λi and λj (as the maze is
not symmetric, all eigenvalues are distinct), and where δij is the Kronecker delta. Thus, we can express

Γ̂ in terms of orthonormal eigenvectors ϕi = V−1/2Ui of (S31) that satisfy

ϕT
i Vϕj = ⟨ϕi,ϕj⟩ = δij . (S33)

This defines the natural inner product for the Laplacian operator (S31), which is the operator governing
the linearised dynamics of the transport in the maze. The Laplacian (S31) is positive semi-definite, with
a single zero eigenvalue corresponding to a constant eigenvector representing steady state concentrations
as t → ∞.

We can use a truncated sum of the first N eigenvectors to construct an approximate solution for the
vector of surfactant concentrations defined on the vertices of the graph,

Γ(t) =

N∑
i=0

Aiϕie
−λit, (S34)

where the coefficients Ai are the amplitudes of the eigenvectors ϕi, and λi are the corresponding eigen-
values of (S31). Utilising the orthogonality of these eigenvectors with respect to this inner product we
can project an initial concentration profile Γ(0) onto this basis. The amplitudes for the ith mode will be
given by

Ai = ⟨ϕi,Γ(0)⟩. (S35)

We find the modes look similar to cosine waves through the solution path of the maze. The gradients
of the cosine waves have discontinuities at the locations of junctions, which is to be expected due to the
internal boundary condition (S11). The first 20 eigenvalues are plotted in Fig. S2(a).
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Figure S2: (a) The first 20 eigenvalues of the Laplacian (S31) (circles). In magenta is the approximation
π2n2/LW , where LW = 3.36 is the nondimensional length of the solution path. In blue is the approxi-
mation π2n2/LT , where LT = 5.07 is the sum of the lengths of all the branches in the maze. The first
expression approximates the dominant eigenvalues well, but the higher order modes are much better
approximated by the second expression. (b) Results of the parameter optimisation. The blue line shows
Esp(δ)/minEsp(δ) calculated from (S41), the normalised square error between the front location in the
experiment and simulation along the solution path. The red line shows Epb(δ)/minEpb(δ) calculated
from (S42), the normalised square error between experiment and simulation for the location of the fronts
in the lateral branches. Both error calculations give minima which are close to each other. The vertical
dashed line represents the minimum of the sum of the two normalised data sets, which is the optimal
value we use for δ at 0.15.

S4.2 Approximation of transport with the linear modes

We can capture qualitatively the main behaviours observed in the experiment (maze solving, receding in
dead-end sections) with only three eigenmodes. We are however unable to capture the initial conditions
even approximately with only three modes. To replicate the key behaviours we therefore need to adjust
δ and L0. Using a fitting parameter Φ, we replace L0 with ΦL0. We perform a parameter sweep over
1 ≤ Φ ≤ 40 and 0.01 ≤ δ ≤ 0.1 to find a minimum error between experiment and simulation using the
same error quantification as in section S6. We find a minimum of the combined data sets at δ = 0.03 and
Φ = 25.

S5 Experimental data

Experimental data to compare with the model predictions were obtained through image analysis of the
video of the experiment [1]. The video of the maze experiment was converted into a time series of N +1
JPEG images, with each image taken at regular times Ti, where i = 0, 1, 2, . . . , N . The time T0 is the
start time and the corresponding image is given in Fig. S1 (left), and TN is the completion time tref
(chosen when the dye front just enters the outlet branch 37). We imported these images into MATLAB as
matrices of dimension h× v× 3 where h and v are the number of rows and columns of pixels constituting
the image, and for each pixel, the three numbers in the third index take integer values from 0 to 256,
corresponding to the 8-bit light intensity value of the red, green and blue components at this pixel. We
normalise these data by dividing by 256, such that ideal white is created by the 3-tuple [1, 1, 1], and ideal
red by [1, 0, 0].

In each image of the time series, we average the pixel values in the transverse direction across the
branches, for every branch in the maze, in order to obtain a 1D network of pixels representing the maze.
For instance, let us say a horizontal (east-west orientation) section of a branch in a given image has Pw

pixels in the east-west direction and Pl pixels in length in the north-south direction, then its image is a
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Pw × Pl × 3 matrix P. We transform this matrix into a Pl × 3 matrix p defined by

p(j, k) =
1

Pw

Pw∑
i=1

P(i, j, k). (S36)

Likewise, for a vertical section of a branch, its image is a Pl × Pw × 3 matrix, which we transform by

p(i, k) =
1

Pw

Pw∑
j=1

P(i, j, k). (S37)

At corners we neglect the transverse averaging, and instead trace a line of pixels diagonally from the
middle of one branch section incident to the corner, indexing this line with the first index of a matrix
c(i, k), where k are once again the 3 RGB components. Junctions are taken to belong wholly to the
branch nearest the inlet. We then concatenate the matrices of the form (S36) and (S37), and corner
sections. For example, the ith branch of a maze at time Tj consists of first a horizontal section, which we
turn into a matrix of form (S36), which we call ph1, followed by a corner matrix c1, followed by a vertical
section of the form (S37), which we call pv1, followed by a corner c2, and so on; the matrix representing
the branch is then

B
Tj

i =
[
ph1 c1 pv1 c2 ph2 c3 pv2 . . .

]⊤
. (S38)

The image of all 36 branches in the maze are thus transformed into matrices of the form (S38), where
the first index represents the pixel location along the branch with its index increasing in the direction
away from the junction nearest to the inlet, and the second index gives the transverse averaged pixel
intensities at that location. This operation was repeated for each image in the time series from T0 to TN .

For each image in the time series, we compute upper and lower bounds for the locations of the fronts
of exogenous surfactant in each branch, as a measure of the spread of the front. We define the upper
bound Λu as the pixel with the smallest index which has both green and blue components above 180, and
the lower bound Λl as the pixel with the minimum index where both green and blue were above 120. The
difference in these values represent approximately a quartile of colour intensity. For larger values than
180, or smaller values than 120, we find a smooth approximation of the front location is unobtainable due
to noise. Indeed, in both the video images, and transverse averaged 1D network, the pixel components
creating the white of the milk and the red of the dye are noisy, such that any given pixel usually has
RGB components in the range [0.9, 0.9, 0.9] ≤ Imilk ≤ [1, 1, 1] and [0.9, 0, 0] ≤ Ired ≤ [1, 0.1, 0.1]. If the
number of rows in matrix Bi is PB, then these locations are

Λu
i (Tj) = max

D:(B
Tj
i (D,2)>180)∪(B

Tj
i (D,3)>180)

W

PB
Li, and Λl

i(Tj) = max
D:(B

Tj
i (D,2)>120)∪(B

Tj
i (D,3)>120)

W

PB
Li. (S39)

The difference |Λl
i(Tj) − Λu

i (Tj)| gives us an experimental error for the exogenous front location. We
define Λi(Tj) as the mean of the upper and lower bounds

Λi(Tj) =
1

2

Ä
Λu
i (Tj) + Λl

i(Tj)
ä
. (S40)

The initial location of the unique exogenous front as used in (S7), (S13), and (S17) is given by Λ1(0) =
xf = 0.032.

S6 Comparison of the model predictions with the experiment

We compare the predictions for the time evolution of the fronts of the exogenous surfactant Λ̃i, obtained
from solving the MFD formulation (S27) and (S28), with the experimental data Λi(Tj). We analyze two
distinct behaviours. The first is the front location of exogenous surfactant along the solution path, and
the second is the late time behavior of the front locations in the lateral branches. Hence, we define two
separate error quantification procedures for the two behaviours and perform a parameter sweep over δ
to find the values which minimise both errors.
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S6.1 Minimisation of the error along the solution path

We define Esp(δ) as the difference between simulation and experiment for the front location along the
solution path, defined by branches 1, 3, 5, 7, 9, 12, 14, 18, 22, 30, 32, 34 and 36 (Fig. S1, left). We choose
a set of M equally spaced points along the solution path, and for each point χi find the time taken τ̃i
for the exogenous surfactant front to arrive in a simulation run with a given δ. Then, we use the data
set obtained from the experiment of exogenous front locations to find an analogous data set from the
experiment. The data set found in S5 maps points equally spaced in time Tj to the spatial location of
the exogenous front in branch i, Λi(Tj). Using MATLAB®’s ‘interp1’ function we interpolate between
these data points to find the data set mapping the same set of spatial points χi along the solution path
to the time of arrival at those points τi.

We obtain two normalised, comparable data sets from simulation and experiment τ̃i/τ̃M and τi/τM ,
respectively, for i = 1, 2, . . .M . We impose that experiment and simulation start at the same time, but
we allow the finish time to vary by scaling the simulation data set by a parameter 0.5 ≤ τend ≤ 1.5.
This secondary parameter provides a slightly better fit, but has negligible impact on the fundamental
dynamics underpinning the model. To obtain a positive definite error we compute

Esp(δ) = min
0.5≤τend≤1.5

M∑
i=1

Å
τi
τM

− τend
τ̃i(δ)

τ̃M (δ)

ã2
. (S41)

We compute Esp(δ) for a range of values 0 < δ < 1. The normalised error Esp(δ) is shown in Fig. S2(b)
(blue). The minimum of Esp(δ) is found at δ ≈ 0.075.

S6.2 Minimisation of the error in the lateral branches

We quantify the error Epb(δ) between experiment and simulation for the front location in the lateral
branches. We consider branches, I = {2, 4, 6, 8, 10, 11, 13, 15, 19, 23, 24, 31, 33} (Fig. S1, left). We neglect
branch 35 where the experimental front does not penetrate. We record the location of the front inside
each of the lateral branches in the set I at the set of time points 1 ≤ j ≤ M described in subsection S6.1,
in both simulation Λ̃i(τ̃j) and experiment Λi(τj). We compute the error as

Epb(δ) =
∑
i∈I

M∑
j=1

Ä
Λi(τj)− Λ̃i(τ̃j)

ä2
L2
i

. (S42)

The normalised error Epb/minEpb is plotted in Fig. S2(b) (red) for a range of δ. The minimum is at
δ ≈ 0.195.

S6.3 Optimal value for the endogenous concentration

The errors Esp(δ) and Epb(δ), defined in (S41) and (S42) respectively, give well-defined minima with
different optimal values for δ. We added these normalised data sets together, and found a combined
minimum at δ ≈ 0.15 with τend ≈ 1.24, which are the values used in the simulation results shown in this
study. We note that all values 0.02 ≤ δ ≤ 0.175 would give a reasonable fit between the model predictions
and the experiments along the solution path, and all values 0.125 ≤ δ ≤ 0.21 would give a reasonable fit
of the dynamics in the lateral branches.

S7 Dynamics in lateral branches

In addition to the results presented in Fig. 3(a) (inset) in the main paper, we show the front dynamics in
the first 9 lateral branches in the experiment and in the simulation using the optimal value of δ calculated
in section S6, Fig. S3. We can observe the same receding effect of the front locations in the simulation and
in the experiment. This is explained physically by the finite mass of surfactant available from the inlet
branch (in contrast to a fixed concentration at the inlet) spreading through the solution path causing
non-monotonic behavior of the surfactant concentration closer to the inlet. The concentration increases
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Figure S3: Evolution of the front in time in the first 9 lateral branches for both the optimal prediction
from the nonlinear model (black curve, δ = 0.15) and the experimental data (red curve) (S40). The red
shaded area shows the experimental error (S39) for the front location. We observe receding behavior in
both simulation and experiment as the non-monotonic behavior of surfactant concentration in the early
branches of the maze cause a Marangoni flow in the opposite direction in these branches. The receding
in the experiment seems to occur over shorter timescales than we achieve in the simulation. We note
that the 3-mode linear model (see section S4) has not been plotted in this figure, as we find that for most
of these lateral branches the linear model produces no or little flow. This explains why, overall, the full
model yields a more quantitative fit to the experimental data throughout all the branches of the maze,
based on the global fitting criterion explained in section S6.

substantially initially in the first lateral branches of the solution path, but then decreases at later times.
This late time behavior causes a receding Marangoni flow in the opposite direction in branches 2, 4, 6,
8, 10, 11, 13, and 15.

S8 Two-dimensional dynamics

We use COMSOL to simulate the spreading of surfactant in some of the individual branches, and use the
particle-tracing feature to track the dynamics of the front of exogenous surfactant. We do this for the
section which consists of part of branches 7 and 14, and branches 8, 9, 10, 11, 12 and 13 (Fig. S1, left).
In this section, we solve the 2D equation

∂Γ

∂t
= f(W )∇ · (Γ∇Γ), (S43)

implementing no flux boundary conditions on all boundaries except at the inlet (Γ = 1) and outlet Γ = δ.
The initial conditions are Γ = (1− δ) cos (πx/2)/2+ (1+ δ)/2 for 0 ≤ x7 ≤ 2, and Γ = δ everywhere else.
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Figure S4: Sequence of images showing an experiment to solve a liquid maze with surfactant using different
experimental conditions than in the original experiments of [1] (see §S9.1 and experiment #1 in table
SIV). (a) A pipette is used to introduce 20µl of isopropyl alcohol (undyed). The maze was previously
filled with glycerol, and seeded with pliolite particles (nominal diameter around 100µm), which float at
the surface. (b)-(d) show flow evolution. Tracks for each particle, starting from t = 0, are shown in color.
(Length scale: the sides of the large entrance square inlet and outlet measure approximately 20 mm.)

S9 Additional experiments

Our main conclusion is that the maze solving behavior is primarily due to the interaction between the
exogenous and endogenous surfactants. We sought to demonstrate that the maze-solving behavior is
robust, and does not rely on the specific liquids and surfactant used in the original experiments of [1],
which are also shown in our Letter. The original experiments of [1] used a mixture of milk and cream
as the liquid medium, and the exogenous surfactant consisted of an aqueous soap solution. The flow was
visualized using an aqueous red dye solution.

Here we show that a similar maze-solving behavior can be observed as long as the following require-
ments are met:

• The exogenous surfactant solution, as well as any passive tracers, must be less dense than the
background liquid. This ensures that the surfactant and tracer move along the surface;

• The background liquid must be of sufficiently high viscosity to keep the flow essentially laminar;
and

15



Maze solving with surfactant dynamics

Figure S5: Sequence of images showing another experiment to solve a liquid maze with surfactant using
different experimental conditions than in the original experiments of [1] (see §S9.2 and experiment #2 in
table SIV). (a) A pipette is used to introduce a mixture of 50% isopropyl alcohol (2-propanol) and 50%
dye (by mass). The background liquid is a solution of 10% 2-propanol and 90% glycerol. The amount
added is 1ml. (b)-(d) show flow evolution. (Length scale: the sides of the large entrance square inlet and
outlet measure approximately 20 mm.)

• The exogenous surfactant must be mild enough (as measured by the slope of the surface tension
change with concentration), such that the associated Marangoni flow does not immediately lead to
complete coverage of the interface.

The experiments of [1] leveraged the fact that soap in milk or cream behaves as a much milder
surfactant than soap in water (see for example [10] for data and discussion on the interaction between
milk casein and Sodium Dodecyl Sulfate from soap). Because we now wish to use a background fluid
other than milk, we choose isopropyl alcohol (i.e. 2-propanol), which acts as a mild surfactant in water,
as measured by the ratio between adsorption and desorption coefficients [11]. To maximize viscosity
and density in the background liquid, we used glycerol mixtures. We report here two representative
experiments, which are summarized in table SIV and are shown in Figs S4 and S5.

S9.1 Glycerol background and 2-propanol added, visualized with particles

The first experiment is shown in Fig. S4, and aimed to also remove possible complications arising from
the presence of dye. We therefore used glycerol (99% purity) as the maze liquid, and 2-propanol (99%
concentration) as the exogenous surfactant. The flow was visualized by plastic particles (Pliolite, nominal
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diameter approximately 100µm) that were dispersed on the surface before the endogenous surfactant was
introduced. The particles had nominal density 1.04 ·10−3 kg/m3, such that they floated over the glycerol,
whose density was around 1.25 ·10−3 kg/m3. A pipette was used to introduce 20µl of 2-propanol at t = 0.

In the experiments of [1], the bottom of the channels was transparent and a light source was placed
below the maze, such that the white milk stood out against the black maze. In our new experiment shown
in Fig. S4, the particles are white, and we cannot use the same lighting technique of [1], as the particles
would be invisible against the background lighting. Instead, we manufactured a matt black maze, and
illuminated it from above, such that the particles stood out against the background, as shown in Fig. S4

In order to calculate particle tracks, images were analyzed using the Trackmate plugin in FIJI [12].
Selected snapshots are shown in panels (a) through (d) of Fig. S4. The tracks show how the surface
flow in the main branch is directed primarily to the maze exit; this is especially evident in the final
image, namely Fig. S4(d). The tracks also visualize motion in the side branches and in the reservoir. For
example, we can see that particles in the destination reservoir (on the left of each panel in Fig. S4) began
moving well before any particles from the main branch approached the end of the maze, as shown in
Fig. S4(c,d); this observation is consistent with the long-range interactions associated with our transport
model.

S9.2 Background and added liquids both comprising 2-propanol and glycerol

To further illustrate the robustness of the maze-solving behavior arising from exogenous/endogenous
surfactant interaction, we performed another experiment where the background and added liquids both
contained glycerin and the same surfactant (2-propanol), but in different proportions. A small amount of
red dye was introduced in the added liquid as a passive tracer. Specifically, the maze liquid was a solution
(by mass) of 10% 2-propanol and 90% glycerol, whereas the added liquid consisted of 50% 2-propanol
and 50% glycerol.

The experiment is depicted in Fig. S5. The dyed fluid reached the outlet in approximately one minute,
yielding a pattern similar to that shown in Fig. 1 of our Letter, although with fuzzier edges, as shown in
Fig. S5(d). This result further supports our proposed model for the surfactant-solving mechanism.

There are additional interesting observations that can be made from Fig. S5. At late stages, a thin
ridge of dye is visible ahead of each dye front. We hypothesize that this is due to a secondary effect, which
partially analogous to the ‘tears of wine’ phenomenon, as well as to the ‘coffee ring’ effect. Namely, we
believe the effect may be driven by alcohol evaporation near the exogenous surfactant front, resulting in
surface tension that is locally slightly higher than that of the following liquid. The locally higher tension
draws dyed liquid to the front, where dye accumulates as the alcohol evaporates.

S9.3 Summary of new experiments

In summary, for the different systems tested, the same underlying maze solving behavior is still observed.
This provides further experimental evidence to support the main conclusion of this study. We expect
that the maze solving behavior is possible with a wide range of liquids, surfactants and tracers, as long
as they meet the conditions listed above – namely that the surfactant must be mild, that the exogenous
surfactant and tracer must float above the maze liquid, and that the flow remains laminar (e.g. the
viscosity must be high enough). Therefore, we anticipate that analogous interactions between exogenous
and endogenous surfactants in confined geometries can be important in other systems where surfactant
concentrations are out-of-equilibrium.
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