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Abstract this piece?” He responded with a reasonable question:

“What do you mean by key?” | began singing the piece
Processing musical information is a task many of us per- and stopped mid-stream. | then asked the student if he
form effortlessly, and often, unconsciously. In order to  ¢oy|d sing me the note on which the piece should end.

gain a better understanding of this basic human cognitive . e
ability, we propose a mathematical model for tonality, the Without hesitation, he sang the correct pft,c[hereby

underlying principles for tonal music. The model simul-  successfully picking out the first degree, and most sta-
taneously incorporates pitch, interval, chord and key rela-  ble pitch, in the key. The success of this method raised

tions. It generates spatial counterparts for these musical more questions than it answered. What is it we know that
entities by aggregating musical information. The model 5565 s to hear one pitch as being more stable than oth-
also serves as a framework on which to design algorithms s d he mind he f - fthi bl
that can mimic the human ability to organize musical in-  €rS? How does the mind assess the function of this stable
put. One such skill is the ability to determine the key of a pitch over time as the music evolves?

musical passage. This is equivalent to being able to pick  Before we can study music cognition, we first need a

out the most stable pitch in the passage, also known as yanrasentation for musical structure. In this paper, we
doh” in solfege We propose a computational algorithm

that mimics this human ability, and compare its perfor- Propose a mathematical model for tonality, the underly-
mance to previous models. The algorithm is shown to ing principles of tonal music. According to Bamberger
predict the correct key with high accuracy. The proposed (2000), “tonality and its internal logic frame the coher-
%%T?ouc}?%icc))rnal {Pgdﬁ‘loft%w:ns 28 si';esﬁarcoqhaenoég%%%g?g_ ence among pitch relations in the music with which [we]
Ihuman percep;;ltitlnngand cognition ir|1 r%usylg Bysdesigni#g are most fam'“a.r'” Th‘? model uses spatial pr.OXImIty.tQ
efficient algorithms that mimic human cognitive abilities, ~ represent perceived distances between musical entities.
we gain a better understanding of what itis that the human The model simultaneously incorporates representations
mind can do. for pitch, interval, chord and key relations.

Using this model, we design a computational algo-
| ducti rithm to mimic human decisions in determining keys.

ntroduction The process of key-finding precedes the evaluation of

Music cognition is a complex task requiring the integra- melodic and harmonic structure, and is a fundamental
tion of information at many different levels. Neverthe- problem in music cognition. We relate this new represen-
less, processing musical information is an act with whichtation to previous models by Longuet-Higgins & Steed-
we are all familiar. The mind is so adept at organiz-man (1971) and Krumhansl & Schmuckler (1986). The
ing and extracting meaningful patterns when listening tocomputational algorithm is shown to identify keys at a
music that we are often not even aware of what it is thahigh level of accuracy, and its performance is compared
we do when comprehending music. Some of this unconto that of the two previous models.
scious activity includes determining the tonal cehttre
rhythm, and the phrase structure of the piece. The Representation

I illustrate our unconscious ability to process music by o
a short anecdote from my own experiences. In my firstVestern tonal music is governed by a system of rules
semester as a pianofaimstructor at MIT, | encountered calledtonality. The first part of the paper proposes a ge-
a few students who had no prior musical background. PMetric representation, the Spiral Array model, that cap-
asked one such student, after he carefully traced out th@lres this system of relations among tonal elements. The

melodic line for Yankee Doodle, “What is the Kepf Spiral Array model offers a parsimonious description of
- the inter-relations among tonal elements, and suggests
1The tonal center also called theonic of the key, is the

pitch that attains greatest stability in a musical passage. ordered, the first degree of the scale gives the scale its name.
2A keyboard skills class for students enrolled in Music Fun- This is also the most stable pitch, known astibrgc.
damentals and Composition courses. 4A pitch is a sound of some frequency. High frequency

SExcerpted from the Oxford Dictionary of Music: Rey  sounds produce a high pitch, and low frequency sounds pro-
implies adherence, in any passage, to the note-material of onguce a low pitch. This is distinct fromreote which is a symbol
of the major or minor scales. When the pitches in a scale ar¢hat represents two properties, pitch and duration.



new ways to re-conceptualize and reorganize musical inwork in that it assigns spatial representations for higher
formation. A hierarchical model, the Spiral Array gen- level musical entities in the same structure. The repre-
erates representations for pitches, intervals, chords amgkntations for intervals, chords and keys are constructed
keys within a single spatial framework, thus allowing as mathematical aggregates of spatial representations of
comparisons among elements from different hierarchicatheir component parts.
levels. The basic idea behind the Spiral Array is the rep- Like the models derived from multi-dimensional scal-
resentation of higher level tonal elements as aggregatdag, the Spiral Array model uses proximity to incorpo-
of their lower level components. rate information about perceived relationships between

Spatial analogues of physical and psychological phetonal elements. Distances between tonal entities as repre-
nomena are known to be powerful tools for solving ab-sented spatially in the model correspond to perceived dis-
stract intellectual problems (Shepard, 1982). Some havtances among sounding entities. Perceptually close in-
argued that problems in music perception can be reducegrvals are defined following the principles of music the-
to that of finding an optimal data representation (Tan-ory. In accordance with the Harmonic Network, the Spi-
guine, 1993). Shepard (1982) determined that “the cogral Array assigns greatest prominence to perfect fifth and
nitive representation of musical pitch must have propermajor/minor third interval relations, placing elements re-
ties of great regularity, symmetry, and transformationallated by these intervals in proximity to each other.
invariance.” The model placed all twelve chromatic In the calibration of the model, the parameter values
pitches equally over one full turn of a spiral, and high- that affect proximity relations are prescribed based on a
lighted pitch height relations. Further extensions to afew perceived relations among pitches, intervals, chords
double helix emphasized perfect fifth intervalations,  and keys. These proximity relations will be described in
but did not account for major and minor third relations. a later section.

Applying multi-dimensional scaling techniques to ex-
perimental data, Krumhans| (1978,1990) mapped lis- The Spiral Array Model

tener ratings of perceived relationships between prob@s the name suggests, in the Spiral Array Model, pitches
tones and their contexts into space. The resulting conge represented by points on a spiral. Adjacent pitches
(1978) places pitches in the tonic triad closest to eachyre related by intervals of perfect fifths. Pitches are in-
other, confirming the psychological importance of fifth gexed by their number of perfect fifths from C, which
and third interval relations, which form triads. Parncutthas peen chosen arbitrarily as the reference pitch. For
(1988) has also presented a psychoacoustical basis f@iample, D has index two because C to G is a perfect
the perception of triadic units. _ fifth, and G to D is anotherP(k) denotes the point on
Another representation that incorporates spatial counihe spiral representing a pitch of index k. Each pitch can

terparts for both perfect fifth and major/minor third re- pe defined in terms of transformations from its previous
lations is thetonnetz otherwise known as the Harmonic neighbor - a rotation, and a vertical translation.

Network. This model has been used by music theorists

since Riemann (see, for example, Lewin, 1987; Cohn, def

1998), who posited that tonality derives from the estab- P(k+1) = R-P(k)+h,

lishing of significant tonal relationships through chord 0 10 0
functions. Cohn (1998) has traced the earliest version whereR = -1 0 0| andh={ 0
of this network to the 18th century mathematician Euler, 0O 0 1 h

and used theonnetaepresentation to characterize differ-

ent compositional styles, focussing on preferred chordrhe pitch C is arbitrarity set at the point [0,1,0].
transitions in the development sections. More recently, Since the spiral makes one full turn every four pitches
Krumhansl (1998) presented experimental support foto line up vertically above the starting pitch position. Po-
the psychological reality of these neo-Riemannian transsitions representing pitches four indices, or a major third,

formations. apart are related by a simple vertical translation:
Our proposed Spiral Array model derives from a three-
dimensional realization of the Harmonic Network, and P(k+4)=P(k)+4-h.

takes into account the inherent spiral structure of the
pitch relations. It is distinct from the Harmonic Net- For example, C and E are a major third apart, and E is
_— positioned vertically above C.

SExcerpted from the Oxford Dictionary of Music, amter- At this point, we diverge from the originabnnetz

valis the distance between any two pitches expressed by a num- : ; ; R
ber. For example, C to G is a 5th, because if we proceed up th O defln_e c?ordda?d Eey (rj%préasentatllor!s |nf tne thhree
major scale of C, the fifth pitch is G. The 4th, 5th and octavedimensional model. The added complexity of the three-

are all called Perfect. The other intervals, measured from thélimensional realization allows one to define representa-
first pitch, in the ascending major scale are all called Major.tions off the grid, andwithin the spiral. A chord is the
Any Major interval can be chromatically reduced by a semi- composite result, or effect, of its component pitches. A

tone (distance of a half step) to become Minor. If any Perfect, : . .
or Minor interval is so reduced, it becomes Diminished; if any key is the effect of its defining chords. We propose that

Perfect or Major interval is increased by a semitone it becomeshis effect can be represented spatially by a convex com-
Augmented. bination of its components.



are given names, with respect to the key, that reflect their
function. The center chord is called the tonic chord, (1)
the one to its right the dominant (V), and the one to its
left the subdominant (1V). Hence, we represent the major
key as a combination of its I, V and IV chords. For exam-
ple, the representation of the C major key is generated by
the C major, G major and F major chord representations.
See Figure 1 for an example of a major key representa-
tion.

Mathematically, the representation for a major key,
Tm(k) is the weighted average of its tonic triad
(Cm(K)), dominant triad Cv(k+1)) and subdominant
triad (Cm(k—1)) representations. As before, the de-
sign objective is to have the weights correspond to each
chord’s significance in the key. Hence, the | chord is

P(K)

subdominant

| chord given the largest weight, followed by that of the V chord,
tonic then the IV chord:
Tm(k)
def
Figure 1: The Spiral Array Model. = o1-Cu(K)+ 0z Cr(k+1) +ws-Cu(k—1),

3
where wlzu)z2w3>0andZOJizl.
Mathematically, the chord’s representation is gener- i=
ated by a convex combination of its three component
pitch positions. Geometrically, the chord representation
resides strictly within the boundaries of the triangle out-
lined by the triad (see Figure 1). A chord is represented
by a weighted average of its component pitch positions:
the rootP(k), the fifth P(k+1), and the third?(k+4) for
major triads, andP(k—3) for minor triads:
The representation for a major triad is

W

Il

Cuk) %" wi-P(K)+wo - P(k+1) +ws-P(k+4),

3
where w1 > Wo > ws > 0 and lei =1
i=

Al

The minor triad is generated by a similar combination,

Cm(k) %' up-P(K) +uz-P(k+1)+us- Pk —3),

3
where Ui > Up > uz > 0and Zui =1
i=

The weightsw; andu;, on the pitch positions repre-
sent the importance of the pitch to the generated chord.
For longstanding psychological, physical and theoretical

reasons, the root is deemed the most important, followed-. ) : : .
by the fifth, then the third. Correspondingly, the weights?tlgure 2 Ge_ometr_lc _represe_ntatlon of & minor key,_a
are constrained to be monotonically decreasing from th omp(_)sne of its tonic (i), dominants (V/v) and subdomi-
root, to the fifth, to the third. In order that spatial distancen@nt (iv/1V) chords.
mirrors these relations, there are additional constraints — : . .
on the aspect ratio h/r. These constraints are described in ' '€ définition for the minor key is more complicated,
Chew (2000). 6We shall use roman numerals to denote chord function
An important property of the Spiral Array is that rep- within a key. The number indicates the scale degree of the

resentations of pitches in a aiven k m hord's root. For example, “I” represents the tonic chord. We
esentations of pitches in a given key occupy a co paC:'fldopt the convention of denoting major chords by upper case

neighborhqod. Each _major chord, toggther with its I’ightroman numerals, and minor chords by lower case ones. For ex-
and left neighbor major chords, combine to produce thesmple, a major chord with the tonic as root is “I but a minor
effect of a major key. In music terminology, these chordschord with the same root is “i”.



but we will not go into the details at this time. It suffices problems in the analysis and manipulation of musical
to say that the center of effect for the minor Key;(k) is  information. Because the model condenses musical in-
modeled as a combination of the toig,(k), the major  formation to a spatial point, it allows for efficient and

and minor dominant triad€y (k+1) andC,(k+1), and  dynamic tracking of a streams of musical signals. Us-
the major and minor subdominant tri#i,(k—1) and ing the model, an algorithm is designed to determine the

Cm(k—1): key of musical passages. We illustrate how the algorithm
works by an example, “Simple Gifts”. This algorithm
Tm(k) def U1-Cm(K) is shown to perform better than existing ones when ap-

plied to the 24 fugue subjects in Book | of Bach’s “Well-
+02-[0-Cu(k+1)+(1-0)-Cm(k+1)] Tempered Clavier” (henceforth, referred to as the WTC).
+U3-[B-Cm(k—1)+(1-B)-Cm(k—=1)],  This algorithm exemplifies the concept of mapping mu-
where U1 >U2>03>0anduy +Ua+V03=1, sical information onto the Spiral Array.
and 0>a>1,0>p>1 Analyzin'g the key of a melody poses many chal-
lenges. Given a melody, one must make informed de-

See Figure 2 for the spatial representation of a minor keytiSions about its key based on little information. Fur-
thermore, there could be more than one equally valid an-

Properties of the Sp”'al Array Model swer, in which case a list for the most likely Car_1d_idates

In the Spiral A del ical inf tion | for key would be more appropriate than one definite key.
dn ed piral Array ;ng e ,dmu5|ca |ntocrirrt1)a lon 1S Icon— This section introduces the key-finding algorithm (CEG)

ensed, or aggregated, and represented by a single poifysay on the Spiral Array that returns a ranked list of
Proximity in the Spiral Array indicates some combina- possible keys. CEG is an acronym foenter of Effect
tion of the following: shared pitches, shared intervals, O'Generator THe CEG algorithm is fundamental to the
tonal elements within a perfect fifth, major third or mi- g;01 Array model and uses the model to reframe the
nor third interval of each other. This section summarlzesproblem of key recognition as a computationally simple
the criteria for selecting the weights defined in the pre-o o ot finding ‘a distance-minimizing representation.
vious section so that relations between represented tonapIn the Spiral Array, the collection of pitches in a given
entities have direct counterparts in the geometric struckey defines a comp’act space. As pitches in a melody
ture. De}aﬂS aref g”ven .|n Chew (2000). The criteria ar€5re sounded in sequence, the geometric shape defined by
summarized as foflows: the pitch positions becomes increasingly more complex.

1. Perceptually close intervals should be represented plf'Stéad of using this complex shape to identify the key,
shorter inter-pitch distances. For example, the clos!1€ @lgorithm collapses the pitch information down to a
est distance between any two pitch positions denoteﬁlngl.e F;]O'm thebqenter of effect (cb_e.). In this manner,
a perfect fifth relation; and, pitches a third apart are E. pr;tg ehs combine fo create ?T}O chLm Spaegpoint
closer than those a second apart, etc. which is the composite sum of the pitch positions.

Since keys are also defined as points in space, itis then

2. Each chord representation is closest to its root, fol-Simple to compute the distance between the c.e. and the
lowed by the fifth, then the third; and, no other pitcheskey, and nearby keys, to determine which key is closest
are as close to the major chord center as its three cori0 the c.e. Thus the mathematical sum of pitches affords
stituent pitches. parsimonious descriptions of, and comparisons between,

different pitch collections.

3. The average position of two pitches an interval of a However, the CEG algorithm more than simply com-
half step apart should be closest to the key relategares pitch collections. By definition, the key represen-
to the upper pitch; and, the average position of twotations favor triadic pitch configurations, and also tonic-
pitches an interval of a perfect fourth apart should bedominant and tonic-subdominant relationships. These
closest to the key related to the upper pitch. representations incorporate different levels of hierarchi-

cal structure and relationships. Not all pitches are
These preliminary criteria are subjective, and are by nayeighted equally; and, the key representation is a struc-
means comprehensive. We found, through experimentsured but nonlinear combination of its pitch collection.
that by satisfying these few conditions, the model per-By comparing the c.e.’s to these key representations, we
formed well when applied to the problem of key-finding expect certain pitch relations to prevail.
(as described in the next sections). Thus, this could be
reason to believe that with a few simple conditions, weAn Example

might be able to capture the salient features in musicaihe gigorithm is best explained by an example. Consider
information in a way that concurs with listener percep-he Shaker tune, used in Copland’s symphonic suite “Ap-
tions. palachian Spring” (1945), shown in Figure 3.
L At any point in time, the CEG method generates a c.e.
Finding the Key of a Melody from the given musical information that summarizes the
The Spiral Array provided a framework on which to de- tonal space generated by the pitches sounded. Define a
sign viable and efficient computational algorithms for step to be a pitch event. At each step, the pitches from the



== e e et T Tone Profile Method (PTPM) (1986). Detailed discus-

i e e e e Wt e e e e M |

=Y . e T % sions of each test run is documented in Chew (2000).
The tonic-dominant rule was devised for cases when

o Ee—e——msE e e e e | the SMA algorithm failed to reach the desired conclu-

B o 4 g to—e—0c ! sion by the end of the fugue theme. In such cases, the

tonic-dominant rule derives the key from the first pitch
. . . which is assumed to be either the tonic or the dominant
Figure 3: “Simple Gifts". of the intended key. The t denotes cases when the tonic-
dominant rule was applied. Numbers in brackets denote
the average when considering only the fugue subjects in
which the tonic-dominant rule was not applied by any of
the three methods.

beginning to the present is weighted (multiplied) by its
duration, and the c.e. is generateddggregatingthese
weighted pitch positions.

If the i-th note is represented in the Spiral Array by
pitch positionp; and has duratiod;, then theaggregate  Table 1: Applying key-finding algorithm to Bach’s

center at thé-th pitch event is defined as: fugue subjects in the WTC. (Numbers generated using
i h=4/2/15 (r= 1), and weights across all hierarchies set
¢ & S d-pi to[0.516, 0.315, 0.168].)
=1
: Book | Steps to key
The CEG method updates its decision with each note Fugue subj CEG PTPM SMA

or pitch event. The distance from the key representations

to ¢i is calculated and ranked. The key that is closest is ¢ major 2 2 16%
ranked first, next closest second, and so on. C minor 5 5 5
Figure 4 plots the exact dls_tances from the four closest C4 major 6 7 16

keys (F major, C major, F minor and C minor), at each .

successive pitch event. Observe, in the graph, that F ma-C* minor 3 3 4

jor quickly establishes itself as the closest key. However, D major 2 2 151
between pitch events= 22 to 24, C major (the dominant D minor 3 3 8

of F) vies with F major for preeminence. The melody Eb major 2 6 1171

dwells on the dominant key areaiat 19 to 24, outlin- Dt minor 2 6 12t

ing the C major triad from = 21 to 24. This behaviorin  E major 14 12t 11
the model concurs with listener perception. E minor 3 2 71
06 . ’ F major 4 10 6

' LEGEND: - F major F minor 3 15 4t
sl - '(imajor Ft major 3 2 8

' - [ minor F# minor 7 18 5t

o G major 2 2 15
o4y G minor 3 3 4
§ Ab major 3 2 7t
g 03 Gt minor 5 5 5
8 A major 2 4 7
802 ] A minor 5 5 5
I Bb major 4 4 14

01 |af Bb minor 2 3 61

N B major 2 11 11
0 B minor 3 3 7

0 5 10 15 20 25 30 35 40 45
Pitch Event

Average  3.75(3.57) 5.25(4.79) 8.71(8.21)

Figure 4: Distance to various keys as “Simple Gifts” un-
folds. For the fugue subjects in Book | of the WTC, the CEG
required on average 3.75 pitch events, the PTPM 5.25,
) . and the SMA 8.71 to determine the correct key. Given
Comparison to other Key-Finding Models a melody, a hypothesis of its key based on its first pitch
To validate the model, it was compared to Longuet-is not a meaningful one. The reliability of a hypothesis
Higgins & Steedman ’'s Shape-Matching Algorithm based on two pitch events is still questionable. Hence,
(SMA) (1971) and to Krumhansl & Schmuckler's Probe on average, the absolute minimum number of pitches re-



quired to form an opinion of the key is 3. The CEG al- tempts to model this would yield further insight as to the
gorithm required, on average, 3.75 steps to determine theemporal nature of music cognition.

key of the 24 fugue subjects. Based on the reasons stated,
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