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We investigate self-consistent, steady-state axisymmetric solutions of incompressible tokamak plasma using
a visco-resistive magnetohydrodynamic model. A key contribution of this work is the formulation of Poisson’s
equation that governs the pressure profile. Our analysis reveals that the current modeling fails to produce
realistic pressure levels. To overcome this limitation, we introduce additional non-inductive current drives,
akin to those generated by neutral beam injection or radio frequency heating, modeled as modifications to the
toroidal current. Numerical simulations validate our enhanced model, showing significant improvements in
pressure profile characteristics. In the cases examined, the effect of these current drives on the velocity profiles
is moderate, except when the non-inductive current drives induce reversals in the total toroidal current density,
leading to non-nested flux surfaces with internal separatrices.
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I. INTRODUCTION

Tokamaks, ideally designed with axisymmetry, are devices
aimed at achieving controlled thermonuclear fusion through
the magnetic confinement of plasma. A thorough under-
standing of tokamak plasma physics within this axisymmetric
framework is crucial, as it serves as the foundation from which
three-dimensional perturbations inevitably arise. To address
this, we employ a steady-state, self-consistent, axisymmet-
ric (2D) model utilizing visco-resistive magnetohydrodynam-
ics (MHD). While more realistic models have been developed
—those that (gyro-)kinetically describe each plasma species,
coupled with Maxwell’s equations and incorporating the ex-
ternal driving forces present in tokamak devices—these are
known to be computationally intensive and complex. Fur-
thermore, implementing boundary conditions in such kinetic
models presents significant challenges. Therefore, a self-
consistent MHD approach offers a reasonable initial step
in our investigation. Moreover, the adoption of a time-
independent, steady-state model is motivated by its inherent
desirability for a functional fusion reactor.

In the present study, we consider then a steady-state visco-
resistive MHD model compatible with tokamak operation. A
key challenge in developing a minimal yet realistic model for
tokamak plasmas lies in accurately representing the physi-
cal drives at work within the device. A first natural drive is
the curl-free magnetic field created by the external coils. A
second drive must be implemented to induce the winding of
the magnetic field lines around the magnetic axis by creat-
ing a poloidal component of the magnetic field. The station-
ary states of the plasma under the constraint of axisymme-
try can then be determined by solving the self-consistent sys-
tem formed by the steady-state Navier-Stokes equation for the
plasma and the steady-state Maxwell equations, including the
external drives. This system can be solved, for example, by
the finite element method, once the plasma domain Ω and the
boundary conditions for the fields have been specified. Previ-

ous studies [1–3] have relied on models where the dependence
of the visco-resistive system on these two external drives can
be reformulated as a dependence on a single control param-
eter [4] that amounts to the ratio of the electric current in-
duced by Ohm’s law in the plasma for a given toroidal loop
voltage over that needed for generating the external toroidal
magnetic field. A second relevant control parameter relative
to the visco-resistive framework is the Hartmann number de-
fined as H = (ην)−1/2, where η and ν are respectively the
dimensionless plasma resistivity and viscosity.

In this setting, the plasma pressure field has been largely
ignored as the pressure can be eliminated from this resolu-
tion by considering the curl of the steady-state Navier-Stokes
equation. This is the manifestation of the fact, which is well-
known in the study of the Navier-Stokes equation applied to
neutral fluids, that pressure is not an actuator but a passive
variable. In the present study, we focus on the evaluation of
the pressure field, a point that has been overlooked in this
approach so far. The present derivation of the pressure field
will be self-consistent. This is a departure from the typical
treatment of pressure in tokamak plasmas. Conventional ap-
proaches, such as real-time equilibrium reconstruction codes
using the Grad-Shafranov equation, or its extended versions
incorporating some plasma flows that is also known as the
Grad–Shafranov–Bernoulli system of equations [5–9], treat
the scalar pressure field as a free function. This function,
along with the diamagnetic function (and possibly functions
associated to plasma flows), is optimized to minimize the χ2

from the measured data. In other typical models for tokamak
plasmas, the pressure may be evaluated using an equation of
state.

In Section II, we introduce and discuss the limitations of the
aforementioned steady-state axisymmetric model for describ-
ing tokamak plasmas within a visco-resistive MHD frame-
work having as time-independent external drives a curl-free
toroidal magnetic field and a curl-free toroidal electric field
(loop voltage) [1–4] . Specifically, it is predicted that this
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system yields a zero pressure gradient in the ideal and mo-
tionless limit. This points to the necessity of incorporating
an additional non-inductive current drive [10, 11] in a steady-
state machine to effectively control and increase the pressure.
This is addressed in Section II D where we implement some
current drive to model the heating methods used in real toka-
maks [12, 13] verified through pressure profiles in Section
III. Numerical simulations with toroidal current drives are
presented in Section IV, utilizing the finite element method
through the open-source platform FreeFem++ for solving par-
tial differential equations [14]. A concluding Section V sum-
marizes the study’s findings.

II. THE NECESSITY OF NON-INDUCTIVE CURRENT
DRIVE: A THEORETICAL APPROACH

A. Axisymmetric steady-state visco-resistive MHD equations:
Self-consistent system of equations

The framework employed in this study is magnetohydrody-
namics. In more precise terms, building on the research ini-
tiated by Montgomery and his collaborators [15], we assume
that the axisymmetric steady-states of the plasma are governed
by the incompressible visco-resistive MHD. This is consis-
tent with the customary reconstruction of 2D equilibria using
the Grad-Shafranov equation, except that we do not assume
the velocity field to be zero, and we have a self-consistent
model as we do not have free functions. Then, to describe
a tokamak plasma, an essential aspect is to model the exter-
nal drives involved in the system. One inherent drive in this
magnetic confinement fusion device is the external magnetic
field. Additionally, the need to wind the magnetic field lines
and create a macroscopic poloidal component of the magnetic
field requires a second forcing mechanism. Following pre-
vious references [1–4], we assume that the poloidal magnetic
field component is generated by a toroidal electric field, which
drives a toroidal current density.

Denoting by B0 the value of the external magnetic field on
the magnetic axis, by µ0 the vacuum permeability and by ρm0
the plasma mass density assumed to be constant, the Alfvén
velocity is vA0 = B0/(µ0ρm0)

1/2. In the remainder of this arti-
cle, we shall work with dimensionless variables. Specifically,
velocities are normalized with respect to the Alfvén speed,
vA0, as is the field B/(µ0ρm0)

1/2. Moreover, the space vari-
ables are also dimensionless. From the set of cylindrical polar
coordinates (R,ϕ,Z) and denoting by R0 the tokamak major
radius, we define r = R/R0 and z = Z/R0. The computation of
visco-resistive axisymmetric steady states involves then solv-
ing the steady-state incompressible Navier–Stokes equation
(1)-(2) along with the solenoidal condition (3), Faraday’s law
(4), Ampère law (5) and Ohm’s law (6) on a tokamak poloidal

plasma cross-section Ω. The equations are

(v ·∇)v = J ×B−∇p+ν∇
2v, (1)

∇ ·v = 0, (2)
∇ ·B = 0, (3)
∇×E = 0, (4)
∇×B = J , (5)
E+v×B = ηJ . (6)

With respect to the drives, both the externally applied (vac-
uum) toroidal magnetic field and the steady-state toroidal
electric field required to drive the toroidal current are curl-
free. We have

Bext =
1
r
iϕ , (7)

Eext =
E0

r
iϕ , (8)

with iϕ a unit vector in the toroidal (azimuthal) direction. The
magnetic and electric fields in Eqs. (1)-(6) are the sum of
these external contributions and of the self-consistent plasma
fields. This system of equations needs to be solved on the
plasma cross-section Ω with suitable boundary conditions.
From a computational perspective, we solve the system of par-
tial differential equations (PDE) that we are now presenting.

B. Scalar PDE formulation

One can eliminate the unknown pressure term by taking the
curl of Eq. (1). This signifies that the pressure is a passive
variable and not an actuator. Moreover, the velocity v, vortic-
ity ω≡ ∇×v, magnetic B and current density J vector fields
are divergence-free, they admit then the following representa-
tions

v =
1
r

∇χ × iϕ + vϕiϕ , (9)

ω =
1
r

∇
(
rvϕ

)
× iϕ − 1

r
(△∗

χ)iϕ , (10)

B =
1
r

∇ψ × iϕ +Bϕiϕ , (11)

J =
1
r

∇
(
rBϕ

)
× iϕ − 1

r
(△∗

ψ)iϕ , (12)

where χ is the velocity stream function, ψ is the magnetic
flux function, Bϕ is the toroidal component of the magnetic
field vector and vϕ is the toroidal component of the velocity
field vector. The above system of equations (1)-(6) with the
external drives (7)-(8) can be expressed [1, 2, 4, 15, 16] as the
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following set of five scalar elliptic PDE

△∗
χ =−rωϕ , (13)

ν△∗(rωϕ) =
1
r2

∂

∂ z
((rBϕ)

2 − (rvϕ)
2)+

1
r

{
r jϕ ,ψ

}
(14)

+
1
r

{
χ,rωϕ

}
+

2ωϕ

r
∂ χ

∂ z
−

2 jϕ
r

∂ψ

∂ z
, (15)

η△∗(rBϕ) =
1
r

{
χ,rBϕ

}
+

1
r

{
rvϕ ,ψ

}
+ (16)

+
2rBϕ

r2
∂ χ

∂ z
−

2vϕ

r
∂ψ

∂ z
, (17)

ν△∗(rvϕ) =
1
r

{
χ,rvϕ

}
+

1
r

{
rBϕ ,ψ

}
, (18)

△∗
ψ =−r jϕ , (19)

with the toroidal projection of Ohm’s law giving the constraint

ηr jϕ = E0 +
1
r
{ψ,χ} . (20)

Here, the Poisson bracket {u,v} for any spatial functions u
and v is defined as

{u,v} ≡ ∂u
∂ r

∂v
∂ z

− ∂v
∂ r

∂u
∂ z

, (21)

and the operator △∗ is defined by

△∗A ≡ ∂ 2A
∂ r2 − 1

r
∂A
∂ r

+
∂ 2A
∂ z2 . (22)

A relevant dimensionless control parameter has been iden-
tified [4, 17, 18] as the Hartmann number, H = (ην)−1/2. In
fusion-relevant conditions, this is expected to be a large pa-
rameter, ranging from 106 to 108. Simulations for realistic
parameter values already exist for this system under various
boundary conditions, typically using the JET geometry. The
elliptic system (13)–(19) requires five boundary conditions.
The four conditions associated with the divergence-free prop-
erties of the magnetic field (B), current density (J ), veloc-
ity (V ), and vorticity (ω) vector fields are determined by en-
suring the continuity of their normal components across the
plasma boundary. The following boundary conditions are se-
lected in the numerical simulations: χ = ψ = 0 and Bϕ = 1/r
on ∂Ω. We enforce Neumann boundary conditions on both
the toroidal velocity vϕ and toroidal vorticity ωϕ through
∂nvϕ = ∂nωϕ = 0 on ∂Ω. We used the open-source PDE
solver FreeFem++, employing the finite element method [14]
to solve the above steady-state axisymmetric system of equa-
tions in a weak form on the plasma cross-section domain Ω

with the specified boundary conditions. For our calculations,
we set a tolerance parameter ε = 10−10, allowing the Newton-
Raphson scheme to converge in typically 4–5 iterations.

C. Examination of the pressure field

Let us now examine the pressure profile in the visco-
resistive model (1)-(6) with the external drives (7)-(8). Let us

assume for now that the steady-state plasma speed is negligi-
ble. Then, in the ideal limit, η → 0 and ν → 0, the steady-state
Navier-Stokes equation (1) takes the form

∇p = J ×B. (23)

Restricting to axisymmetric solutions, the projection of this
equation on r and z gives, respectively,

∂ p
∂ r

= r−1
(
−Bϕ

∂ (rBϕ)

∂ r
+ jϕ

∂ψ

∂ r

)
, (24)

∂ p
∂ z

= r−1
(
−Bϕ

∂ (rBϕ)

∂ z
+ jϕ

∂ψ

∂ z

)
. (25)

In the toroidal direction, we get

0 = r−2{ψ,rBϕ} (26)

which amounts to the well-known property of Grad-
Shafranov’s theory that the diamagnetic function, rBϕ , is a
function of the magnetic flux ψ only. Moreover, writing that
J×B is curl-free, which follows from the force balance equa-
tion (23) and projecting this on the toroidal direction yields

−2rBϕ

∂Bϕ

∂ z
+{ψ,r jϕ}+2r jϕ

∂ψ

∂ z
= 0. (27)

Then, combining Eqs. (25) and (27), the pressure gradient
along the z-axis with a zero-flow hypothesis is given by

∂ p
∂ z

=
1
2r

{
r jϕ ,ψ

}
. (28)

Yet, assuming no plasma flow, the toroidal projection of
Ohm’s law in Eq. (20) states that r jϕ is a constant, with
r jϕ = E0/η . Eq. (28) indicates then that the pressure field
does not depend on z. However, from the set of equations
(24)–(25)–(26), we can deduce that the pressure is a function
of the magnetic flux ψ such that {p,ψ} = 0. Thus, we have
∂z p = p′(ψ)∂zψ = 0. This implies that the pressure profile is
constant. This aligns with the results obtained by [19], which
indicate that in equilibrium configurations, the current den-
sity must be proportional to 1/r when the pressure gradient is
zero.

D. Implications and implementation of non-inductive current
drives

Section II C demonstrates that the sole inclusion of Ohm’s
law to close the system imposes significant limitations on the
model. Specifically, the effective pressure in the model arises
only because the toroidal geometry and viscous dissipation
prevent the steady-state velocity field from being identically
zero. This allows the pressure profile to remain non-zero, as
r jϕ is not exactly constant. However, the model lacks a ro-
bust mechanism to provide sufficient heating to achieve fusion
conditions. Therefore, incorporating alternative heating meth-
ods is essential for attaining higher pressure. We will also see
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that this tends to induce higher plasma rotation velocities in
specific drive configurations.

In our previous analysis, we focused on the behaviour of
the system for a specific ratio of E0/η , which was the only
explicit drive in the dimensionless system of equations [4].
Now, we aim to introduce an additional drive which will man-
ifest as an extra term in the toroidal component of Ohm’s law
in Eq. (6) with

E0

r
+(v×B) · iϕ + jD = ηJ · iϕ , (29)

where jD represents a current drive. Eq. (20) now becomes

ηr jϕ = E0 +
1
r
{ψ,χ}+ jDr. (30)

Our goal is to investigate the influence of the non-inductive
current drive jD within our system. We will begin by evalu-
ating its effect on the pressure profile. For this purpose, it is
necessary to determine the pressure field, which we will now
establish.

III. DERIVATION OF POISSON’S EQUATION FOR THE
PRESSURE FIELD

Let us go back to the steady-state Navier-Stokes equation
(1) and rewrite it as

ω×v = J ×B−∇p∗+ν∇
2v (31)

with

p∗ = p+
v2

2
. (32)

Previously, we eliminated the pressure term by taking the curl
and considering the toroidal part of the force balance equa-
tion. Now, to obtain the pressure of the system, we take the
divergence of Eq. (31)

∇ ·∇p∗ = ∇ ·
[
−ω×v+J ×B+ν∇

2v
]
. (33)

This takes the form of Poisson’s equation for the pressure p∗

as the left-hand side yields the Laplacian of the pressure, △p∗.
Taking the divergence of the first term on the right-hand side
gives

−∇ · (ω×v) = v ·∇2v+ω2. (34)

We can treat the J ×B term similarly

∇ · (J ×B) =−B ·∇2B−J2. (35)

Finally, the term ∇ · (ν∇2v) equals zero due to the incom-
pressibility condition ∇ ·v = 0. Therefore, the complete Pois-
son’s equation for the pressure is

△p∗ = v ·∇2v+ω2 −B ·∇2B−J2 (36)

where △ is defined as

△A ≡ ∂ 2A
∂ r2 +

1
r

∂A
∂ r

+
∂ 2A
∂ z2 . (37)

Next, we will express the Poisson’s equation (36) in terms of
the functions χ, . . . , jϕ defined over the domain (r,z) ∈ Ω. To
do this, we will analyze each term separately. By utilizing
the expression for the vorticity (10), the second term can be
rewritten as

ω2 =−
ωϕ

r
△∗

χ +

(
1
r

∂ (rvϕ)

∂ r

)2

+

(
∂vϕ

∂ z

)2

. (38)

Similarly, for the square of the current density vector (12), we
get

J2 =−
jϕ
r
△∗

ψ +

(
1
r

∂ (rBϕ)

∂ r

)2

+

(
∂Bϕ

∂ z

)2

. (39)

Finally, let us examine the term B ·∇2B. We can use the
identity B ·∇2B =−B · (∇×J) with

B · (∇×J) =−
Bϕ

r
△∗(rBϕ)+

1
r2

∂ψ

∂ r
∂ (r jϕ)

∂ r
+

1
r

∂ψ

∂ z
∂ jϕ
∂ z

.

(40)
Similarly, we have

v · (∇×ω) =−
vϕ

r
△∗(rvϕ)+

1
r2

∂ (rωϕ)

∂ r
∂ χ

∂ r
+

1
r

∂ωϕ

∂ z
∂ χ

∂ z
.

(41)
Incorporating all of these contributions into the right-hand
side of Poisson’s equation yields

△p∗ =
vϕ

r
△∗(rvϕ)−

1
r2

∂ (rωϕ)

∂ r
∂ χ

∂ r
− 1

r
∂ωϕ

∂ z
∂ χ

∂ z

−
ωϕ

r
△∗

χ +

(
1
r

∂ (rvϕ)

∂ r

)2

+

(
∂vϕ

∂ z

)2

−
Bϕ

r
△∗(rBϕ)+

1
r2

∂ψ

∂ r
∂ (r jϕ)

∂ r
+

1
r

∂ψ

∂ z
∂ jϕ
∂ z

+
jϕ
r
△∗

ψ −
(

1
r

∂ (rBϕ)

∂ r

)2

−
(

∂Bϕ

∂ z

)2

. (42)

This elliptic differential equation needs to be solved with a
boundary condition and allow the pressure profiles for the dif-
ferent drives to be computed. To the best of our knowledge,
the derivation of Eq. (42) within the visco-resistive system is
novel.

IV. NUMERICAL RESULTS

A. Pressure field behavior without and with non-inductive
current drives

Let us now solve Poisson’s equation for pressure, assum-
ing a zero pressure condition at the boundary ∂Ω. It is im-
portant to note that, in the absence of an additional toroidal
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current drive and assuming no plasma flow, we previously in-
ferred a zero pressure gradient, resulting in a constant zero
pressure in the limits η → 0 and ν → 0, as discussed in Sec-
tion II C. To return to dimensional pressure and compare the
results with those obtained from the JET tokamak, we recall
that p∗ is the dimensionless total pressure [4], normalized as
p∗ = p̂∗/v2

A0ρm, where p̂∗ is dimensional pressure. By using
parameters from a specific JET deuterium-tritium shot [20],
we obtain ρm = 2.09 · 10−7 kg/m3 and the Alfvén velocity
vA0 = 5.46 ·106 m/s. To verify the pressure distribution in the
absence of the drive with plasma flow, let us examine Fig. 1.
The pressure profile is presented in Pascal units (Pa). The or-
der of magnitude of the pressure field in the absence of the
current drive turns out to be unrealistically small, as predicted
in Section II C.

FIG. 1. Pressure field in Pascal units computed without the applica-
tion of the drive ( jD = 0) for a Hartmann number of H = 105.

To explore the effects of a non-inductive current drive, we
considered a family of drives, jD, which are solutions to the
Poisson’s equation ∇2 jD = −A, with the boundary condition
jD = B on ∂Ω. Here, A denotes the magnitude of the drive,
while B represents the current distribution offset. This ap-
proach provides an initial method for simulating current dis-
tributions akin to those generated by heating mechanisms in
tokamaks, effectively "adding a bump" to the current profile.
Let us now choose a drive that produces realistic pressure
profiles. To do so, we select jD with A = 100 and B = 0.
Fig. 2 compares the toroidal current density fields, calculated
at Hartmann number H = 10, using Eqs. (13)–(19) for jD = 0
(the reference case) and for jD with A = 100 and B = 0. In
the original system [1–4] ( jD = 0), the model fails to produce
realistic toroidal current density profiles despite yielding a re-
alistic total current. This is because a ratio of E0/η of approx-
imately one corresponds to a realistic total current for the JET
deuterium-tritium shot [20].

Let us now examine how the application of the drive af-
fects the pressure profiles. Fig. 3 shows the computed pres-
sure, p = p∗−v2/2, with the application of the drive jD using
A = 100 and B = 0 for H = 105. The drive not only prevents
unrealistically low pressure levels but also achieves pressure
values comparable to those observed in the JET tokamak [20].

FIG. 2. Toroidal current field without the drive ( jD = 0) (at the top)
and with the drive jD set to A = 100 and offset B = 0 (at the bottom)
for a Hartmann number of H = 10 in dimensionless units.

Let us now examine how the variation of the magnitude of the

FIG. 3. Pressure field in Pascal units computed with the application
of the drive jD with A= 100 and B= 0 on the toroidal current density
field. The Hartmann number is H = 105.

drive affects the root-mean-square of the pressure as a func-
tion of the Hartmann number. Fig. 4 illustrates this relation-
ship. It is evident that all the magnitudes A of the drive jD
chosen in this study produce a realistic pressure response.
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H

5 × 10
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2.5 × 10

3 × 10

<
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>
rm

s
Pressure
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A = 80
A = 100

FIG. 4. Root mean square of the pressure field in pascals as a func-
tion of the Hartmann number, with the application of the drive jD
with B = 0 on the toroidal current field, for various values of A.

Let us note that, with the application of the drives, it is pos-
sible to achieve various configurations of magnetic flux sur-
faces, including non-nested magnetic field lines with several
n = 0 islands present. Such an example is given in Fig. 5
that shows the magnetic flux surfaces and the pressure profile
when the drive jD with A = 100 and B =−5 is applied. How-
ever, we will primarily focus on drives that induce standard
nested magnetic flux surfaces.

7.65e-27

4.42e+04

8.84e+04

1.33e+05

1.77e+05

2.21e+05

2.65e+05

3.09e+05

3.53e+05

3.98e+05

FIG. 5. Magnetic flux surfaces with internal separatrices (on the left)
and pressure profiles (on the right) computed with the application of
the drive jD with A = 100 and B = −5 on the toroidal current field
for H = 105.

B. Impact of the non-inductive current drive on steady-state
velocity and scaling

Let us now examine the impact on the velocity distribution
of the application of the current drive jD. Fig. 6 presents the
root-mean-square of the toroidal velocity field while applying
the drive jD with B = 0 to the toroidal current field across var-
ious values of A, as in Fig. 4. It can be observed that while
varying the magnitude of the drive causes an increase in veloc-
ities in the low-H regime, the large-H, boundary layer, regime

remains almost unchanged despite the application of current
drives with different magnitudes. Increasing the magnitude
raises the total current, but the velocities seem unaffected by
this variation.

2.0 2.5 3.0 3.5 4.0
r

0

2

4

6

j d

100 101 102 103 104 105

H

10 15

10 14

10 13

10 12

10 11

10 10

10 9

10 8

<
V

>
rm

s

Toroidal velocity

jd = 0

A= 20

A= 40

A= 60

A= 80

A= 100

FIG. 6. Root mean square of toroidal velocity in Alfvén velocity
units as a function of the Hartmann number, considering the applica-
tion of the drive jD with B = 0 on the toroidal current field, for the
different values of A.

Next, let us examine how the velocities change with the
variation of the parameter B, which represents the offset of
the drive jD. Fig. 7 presents the same information as Fig. 6,
but with a fixed value of A = 100 while exploring different
values of B. Shifting the drive results in the highest veloci-
ties at B = −5. It is evident that the usual large-H velocity
behavior changes at certain parameters of the current drive.

2.0 2.5 3.0 3.5 4.0
r

5

0

5

j d

100 101 102 103 104 105

H

10 15

10 13

10 11

10 9

10 7

<
V

>
rm

s

Toroidal velocity

jd = 0

B = 3

B = 0

B = -3

B = -5

B = -7

FIG. 7. Root mean square of toroidal velocity in Alfvén velocity
units as a function of the Hartmann number, considering the appli-
cation of the drive jD with A = 100 on the toroidal current field, for
various values of B.

Indeed, in the high-Hartmann number regime, two scenar-
ios emerge: either the boundary layer forms [4], and the root-
mean-square of the toroidal and poloidal velocities exhibit
some scaling law with the Hartmann number, as is the case
for the drive jD with B = 0 and B = 3; or the velocities do
not develop a linear behavior on a log-log scale for B = −3,
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−5, and −7, meaning that the velocities do not scale with the
Hartmann number. Let us now take a closer look at this lat-
est phenomenology, which is novel and pertains to a situation
involving non-nested magnetic flux surfaces with internal sep-
aratrices. To illustrate this, we examine the non-inductive cur-
rent drive jD with A = 100 and B = −5 for H = 105, where
the magnetic flux surfaces and pressure field are depicted in
Fig. 5. Fig. 8 shows on the left the associated toroidal current
field.

-4.61

-3.86

-3.11

-2.36

-1.61

-0.856

-0.105

0.646

1.4

2.15

-1.75e-05

-1.36e-05

-9.74e-06

-5.85e-06

-1.96e-06

1.93e-06

5.82e-06

9.71e-06

1.36e-05

1.75e-05

FIG. 8. Toroidal current density field (on the left) and toroidal ve-
locity field (on the right) with the application of the drive jD with
A = 100, B =−5 for H = 105 as in Fig. 5.

The velocity distribution on the right of Fig. 8 closely re-
sembles the toroidal current distribution, with the highest ve-
locities occurring at the transition point between positive and
negative current regions. In this case, we observe no forma-
tion of a boundary layer, which is advantageous from a numer-
ical perspective. The absence of a boundary layer contributes
to increased stability in the code and yields more robust re-
sults. There is significant potential to achieve much higher
velocities with these drives; however, accurately predicting
which current drive would be optimal for maximizing veloci-
ties remains a challenge and necessitates further investigation.

V. CONCLUSION AND PERSPECTIVES

We have examined the axisymmetric steady states of toka-
mak plasmas using an incompressible visco-resistive MHD

model. In addition to the intrinsic limitations of a magneto-
hydrodynamic rather than a kinetic approach, a crucial point
in the search for a relevant minimal model lies in modelling
and implementing the drives at work in a tokamak device.
In some previous modelings [1–4], apart from the external,
given, vacuum magnetic field, the ratio E0/η was the only
drive in the system. A significant advancement of the present
study is the formulation of Poisson’s equation governing the
pressure within a self-consistent visco-resistive MHD frame-
work. This approach differs notably from the Grad-Shafranov
method used in equilibrium reconstruction, where pressure is
treated as a free function. The numerical solution of this Pois-
son equation for pressure using the finite element method has
demonstrated the necessity of implementing additional drives
to avoid unrealistic pressure profiles with zero gradients in
the ideal and no-flow limit. We have shown that this can be
achieved through non-inductive-like current drives, resulting
in realistic pressure profiles.

We examined a family of functions to model the non-
inductive current drives of tokamaks, but further research is
needed to optimize the distribution of non-inductive currents
and make them more realistic. Another goal is to maximize
their effectiveness in enhancing plasma speed and achieving
fusion-relevant pressure profiles. Notably, certain configura-
tions of our test current drives led to the formation of internal
separatrices and non-nested magnetic flux surfaces, indicating
the potential for more complex equilibrium structures under
specific plasma conditions.

Finally, the resulting toroidal current profiles were found to
depend on the Hartmann number. This suggests that future
implementations of these drives could involve fixed toroidal
current density profiles that are independent of other system
parameters. This topic will be explored further in subsequent
work.
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