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Abstract: This study presents an innovative approach utilizing artificial intelligence (AI) for the pre-
diction and classification of water quality parameters based on physico-chemical measurements. The
primary objective was to enhance the accuracy, speed, and accessibility of water quality monitoring.
Data collected from various water samples in Algeria were analyzed to determine key parameters
such as conductivity, turbidity, pH, and total dissolved solids (TDS). These measurements were
integrated into deep neural networks (DNNs) to predict indices such as the sodium adsorption
ratio (SAR), magnesium hazard (MH), sodium percentage (SP), Kelley’s ratio (KR), potential salinity
(PS), exchangeable sodium percentage (ESP), as well as Water Quality Index (WQI) and Irrigation
Water Quality Index (IWQI). The DNNs model, optimized through the selection of various activation
functions and hidden layers, demonstrated high precision, with a correlation coefficient (R) of 0.9994
and a low root mean square error (RMSE) of 0.0020. This AI-driven methodology significantly reduces
the reliance on traditional laboratory analyses, offering real-time water quality assessments that are
adaptable to local conditions and environmentally sustainable. This approach provides a practical
solution for water resource managers, particularly in resource-limited regions, to efficiently monitor
water quality and make informed decisions for public health and agricultural applications.

Keywords: water quality; artificial intelligence; deep neural networks; physico-chemical measurements;
real-time assessment; sustainable water management
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1. Introduction

Water is a vital resource for human survival and for all terrestrial ecosystems, play-
ing a central role in numerous activities [1–3], from human consumption to agricultural
irrigation, industrial processes, and energy production. Water quality is crucial for public
health and economic well-being, yet it is increasingly threatened by pollution and climate
change [4,5]. According to the World Health Organization (WHO), approximately 2 billion
people worldwide lack access to safely managed drinking water, a situation that under-
scores the importance of monitoring and managing this precious resource [6]. However,
water pollution is one of the most serious environmental threats of the 21st century [7]. It
primarily results from human activities, including industrialization, intensive agriculture,
and urbanization, which release toxic substances such as heavy metals, pesticides, phar-
maceuticals, and microplastics into surface and groundwater [8,9]. These contaminants
have detrimental effects on human health and aquatic ecosystems, causing severe diseases,
loss of biodiversity, and disruption of food chains [10–12]. For instance, pollutants like
mercury and lead can accumulate in aquatic organisms and move up the food chain, en-
dangering human and animal populations that consume these resources [11]. One of the
main challenges lies in the diffuse and varied nature of pollution sources, which can be
point sources (such as industrial discharges) or non-point sources (such as agricultural
runoff) [13,14]. This diversity complicates the monitoring and control of water quality,
making analyses increasingly complex as new pollutants emerge [15]. Thus, monitoring
water quality becomes a major challenge due to the multiplicity of parameters to analyze
and the constraints associated with traditional methods [16]. Conventional methods of clas-
sifying and assessing water quality, which rely on laboratory analyses, require specialized
equipment and advanced technical expertise [17].

They are often costly and time-consuming, limiting their accessibility in resource-
limited regions, particularly in developing countries where water quality monitoring
infrastructures are scarce [18]. The primary water quality indices used in these methods
include the sodium adsorption ratio (SAR), percentage of sodium (SP), magnesium hazard
(MH), Kelley’s ratio (KR), potential salinity (PS), exchangeable sodium percentage (ESP),
as well as specific indices like the Water Quality Index (WQI) and the Irrigation Water
Quality Index (IWQI) [19,20]. These indices are essential for evaluating the suitability of
water for human consumption or irrigation, but their calculation relies on sophisticated
chemical and physicochemical analyses [21,22]. Furthermore, the sensitivity of these
analyses to environmental variations is a concern. Extreme climatic events, such as floods
or prolonged droughts, can rapidly alter water properties, rendering analysis results
obsolete if not performed frequently [23]. Additionally, temperature fluctuations, pollutant
inputs, and changes in water flow complicate the acquisition of reliable and consistent
data, especially over large geographical areas [24]. These limitations of traditional water
classification methods, while proven, exhibit several weaknesses [25]. Their implementation
often requires substantial financial resources, heavy equipment, and specialized skills,
creating an access barrier for small rural communities or developing countries that lack the
means and infrastructure for regular water quality monitoring [26,27]. Moreover, regional
variations and disparities in assessment protocols complicate the comparison of results
between different studies or geographical areas [28,29]. Water quality regulations vary from
country to country, and assessment criteria may evolve over time based on new scientific
discoveries or emerging health requirements [30,31]. This necessitates continuous updates
to methodologies, an effort that is not always feasible in resource-limited contexts [32].
Moreover, laboratory monitoring processes are slow and often unable to provide real-time
results. When a water sample is collected and sent for analysis, results can take several
days to obtain, during which significant changes in water quality may occur, especially
in dynamic aquatic systems like rivers or lakes. In light of these limitations, innovative
solutions have emerged thanks to technological advancements [33,34].

Artificial intelligence (AI), in particular, offers promising prospects for enhancing water
quality monitoring by making the process faster, more accessible, and more accurate [35,36].
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Many research investigations have focused on the prediction of water quality in real-time
to reduce the cost, time, and limitations of laboratory analyses. For example, Hussein
et al. [37] used artificial intelligence to assess the quality of groundwater for irrigation in
the Naâma region. They compared three machine learning models (XGBoost, SVR, and
KNN) based on hydrochemical parameters such as ions, pH, and electrical conductivity.
Ajayi et al. [38] developed a real-time water quality monitoring system for Cape Town,
South Africa. Utilizing three machine learning algorithms (random forest (RF), logistic
regression (LR), and support vector machine (SVM)), they assessed both water potability
and irrigation quality. A set of physicochemical parameters, including pH, total dissolved
solids (TDS), total hardness (TH), electrical conductivity (EC), and ion concentrations,
served as predictors for the water quality indices. Their findings revealed that LR offered
superior performance for potability assessment, while SVM performed better for irrigation
water quality evaluation. Another investigation was carried out by Trabelsi et al. [39],
in which they assessed the effectiveness of different machine learning models (random
forest, support vector regression, artificial neural networks, and AdaBoost) for predicting
the quality of groundwater intended for irrigation in the Medjerda river basin, Tunisia.
The models were trained on physicochemical parameters such as total dissolved solids,
potential salinity, sodium adsorption ratio, exchangeable sodium percentage, and magne-
sium adsorption ratio. Their results showed that the AdaBoost algorithm offered the best
performance in terms of water quality prediction, making it a promising tool for irrigation
management. Further, Ahmed et al. [40] demonstrated the effectiveness of long short-term
memory (LSTM) networks in predicting groundwater quality in arid regions, such as the
Sohag region in Egypt. By utilizing a dataset of ten physicochemical parameters (pH, tur-
bidity, total hardness, total dissolved solids, iron, magnesium, nitrate, sulfate, chloride, and
total coliforms), the authors developed a model capable of accurately estimating WQI. Their
model’s performance, evaluated using the root mean square error (RMSE), was found to be
highly satisfactory, underscoring the potential of deep learning techniques for sustainable
water resource management.

The use of AI simplifies laboratory analyses by relying on more accessible physic-
ochemical measurements, such as conductivity, turbidity, pH, and TDS [41,42]. These
measurements, easily achievable in the field using portable equipment, can be integrated
into machine learning models to provide a rapid assessment of water quality [43].

For example, deep neural networks (DNNs) can be employed to predict water quality
indices, such as the SAR, SP, MH, KR, PS, ESP, WQI, and IWQI, with extremely high
accuracy [44,45]. AI models can be trained on vast historical datasets, combining real-time
measurements with laboratory analysis results to establish precise predictions [46]. One of
the major advantages of this approach is the ability to obtain real-time results, allowing for
rapid intervention in cases of pollution detection or changes in water quality [47]. This is
particularly important in contexts where resources are limited or where traditional monitor-
ing is difficult to implement [17]. AI also offers significant flexibility by allowing models to
be adapted to local specificities, considering geographical and climatic variations to provide
personalized predictions [48]. In addition to accuracy and speed, the use of AI for water
quality monitoring also contributes to environmental sustainability [35,49]. By reducing
reliance on laboratory analyses and transported samples, this approach decreases carbon
emissions associated with travel and necessary infrastructure [50,51]. This contributes to a
smaller ecological footprint while ensuring effective and sustainable management of water
resources. Furthermore, the ability to monitor water quality in real time provides a valuable
tool for water resource managers, enabling them to make informed decisions about resource
allocation, ecosystem protection, and public health risk prevention [17,52,53].

In this work, an innovative approach based on AI was developed to predict and
classify water quality parameters using easily accessible field-based physico-chemical mea-
surements. The aim was to overcome the limitations of traditional water quality monitoring
methods, which are often costly, time-consuming, and require technical expertise. By
integrating DNNs, this method enables real-time assessment of water quality based on
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easily measurable parameters such as conductivity, turbidity, pH, and TDS. Water samples
were collected throughout the year from various locations in the Médéa region of Algeria
to capture seasonal and geographical variations in water quality. Laboratory analyses were
used to calculate indices such as SAR, SP, MH, KR, PS, ESP, WQI, and IWQI. A database
was created to train DNNs models to predict these indices from field measurements, with a
particular focus on optimizing network architectures and data normalization. The novelty
of this work lies in the application of AI to enhance the accuracy, speed, and accessibility of
water quality monitoring. The developed approach not only provides real-time results but
also allows models to be adapted to local specificities, which is crucial for sustainable and
effective water resource management. Additionally, a MATLAB application was developed
to facilitate the use of this technology in the field.

This work is novel in its innovative application of AI, specifically DNNs, to predict
water quality parameters from on-site physico-chemical measurements. The study intro-
duces a unique methodology by utilizing AI techniques to predict water quality indices
using easily obtainable field measurements such as conductivity, turbidity, pH, and TDS.
This offers a more efficient alternative to traditional methods that typically rely on com-
plex laboratory analysis. The AI models developed in this study have demonstrated high
precision in predicting key water quality indices, such as the salinity index, sodium index,
and residual sodium carbonate index. These models provide significant improvements
over conventional methods, which may be prone to human error or require expensive,
intricate equipment. The models’ low error rates highlight the robustness and reliability of
AI in enhancing water quality assessments, making the process more accurate and efficient.
Another key advantage of this approach is its ability to provide real-time water quality
assessments. This is crucial for effective water resource management, especially in response
to the rapid environmental changes brought on by climate change and pollution. The adapt-
ability of AI in delivering real-time data ensures that decision-making regarding water
quality can be conducted swiftly and accurately, leading to better management practices.
Moreover, this method makes water quality monitoring more accessible and sustainable.
By offering a faster, cost-effective, and user-friendly solution, it increases the ability to
monitor water quality in regions where traditional methods may be difficult or costly to
implement. This democratizes access to water quality data, particularly in resource-limited
areas, promoting more sustainable water management. In addition to the AI models, a
MATLAB R2022b-based application was developed to facilitate the practical use of this
methodology. This application allows users to input physico-chemical parameters such as
conductivity, turbidity, pH, and TDS, whether measured in the field or in the laboratory.
The tool then uses DNNs to predict various water quality indices, including SAR, SP, MH,
KR, PS, ESP, WQI, and IWQI. This application offers a quick and accurate way to predict
water quality, eliminating the need for complex calculations and allowing for the rapid
classification of water quality according to established standards. This makes it easier
to identify necessary corrective measures when water quality does not meet regulatory
requirements. In summary, this study shows how AI, particularly DNNs, can transform
water quality monitoring by making it faster, more accurate, and more accessible. The
integration of the MATLAB application simplifies the classification process and enhances
water resource management, providing a more sustainable and efficient solution for global
water quality monitoring.

2. Materials and Methods
2.1. Geographical and Climatic Diversity of the Study Area

The Médéa region, located in northern Algeria, is characterized by its rich geographical
and climatic diversity. Positioned between the Mediterranean zones to the north and
semi-arid areas to the south, it serves as a natural crossroads between two contrasting
ecosystems. At an average altitude of about 1000 m, Médéa benefits from a temperate
climate in the north, with cool, wet winters and mild summers, while the southern parts
exhibit semi-arid conditions.
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This climatic and geographical diversity supports a variety of agricultural activities
and provides abundant natural resources, making the region an ideal setting for an in-
depth study of water quality. The region’s unique characteristics ensure the relevance and
applicability of findings to both Mediterranean and semi-arid environments.

2.2. Assessment of Water Quality Analyses and Protocols

Over a 12-month period, a comprehensive and rigorous daily water sampling cam-
paign was conducted across various zones in the Médéa region of Algeria, specifically
from 64 communes (Figure 1), including Aïn Boucif, Aïn Ouksir, Aissaouia, Aziz, Baata,
Benchicao, Beni Slimane, Berrouaghia, Bir Ben Laabed, Boghar, Bou Aiche, Bouaichoune,
Bouchrahil, Boughezoul, Bouskene, Chahbounia, Chellalet El Adhaoura, Cheniguel, Der-
rag, Deux Bassins, Djouab, Draa Essamar, El Azizia, El Guelb El Kebir, El Hamdania, El
Omaria, El Ouinet, Hannacha, Kef Lakhdar, Khams Djouamaa, Ksar Boukhari, Meghraoua,
Médéa, Moudjbar, Meftaha, Mezerana, Mihoub, Ouamri, Oued Harbil, Ouled Antar, Ouled
Bouachra, Ouled Brahim, Ouled Deide, Ouled Hellal, Ouled Maaref, Oum El Djalil, Ouzera,
Rebaia, Saneg, Sedraia, Seghouane, Si Mahdjoub, Sidi Damed, Sidi Errabia, Sidi Naamane,
Sidi Zahar, Sidi Ziane, Souagui, Tablat, Tafraout, Tamesguida, Tizi Mahdi, Tlatet Eddouar,
and Zoubiria.

Each day, approximately three water samples, each consisting of 1 L, were collected
from strategically selected points within each commune to ensure the representativeness of
the samples. This method was specifically designed to capture the diverse hydrological
and geographical conditions that characterize the region. By selecting multiple sampling
points at each location, the sampling approach accounted for the spatial variability across
the region, ensuring that the collected samples accurately reflected both temporal changes
in water quality and the geographical differences among various locations.

In total, 523 samples were collected throughout the campaign. The sampling strategy
was meticulously designed to consider a wide range of factors that could influence water
quality, including climatic variations, seasonal changes, and pollution impacts. By main-
taining daily sampling over the entire year of 2023, the study was able to capture the full
spectrum of environmental fluctuations affecting water quality, such as rainfall variations,
temperature shifts, and potential contamination from agricultural runoff, urbanization, and
industrial activities. This extensive and continuous sampling effort provided a robust and
comprehensive dataset that facilitated a detailed analysis of how these dynamic factors
interact and influence water quality over time.

2.2.1. Collection Procedure

Water samples were collected at a depth of 15 to 30 cm below the surface to mini-
mize the influence of the surface layer. Sterilized glass bottles were used for sampling,
which were thoroughly rinsed with distilled water and autoclaved to eliminate any risk of
cross-contamination [3]. Immediately after collection, the samples were cooled in an insu-
lated cooler maintained at a constant temperature of 4 ◦C to slow degradation processes.
They were then stored in opaque containers to protect them from light exposure [3]. To
prevent air contact and ensure their integrity, the samples were hermetically sealed. Insu-
lated containers were used during transport to maintain temperature stability throughout
the process [3].
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2.2.2. Laboratory Analyses

The collected samples were analyzed on the same day following the protocols outlined
in Water Analysis by Jean Rodier (10th edition) [3,54]. Key parameters such as conductivity,
turbidity, pH, and TDS were measured with high precision using appropriate techniques
and instruments. Conductivity was measured with a conductivity meter (e.g., Mettler
Toledo) calibrated with standard solutions, turbidity was assessed using a turbidimeter
(e.g., Hach 2100Q), and pH was determined using a calibrated pH meter (e.g., Thermo
Scientific Orion Star). Total Dissolved Solids (TDS) were measured gravimetrically using a
drying oven and analytical balance (e.g., Sartorius) [3].

Additional parameters, including calcium, magnesium, sodium, potassium, chloride,
sulfate, and bicarbonate, were analyzed using standardized methods [3,54]. Calcium and
magnesium concentrations were determined by complexometric titration using EDTA
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solution and a suitable indicator, while sodium and potassium were quantified using flame
photometry (e.g., Jenway 6505) [3,54]. Chloride concentration was measured using argento-
metric titration, sulfate was determined using gravimetric analysis after precipitation with
barium chloride, and bicarbonate levels were estimated through titration with a strong acid,
employing phenolphthalein as an indicator [3,54]. These parameters were then used to
calculate water quality indices such as SAR, MH, SP, KR, PS, and ESP, as well as WQI and
IWQI, which were calculated based on specific formulas derived from the concentrations
of the respective ions.

All laboratory analyses adhered to strict good laboratory practices. Equipment was
regularly calibrated to ensure accuracy, and detailed documentation of each step was main-
tained [3,54]. Before analysis, samples were thoroughly homogenized using sterile gloves
to prevent contamination [3,54]. This detailed and rigorous protocol ensured the accuracy
and reliability of results, providing a representative and comprehensive assessment of
water quality in the Médéa region.

2.3. Determination of Collected Water Quality Indices

The determination of water quality indices, such as the SAR, MH, SP, KR, PS, ESP,
WQI, and IWQI, relies on specific analytical methods to assess various aspects of water
quality. Below is a detailed development of the method for each index.

2.3.1. Sodium Adsorption Ratio (SAR)

The SAR is an indicator of the relative proportion of sodium compared to calcium and
magnesium ions in water [55,56].

SAR =
Na+√

Ca2+ + Mg2+

2

(1)

A high SAR may indicate an increased risk of water sodicity, which can adversely
affect soils and crops when irrigated.

2.3.2. Magnesium Hazard (MH)

The MH assesses the potential risk associated with the presence of magnesium in
water. A high MH may indicate an increased potential for magnesium deposits to form,
leading to precipitation and clogging issues in water distribution systems and irrigation
equipment [56,57]. The MH is calculated using the following formula [56]:

MH% =

[
Mg2+

Ca2+ + Mg2+

]
× 100 (2)

This formula evaluates the proportion of magnesium (Mg2+) relative to the sum of the
concentrations of calcium (Ca2+) and magnesium (Mg2+).

2.3.3. Sodium Percentage (SP)

The Sodium Percentage (SP) is calculated using the formula [56]:

SP =

[
Na+ + K+

Ca2+ + Mg2+ + Na+ + K+

]
× 100 (3)

This formula assesses the proportion of sodium (Na+) and Potassium (K+) compared
to the sum of the concentrations of calcium (Ca2+), magnesium (Mg2+), sodium (Na+), and
Potassium (K+). A high SP may indicate an increased risk of water sodicity, which can
compromise water quality for certain uses, particularly irrigation [56].
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2.3.4. Kelley’s Ratio (KR)

The KR evaluates the relative balance between cations (calcium, magnesium, sodium)
and anions (bicarbonate) in water [56]. The KR is calculated using the formula [56]:

KR =

[
Na+

Ca2+ + Mg2+

]
(4)

A high KR may suggest water enriched in divalent cations (calcium and magnesium)
relative to monovalent cations (sodium) and anions, which can have implications for water
stability and its suitability for various uses [56].

2.3.5. Potential Salinity (PS)

The PS is a measure of the water’s potential salinity, calculated using the formula [58]:

PS = Cl− +
SO4

2−

2
(5)

A high PS may indicate an increased risk of water salinity, which can affect its quality
for irrigation and other uses [58,59].

2.3.6. Exchangeable Sodium Percentage (ESP)

The ESP assesses the proportion of exchangeable sodium in the soil, which can have
implications for its structure and fertility. The ESP is calculated using the formula [58,60]:

ESP =
Na+

Ca2+ + Mg2+ + Na+ + K+
× 100 (6)

A high ESP may indicate an increased risk of soil sodicity, which can affect crop growth
and agricultural productivity [58].

2.3.7. Water Quality Index (WQI)

The WQI aggregates several water quality parameters to provide a comprehensive
assessment of its quality. It employs specific weights to prioritize each parameter based on
its relative importance, generating an overall score to evaluate water quality [61].

• Assigning Weights to Hydrochemical Parameters: In this step, each hydrochemical
parameter is evaluated based on its impact on overall water quality [61]. For instance,
elements like calcium and bicarbonate, known to significantly influence surface wa-
ter quality, may receive higher weights, while elements like potassium, considered
less detrimental, may receive lower weights [61]. The weights assigned to each pa-
rameter are typically determined by previous studies, public health guidelines, or
environmental standards [61].

• Calculating the Relative Weight (Wi) of Each Hydrochemical Parameter: Once the
weights are assigned, the relative weight of each hydrochemical parameter is calculated
using the formula [61]:

Wi =
wi

∑n
i = 1 wi

(7)

where Wi represents the relative weight, wi is the weight assigned to each parameter
(Table 1), and n is the total number of parameters considered in the calculation [61].
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Table 1. Weights and Relative Weights of Hydrochemical Parameters [61].

Parameters Ca Mg Na K Cl SO4 HCO3

WHO (2017) 75 50 200 10 250 250 500

FAO (1985) 400 60 920 2 1065 1920 610

Weight ( wi)

5 3 4 2 4 3 5

Relative Weight ( wi)

0.1923 0.1154 0.1538 0.0769 0.1154 0.1538 0.1923

Notes: WHO: World Organization (2017); FAO: Food and Agriculture Organization (1985).

• Determining the Quality Scale (qi) for Each Hydrochemical Parameter

For each hydrochemical parameter, its quality scale is evaluated by comparing its
concentration in each water sample to an established reference concentration for drinking
water or irrigation [61]. This comparison is typically performed using the formula [61]:

qi =
Ci
Si

× 100 (8)

where qi represents the quality ranking, Ci is the concentration of each hydrochemical
parameter in each water sample, and Si is the established reference concentration for
drinking water (Table 1) [61].

• Calculation of the Water Quality Index (WQI)

Finally, the WQI is calculated using a formula that combines the relative weights
of each parameter with their respective quality scales [61,62]. The calculation generally
proceeds as follows [61]:

WQI = ∑n
i = 1 wi × qi (9)

where WQI represents the Water Quality Index, wi is the relative weight of each hydrochem-
ical parameter, and qi refers to the quality index of each parameter [61]. By combining these
different steps, the WQI provides a quantitative measure of overall water quality, which
can be used to assess its suitability for human consumption and agricultural irrigation [63].
This process allows for a systematic and objective evaluation of water quality, taking into
account multiple hydrochemical parameters and their interactions.

2.3.8. Irrigation Water Quality Index (IWQI)

The IWQI is similar to the WQI but specifically focuses on parameters relevant to
agricultural irrigation [61]. The IWQI is calculated using a method similar to that of the
WQI, but with a notable difference: when calculating the quality scale (qi), the specified
reference concentration (Si) for irrigation (Table 1) is used [61,64].

2.4. Database Creation

After determining the quality indices for each sample, the obtained results were
associated with analyses of conductivity, turbidity, pH, and TDS. To create a comprehensive
database, these data were recorded with conductivity, turbidity, pH, and TDS as input
variables. In contrast, the SAR, MH, SP, KR, PS, ESP, WQI, and IWQI were selected as
output variables.

2.5. Prediction Using Deep Neural Networks (DNNs)

DNNs represent a significant advancement in the field of machine learning [65]. Their
complex architecture, comprising multiple interconnected layers of neurons, allows for
sophisticated data modeling [65,66]. Inspired by the functioning of the human brain, these
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networks can learn hierarchical representations of data, identifying complex features at
various levels of abstraction [65].

The operation of DNNs is based on two main processes [67]. First, during the forward
propagation, data are introduced into the network and transmitted through the different
layers [67]. Each layer performs transformation operations on the data, enabling the net-
work to learn increasingly abstract features as the data progress through the layers [67].
Next, during backpropagation, the synaptic weights of the network are adjusted to mini-
mize a loss function, using gradients calculated from the difference between the predicted
output and the expected output [67].

What distinguishes DNNs from other machine learning models is their ability to
efficiently handle high-dimensional data [68]. Due to their deep structure and capacity to
learn complex representations, they can model intricate datasets with great accuracy [68].

Moreover, DNNs have a significant advantage in terms of generalization. Despite their
complexity, they can generalize to new data, meaning they can produce accurate predictions
on data they have not encountered before. This is due to their ability to learn discriminative
features of the data rather than merely memorizing training examples [68,69].

DNNs are powerful tools in machine learning, capable of learning complex data
representations, modeling high-dimensional datasets, and generalizing effectively to new
data. These characteristics make DNNs essential tools in many fields, such as computer
vision, natural language processing, computational biology, and more [65].

In this study, DNNs were selected to predict a range of quality indices: SAR, MH,
SP, KR, PS, ESP, as well as the WQI and IWQI. To enable the use of a single model for all
outputs, a fifth input variable was introduced to encode the quality indices based on the
following conventions: SAR is represented by 1, MH by 2, SP by 3, KR by 4, PS by 5, ESP by
6, WQI by 7, and IWQI by 8. Each output was based on 455 out of 523 samples, and since
a single model was used for all eight outputs, the total dataset consisted of 3640 samples.
However, the remaining 68 samples were reserved for testing the final model, ensuring an
unbiased performance evaluation. As a single model was used for all eight outputs, the
test dataset contained 544 samples (68 samples × 8 outputs).

The choice of DNNs for predicting water quality indices is based on several technical
and theoretical considerations. A study on predicting lake water quality indices with
sensitivity-uncertainty analysis using deep learning algorithms highlights their utility [70].
DNNs stand out for their ability to learn complex, hierarchical representations of data,
making them an ideal choice for problems where relationships between variables are
nonlinear and difficult to model using classical techniques such as linear regression or
decision trees [71]. In this study, the input variables (conductivity, turbidity, pH, TDS) and
the water quality indices (SAR, MH, SP, KR, PS, ESP, WQI, and IWQI) exhibit complex
interactions, justifying the use of DNNs capable of identifying these nonlinear patterns.
Unlike simpler machine learning models, such as linear regression or support vector ma-
chines (SVMs), DNNs can capture multivariate dependencies in the data without requiring
explicit specification of the relationship between independent and dependent variables [72].
Additionally, DNNs are particularly effective when it comes to handling large amounts
of multidimensional data, such as those obtained from multiple chemical measurements
of water quality [73]. Furthermore, their ability to “learn” from massive datasets enables
reliable predictions even with a large number of input parameters, which is crucial in water
quality analysis where the quality may be influenced by many interconnected factors [74].
Finally, DNNs have the advantage of adapting to the specificities of temporal and spatial
sampling, capturing seasonal or geographical trends that other models might overlook [75].
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2.5.1. Database Normalization

Once the database was constructed, the next critical step was to normalize the data,
bringing all variables into a standardized range between [0 and 1]. This normalization
process is essential for ensuring that all features contribute equally to the model training.
Input variables in the dataset—such as conductivity, turbidity, pH, and TDS—often have
vastly different scales and units. For instance, conductivity values may range from 100 to
2000 µS/cm, while pH values might range from 4 to 10. Without normalization, features
with larger numerical ranges would dominate the model’s learning process, potentially
distorting the results. By transforming all features to the same scale, normalization prevents
this issue and allows the model to treat each feature with equal importance.

Normalization also enhances the stability and efficiency of the training process [76].
Many machine learning algorithms, including DNNs, rely on gradient-based optimization
methods like gradient descent [77]. If features are on different scales, the gradient descent
algorithm can become inefficient, taking uneven steps across dimensions, which slows
convergence [78]. By normalizing the data, the optimization process becomes smoother
and faster, helping the model reach an optimal solution more quickly [79]. Furthermore,
normalization prevents potential computational issues, such as numerical instability, that
can arise when performing operations on data with vastly different ranges.

The normalization process itself is relatively straightforward. Each feature’s value is
scaled by subtracting the feature’s minimum value and dividing by its range (maximum–
minimum). This transformation ensures that all features are mapped to a [0, 1] range,
making the data more suitable for input into the DNNs.

2.5.2. Deep Neural Network Architecture Optimization

After the data normalization, the next crucial step in developing an effective model
was to optimize the architecture of DNNs. The architecture optimization process involves
selecting key hyperparameters, such as the activation functions, the number of hidden
layers, and the number of neurons in each layer, in order to achieve the best performance.
One of the primary considerations in optimizing DNNs’ architecture was the choice of
activation functions. Activation functions introduce nonlinearity into the model, enabling
it to learn complex relationships within the data. In this study, three different activation
functions were tested: tanh, sigmoid, and ReLU. The tanh function outputs values between
-1 and 1, which is useful for data centered around zero. However, it is prone to the vanishing
gradient problem, where gradients become too small in deeper layers, hindering learning.
The sigmoid function, which outputs values between 0 and 1, is commonly used in binary
classification but suffers from similar issues of vanishing gradients, particularly for deep
networks. On the other hand, ReLU (Rectified Linear Unit) outputs values between 0 and
infinity, which allows it to avoid the vanishing gradient problem and speeds up learning,
making it a popular choice for deep networks.

In addition to activation functions, the number of hidden layers and neurons per
layer were also varied to determine the optimal architecture. The number of hidden
layers was tested between 3 and 10, while the number of neurons in each layer was varied
between 3 and 30. The goal was to find a balance between a model that is sufficiently
complex to capture intricate patterns and one that does not overfit the data. Too few
layers or neurons can lead to underfitting, where the model is too simple to capture the
underlying relationships. Conversely, too many layers or neurons can lead to overfitting,
where the model becomes overly tailored to the training data and performs poorly on new,
unseen data.

To prevent overfitting, careful attention was paid to the number of model parameters.
It is essential to ensure that the number of model parameters does not exceed the number
of rows in the dataset. When the number of parameters becomes too large relative to the
number of data points, the model may memorize the training data rather than learning
generalized patterns, leading to poor generalization on unseen data. Maintaining a reason-
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able ratio between the number of parameters and the number of data points is crucial for
building a model that performs well both during training and when applied to new data.

2.5.3. K-Fold Cross-Validation

To assess the performance of the optimized DNNs model and ensure its generalization
ability, K-fold cross-validation was employed. In K-fold cross-validation, the dataset is
randomly divided into K subsets, or “folds”. The model is then trained on K-1 folds
and validated on the remaining fold. This process is repeated K times, with each fold
serving as the validation set exactly once [80]. This technique helps ensure that the model’s
performance is not overly dependent on any single subset of the data [80].

For this study, the dataset was divided into 10 folds (K = 10), and each time, 70% of
the data was used for training, while 30% was used for validation. The 70–30% split allows
the model to learn from a substantial portion of the data, while the validation set provides
an independent measure of the model’s performance. This ensures that the model is not
just memorizing the training data but is instead learning to generalize to new, unseen data.
By repeating this process across multiple folds, K-fold cross-validation provides a more
reliable estimate of the model’s true performance [80].

K-fold cross-validation also helps mitigate the risk of overfitting by allowing the model
to be tested on multiple subsets of the data [80]. If a model performs well across all folds,
it suggests that the model is robust and can generalize well to different data points. This
method reduces the likelihood of bias that may occur if only a single training and validation
split is used [80].

2.5.4. Best Model Selection

To select the best model, two criteria were considered: the coefficient of determination
(R) and the root mean square error (RMSE). These metrics assess the quality of the model’s
fit to the data and quantify the prediction error [81–86].

R =

N
∑

i=1

(
yexp − yexp

)(
ypred − ypred

)
√

N
∑

i=1

(
yexp − yexp

)2 N
∑

i=1

(
ypred − ypred

)2
(10)

RMSE =

√√√√( 1
N

)( N

∑
i=1

[(
yexp − ypred

)]2
)

(11)

where N is the number of data samples, yexp and ypred are the experimental and the
predicted values, respectively, and yexp and ypred are, respectively, the average values of
the experimental and the predicted values [86–90].

The process of developing and optimizing DNNs is illustrated in Figure 2 using a
detailed diagram. It highlights the key stages, from the initial design of the network to
its final optimization. This diagram serves as a structured guide to understanding the
fundamental steps of this complex process.
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3. Results
3.1. Deep Neural Networks

As previously stated, DNNs were chosen to predict drinking water and irrigation
quality indices based on a robust and flexible model for eight different pollution indices.
To achieve optimal results, a meticulous optimization of the DNNs’ architecture was
carried out.



Water 2024, 16, 3380 14 of 33

In this optimization process, several activation functions were tested, including “tanh”,
“sigmoid”, and “relu”. Each activation function has distinct characteristics and advan-
tages [91]. The “tanh” function transforms input values to a range between −1 and 1,
helping to center the data and accelerate convergence [92]. The “sigmoid” function pro-
duces outputs between 0 and 1, often used for binary classification problems, though it
may encounter issues with vanishing gradients [93,94]. The “relu” (Rectified Linear Unit)
function activates only positive values while setting negative ones to zero, making it a pop-
ular choice for its simplicity and efficiency in mitigating the vanishing gradient problem,
thus facilitating the training of deep models [95,96]. In addition to activation functions,
the architecture of DNNs was systematically optimized. The number of hidden layers was
varied from 3 to 10, and the number of neurons per layer was adjusted between 3 and
30. This exploration aimed to strike a balance between capturing complex data features
and preventing overfitting. A critical constraint was ensuring that the number of model
parameters did not exceed the number of rows in the dataset to avoid overfitting, where
the model might memorize the training data without learning to generalize. By keeping
the parameters lower than the sample size, the model remained robust and capable of
accurate predictions on unseen data. To further assess the performance of the optimized
DNNs and ensure their generalization ability, K-fold cross-validation was employed. In
this method, the dataset was randomly divided into 10 subsets, or “folds”. The model was
trained on 9 folds and validated on the remaining 1, repeating the process 10 times, with
each fold serving as the validation set once [80]. This approach ensured that the model’s
performance was not overly dependent on any specific subset of the data. For this study,
the dataset was divided into 10 folds, with a 70–30% training/validation split. This setup
allowed the model to learn from a substantial portion of the data while using the validation
set to provide an independent measure of performance [80].

After optimization, the best model obtained, based on the metrics R and RMSE,
exhibits the following architecture. The model starts with a sequence input layer (sequen-
ceInputLayer) tailored to the size of the input data (inputSize). This layer efficiently handles
sequences of data, which is crucial for time series or sequential data applications.

Next, the model includes five fully connected layers (fullyConnectedLayer) with
sizes of 16, 15, 18, 10, and 12 neurons, respectively. These layers are designated as FC1,
FC2, FC3, FC4, and FC5. Fully connected layers are essential for capturing the core
features of the data at different levels of abstraction, allowing the model to learn complex
relationships between input and output variables. Each fully connected layer is followed
by a ReLU layer (reluLayer). The ReLU layers, named relu_1, relu_2, relu_3, relu_4, and
relu_5, introduce non-linearities into the model. ReLU activation functions are particularly
effective in avoiding the vanishing gradient problem and speeding up the convergence of
model training.

The final fully connected layer (fullyConnectedLayer) with a single neuron, named
fc4, produces the model’s final output. This layer is crucial as it transforms the abstract
features learned by the previous layers into a quantitative prediction. Finally, the model
ends with a regression layer (regressionLayer). This layer compares the predicted output
with the actual values, calculating the loss to optimize the model weights. The regression
layer is essential for continuous prediction tasks, such as those involving water quality
indices. The architecture of the optimal model obtained has been graphically illustrated
in Figure 3.
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Figure 3. The architecture of the optimal DNNs model.

The results obtained for the metrics R and RMSE (Table 2) further highlight the
exceptional performance of the optimized model.

Table 2. Performance of the DNNs Model Tested.

R RMSE

Train Val ALL Train Val ALL

0.9997 0.9994 0.9994 0. 0018 0.0023 0.0020

The R values of 0.9997 for the training set, 0.9994 for the validation set, and 0.9994 for
the complete set show an outstanding correlation between the predicted and actual values.
An R-value close to 1 indicates a near-perfect linear relationship between the model’s
predictions and the actual water quality indices, meaning the model has successfully
learned to predict the desired outputs with high accuracy. The high R values for both the
training and validation sets suggest that the model is not only fitting the training data well
but also generalizing effectively to unseen data, avoiding overfitting. This indicates the
robustness and reliability of the model across different datasets.

The RMSE values are extremely low: 0.0018 for the training set, 0.0023 for the valida-
tion set, and 0.0020 for the complete set. RMSE measures the average magnitude of the
errors between predicted and actual values, with lower values indicating more accurate
predictions. These very low RMSE values reflect that the model’s predictions are very close
to the true values, suggesting that the model is highly precise. The slight increase in RMSE
for the validation set compared to the training set is a typical occurrence and indicates
that the model is appropriately balanced—it shows that the model has not memorized
the training data but rather has learned generalizable patterns that work well on new,
unseen data.

Together, these results (high R and low RMSE) emphasize the model’s accuracy and
generalization capability, confirming that the optimization process led to a highly effective
model for predicting water quality indices.

These results are graphically presented in Figure 4a–c.
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Thanks to this optimized architecture, the model achieves improved performance
in terms of the accuracy of predictions for drinking water and irrigation quality indices.
The meticulous optimization of the architecture, including the selection of activation func-
tions, the number of hidden layers, and the number of neurons per layer, has maximized
the predictive capabilities of the model while avoiding overfitting [80,97]. This approach
demonstrates the power of deep neural networks in addressing complex prediction prob-
lems and providing reliable and accurate results [98].

3.2. Model Performance Testing

To assess the robustness and generalization of the model, a distinct database com-
prising 544 samples, which had not been previously used for training or validation, was
introduced. This test database plays a critical role in evaluating the model’s ability to
make accurate predictions on unseen data, thus simulating the conditions that the model
would face in real-world applications [99]. By withholding these 544 samples from the
training and validation process, we ensure that the model is not overfitted to the specific
characteristics of the training dataset.

The use of a separate test dataset allows us to gauge the model’s performance on
new, previously unseen data, providing a more realistic assessment of its predictive capa-
bilities [100]. It serves as an unbiased evaluation to verify that the model has not simply
memorized patterns from the training set but instead has learned to generalize across
different data points [100]. The results obtained from this evaluation offer crucial insights
into the model’s ability to generalize beyond the data it was trained on. By analyzing its
performance on this independent test set, we can determine whether the model maintains
its accuracy and reliability when exposed to novel, real-world data [101]. This step is essen-
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tial to understanding the model’s robustness and its potential for real-world deployment in
dynamic, unpredictable environments [101].

Table 3 presents in detail the statistical coefficients, such as correlation coefficients and
associated errors, thus providing a comprehensive assessment of the model’s performance
on this new test database. These results enable the evaluation of the model’s effectiveness
and reliability in real-world application contexts, which is essential to ensure its utility and
relevance in practical situations.

Table 3. Model Test Performance.

R RMSE

0.99938 0.0031

The results obtained for the R and RMSE on the new test database are very encouraging.
The R is measured at 0.99938, indicating an extremely strong correlation between the values
predicted by the model and the actual values observed in the test data. This result suggests
that the model is capable of effectively capturing the trends and variations present in the
data, which is essential for accurate predictions in real-world situations.

As for the RMSE, it is evaluated at 0.0031. This very low value indicates that the
model’s predictions are, on average, very close to the actual values. In other words, the
average error between the model’s predictions and the real observations is minimal, con-
firming the model’s ability to produce precise and reliable predictions on new, previously
unseen data.

In conclusion, these results demonstrate the robustness and generalization capability
of the model, as well as its ability to maintain high performance on independent test data.
This accuracy and reliability enhance confidence in using the model for predicting water
quality across various application contexts.

To provide a visual representation of these performances, the experimental values and
the predicted values are graphically illustrated in Figure 5.
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3.3. Residual Analysis

In this section, a residual analysis has been conducted to rigorously evaluate the effec-
tiveness and performance of the selected model [80,102]. The residual method and error
histogram were employed in this process [80,99]. Subsequently, a comparative analysis was
performed by juxtaposing the experimental values with the predicted values, encompassing
the entire dataset, including those from the training, validation, and test sets (Figure 6a).
Furthermore, a meticulous assessment of the error was undertaken by calculating the
disparity between the experimental and predicted values for the entire dataset, including
the training, validation, and test sets [100]. This error was then graphically represented
(Figure 6b) using residual analysis methods. This approach allows for a detailed evaluation
of the quality of the model’s predictions and highlights areas where improvements could
be made to further optimize its performance [99].
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Figure 6a illustrates a perfect overlap between the predicted degradation rates of AMO
and the experimental values across the three phases of the study. Conversely, the analysis
of Figure 6b reveals a distribution of instances with high values, with the majority of errors
exceeding 2200, observed during the training, validation, and testing phases of the data.
In light of these observations, we can confidently conclude the accuracy and exceptional
performance of our obtained model.

3.4. Comparative Evaluation of the Model’s Performance Against Literature

Table 4 highlights the superior performance of the DNNs model in predicting water
quality indices compared to other benchmark models. With an R of 0.9997 for train-
ing and 0.9994 for testing, and an RMSE of 0.0018 and 0.0023, respectively, the DNNs
demonstrate exceptional accuracy and reliability. These results outperform those of alterna-
tive models, such as artificial neural networks (ANN), long short-term memory models
(LSTM), and multiple linear regression (MLR), particularly in terms of consistency and
error minimization.

Table 4. Comparative Analysis of Model Efficiency Across Various Water Quality Indices.

Model Database
Size

Inputs Outputs
R RMSE

Reference
Train Test Train Test

Artificial
neural network

(ANN)

140

Magnesium,
Calcium,

Bicarbonate,
Carbonate, Sodium,

and Potassium

MH 0.998001 0.994009 0.002735 0.008781

[103]

SAR 0.997801 0.993212 0.023108 0.029631

Permeability
index (PI) 0.996004 0.990025 0.006181 0.011446

Soluble sodium
percentage

(SSP)
0.998001 0.995006 0.31305 0.363731

Kelly ratio (KI) 0.996004 0.996004 0.006116 0.00634

Long
short-term
memory
(LSTM)

MH 0.999748 0.812187 0.00164 0.043908

SAR 0.999957 0.683688 0.002883 0.251246

PI 0.999753 0.967122 0.001555 0.018754

SSP 0.93129 0.066016 2.246052 13.82245

KI 0.999931 0.795875 0.0037 0.049018

Multi-linear
regression

(MLR)

MH 0.973859 0.956621 0.016405 0.01934

SAR 0.986722 0.988923 0.049997 0.039245

PI 0.970681 0.962027 0.01737 0.020062

SSP 0.974383 0.967353 1.158658 1.170854

KI 0.94756 0.959979 0.0261 0.020295
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Table 4. Cont.

Model Database
Size

Inputs Outputs
R RMSE

Reference
Train Test Train Test

Support vector
regression

(SVR)

476
Conductivity,
Temperature,

and pH

TDS 0.93 0.94 1357.69 1270.68

[58]

PS 0.95 0.95 7.16 6.73

SAR 0.81 0.83 2.38 2.18

ESP 0.62 0.65 12.53 12.18

Magnesium
Adsorption
Ratio (MAR)

0.49 0.51 15.18 14.74

ANN

TDS 0.96 0.96 390.33 400.63

PS 0.95 0.95 6.91 6.77

SAR 0.82 0.83 2.23 2.14

ESP 0.65 0.65 11.78 11.68

MAR 0.51 0.52 14.64 14.29

Random
forest (RF)

TDS 0.93 0.96 543.60 343.92

PS 0.92 0.95 8.84 5.76

SAR 0.79 0.83 2.42 1.35

ESP 0.62 0.65 12.35 7.49

MAR 0.47 0.52 15.36 8.93

Adaptive
boosting

(AdaBoost)

TDS 0.95 0.99 440.78 182.0

PS 0.92 0.99 8.75 3.7

SAR 0.75 0.98 2.72 0.9

ESP 0.69 0.98 13.40 4.2

MAR 0.64 0.98 16.15 2.9

SVR

166

Magnesium,
Calcium, Sodium,

and Potassium

IWQI

/ 0.98738 / 2.6925

[37]
Extreme
gradient
boosting

(XGBoost)

Magnesium,
Calcium, Sodium,

Potassium, Chloride,
Sulfate, Bicarbonate,

Nitrate,
Conductivity, and

Mineralization

/ 0.9834 / 2.8272

K-Nearest
neighbors

(KNN)

Magnesium,
Calcium, Sodium,

Potassium, and
Chloride

/ 0.9843 / 3.59517

This work
(DNNs) 3640

Conductivity,
turbidity, pH,

and TDS

SAR, SP, MH,
KR, PS, ESP,
WQI, and

IWQI

0.9997 0.9994 0. 0018 0.0023
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In comparison, ANN and LSTM models deliver competitive performance for specific
indices like MH and SAR, but their RMSE remains higher than that of DNNs. Additionally,
LSTMs, while powerful for capturing temporal sequences, exhibit notable instability in
their test results. For instance, for the SAR index, the LSTM’s R drastically drops to
0.68 during testing, whereas the DNNs maintain an R of 0.9994, highlighting the latter’s
reliability. Traditional models, such as MLR, fall short when dealing with complex nonlinear
relationships. For indices like MH, their RMSE is significantly higher, indicating their
inability to effectively capture intricate dependencies between parameters.

Approaches such as random forest (RF) and AdaBoost demonstrate variable perfor-
mance depending on the indices. For example, while AdaBoost achieves a low RMSE for
certain indices like SAR, it performs less effectively for other indices like PS. Conversely,
DNNs deliver remarkable accuracy and stability across all indices, owing to their opti-
mized architecture and ability to model nonlinear relationships efficiently. The versatility
of DNNs, capable of predicting eight different indices with a single architecture, sets them
apart from other models that are often limited to one or two indices.

This robustness and accuracy position DNNs as a key tool for practical applications.
In agricultural management, they facilitate effective water classification for irrigation
using indices such as SAR and IWQI. For drinking water quality, they provide rapid and
reliable WQI assessments, aiding decision-making to ensure compliance with standards.
The DNNs’ ability to produce stable and precise predictions, even in noisy environments
or scenarios characterized by complex relationships, makes them an ideal solution for
real-time monitoring and proactive water resource management.

In conclusion, the DNNs model significantly outperforms the other approaches pre-
sented in Table 4 due to its overall performance, robustness, and ability to handle complex
datasets. Its results demonstrate that it is well-suited to the current challenges of wa-
ter quality management, offering unparalleled accuracy and versatile applications across
diverse contexts.

3.5. Water Quality Classification

To evaluate the quality of drinking or irrigation water in a given region, a com-
prehensive analysis of several physico-chemical parameters is essential for determining
the water’s suitability for various uses. The assessment begins with the measurement
of conductivity, turbidity, pH, and TDS at multiple sampling locations throughout the
study area.

Once these parameters are collected, they serve as the basis for predicting a range of
water quality indices, including the SAR, MH, SP, KR, PS, and ESP, as well as the WQI and
IWQI, which provide valuable insights into the water’s overall condition. After calculating
these indices, an average is determined for each parameter, resulting in a holistic view of
the water quality within the region. This average facilitates the classification of the water
according to the criteria established in Table 5, which outlines distinct quality classes for
both drinking and irrigation purposes.

This classification process is crucial for identifying appropriate uses of water and
implementing effective management strategies in cases of non-compliance. Ultimately,
such measures contribute to the protection of soil health and safeguard the well-being of
users, ensuring sustainable water resource management.
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Table 5. Classification of Water Quality Based on Various Indices.

SAR-Based Irrigation Water Classification

Level SAR Remark on Quality Reference

S1 0–10 Excellent

[104]
S2 10–18 Good
S3 18–26 Doubtful
S4 >26 Unsuitable

SP-Based Irrigation Water Classification

Level Sodium percentage
(%) Remark on quality Reference

L1 <20 Excellent

[105]
L2 20–40 Good
L3 40–60 Permissible
L4 60–80 Doubtful
L5 >80 Unsuitable

KR-Based Irrigation Water Classification

Level KR values Remark on quality Reference

L1 <1 Safe
[106]L2 >1 Unsafe

MH-Based Irrigation Water Classification

Level MH values Remark on quality Reference

L1 <50% Safe
[107]L2 >50% Unsafe

PS-Based Irrigation Water Classification

Level PS values Remark on quality Reference

L1 <5 Good
[106]L2 5 ≤ PS < 10 Moderate

L3 ≥10 Poor

ESP-Based Irrigation Water Classification

Level ESP values Remark on quality Reference

L1 <5 Good
[108]L2 5 ≤ ESP < 15 Moderate

L3 ≥15 Poor

Drinking Water WQI Classification

Level WQI values Remark on quality Reference

L1 Less than 25 Excellent

[109]
L2 26–50 Good
L3 51–75 Poor
L4 76–100 Very poor
L5 More than 100 Unsuitable

IWQI-Based Irrigation Water Classification

Level WQI values Remark on quality Reference

L1 Less than 150 Good

[110]
L2 150–300 Slight
L3 301–450 Moderate
L4 More than 450 Severe

The analysis of water quality involves evaluating various chemical parameters to
determine its suitability for human consumption or irrigation purposes [104]. The SAR
is a key index used to assess the quality of irrigation water, as it measures the impact of



Water 2024, 16, 3380 24 of 33

sodium on soil structure [104]. An SAR value between 0 and 10 indicates excellent quality,
with minimal risk of toxicity to plants and good soil structure maintenance. When the SAR
exceeds 26, the water is considered unsuitable for irrigation due to the high risk of soil
salinization and degradation [104].

The SP is another important indicator of irrigation water quality. An SP below 20% is
considered excellent, ensuring no adverse effects on soil structure and plant health [105].
When the SP ranges between 60% and 80%, the water is classified as doubtful for irrigation,
requiring corrective measures to limit salinization risks [105]. At above 80%, the water is
deemed unsuitable as high sodium levels can degrade soil structure, limit nutrient uptake
by plants, and reduce agricultural productivity [105].

KR is used to evaluate the proportion of sodium to other cations present in the water,
providing crucial information about the suitability of irrigation water [105]. A KR value
below 1 indicates that the water is safe for irrigation, as the sodium proportion is low
enough not to compromise crop health or soil quality [105]. On the other hand, a KR value
above 1 indicates that the water is hazardous for irrigation, potentially leading to soil
salinization and toxic effects on crops [106].

MH is a crucial indicator for determining the safety of irrigation water [107]. An MH
value below 50% is considered safe, indicating a low risk to plant health and soil quality.
An MH value above 50%, however, is considered hazardous, as it may cause nutrient
imbalance, affect plant growth, and alter soil structure [107]. The magnesium ratio is also
relevant for drinking water, as high magnesium levels make water hard, alter its taste, and
may lead to digestive issues [107].

PS is a key indicator for measuring salt concentration in water. A PS value below
5 is classified as good, indicating a low risk of salt accumulation in the soil [106]. A PS
value between 5 and 10 is considered moderate and requires careful monitoring to prevent
excessive salt buildup [106]. Finally, a PS value above 10 is considered poor quality for
irrigation, as it poses significant salinization risks, adversely affecting crop growth [106].
For drinking water, high chloride and sulfate content impacts the taste and may present
health risks, such as gastrointestinal issues [106].

The ESP is used to assess the proportion of exchangeable sodium in the soil due
to irrigation [108,111]. An ESP value below 5 is considered good, indicating a low risk
of sodium saturation. A value between 5 and 15 is moderate, requiring monitoring to
avoid excessive levels [108,111]. Above 15, the ESP is deemed unfavorable, leading to
soil structure degradation, reduced permeability, and impaired crop growth [108,111].
However, this indicator is less relevant for drinking water assessment, as it primarily
focuses on the effects of sodium on soil rather than human consumption [108,111].

The WQI is used to provide an overall assessment of drinking water quality. A
WQI value below 25 indicates excellent quality, suitable for consumption without health
risks [112]. When the WQI is between 26 and 50, the water is considered good, though reg-
ular monitoring is needed to ensure quality remains adequate [112]. A WQI value between
51 and 75 indicates poor quality, requiring treatment before consumption [109,112,113]. A
WQI between 76 and 100 reflects very poor quality, presenting health risks, and a value
above 100 makes the water unfit for consumption [109,112,113].

The IWQI is specifically designed to evaluate the quality of water used for irrigation.
An IWQI below 150 indicates a quality with no significant risk for irrigation [114]. When
the IWQI is between 150 and 300, the water poses a slight risk, requiring management
measures to avoid salinization [114]. An IWQI between 301 and 450 indicates moderate
quality, signaling an increased risk of salinity or other irrigation-related issues. Above 450,
the IWQI is considered severe, indicating a substantial risk of soil degradation and reduced
agricultural productivity [110,115].

Among the mentioned indicators, MH, SP, and PS are also relevant for assessing
drinking water quality. The magnesium ratio is important because high concentrations can
make the water hard, affect its taste, and cause digestive problems [107]. Sodium percentage
is crucial, as high sodium content may pose health risks for people with hypertension
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and other sodium-related health issues [105]. Potential salinity is relevant for evaluating
drinking water quality because high chloride and sulfate content can affect the taste and
lead to health problems [106].

On the other hand, other indicators such as SAR, KR, and ESP are mainly used for
evaluating the quality of irrigation water, focusing on the effects of sodium on soil structure
and permeability rather than drinking water quality [116]. These indices are essential to
ensure that irrigation water does not have adverse effects on agricultural productivity and
soil sustainability, minimizing the risks of salinization and soil quality deterioration.

3.6. Innovative MATLAB Application for Water Quality Prediction and Classification

To simplify the prediction and classification of water quality, an innovative application
has been developed using MATLAB (Figure 7). This application is designed to make water
analysis more accessible, efficient, and accurate, particularly for assessing water quality for
drinking and irrigation purposes. It targets the need for an easy-to-use tool that enables
users, such as water quality professionals, field technicians, and farmers, to quickly assess
the suitability of water for various applications.
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The core functionality of the application lies in its ability to allow users to input
key physico-chemical parameters of water directly into the field “1” (Figure 7). These
parameters include conductivity, turbidity, pH, and TDS, which are critical for assessing the
overall quality of water. These parameters are easily measurable using portable devices and
instruments, which can be operated without requiring complex laboratory setups. Once
these input data are collected, the application processes the information using advanced
DNNs, which have been trained to predict a range of essential water quality indices.

The DNNs model predicts indices such as the SAR, MH, SP, KR, PS, ESP, and two
important water quality indices: WQI and IWQI. These indices are crucial for evaluating
water quality and determining its suitability for various uses. For instance, SAR, ESP, and
WQI are particularly important for assessing water for agricultural irrigation, while the
WQI and other indices also offer insights into water suitability for human consumption.

By utilizing DNNs, the application leverages the power of artificial intelligence to
analyze large volumes of complex data and make accurate predictions. This not only
enhances the precision of water quality assessments but also reduces the time required for
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these analyses. Rather than performing manual calculations for each index, which can be
error-prone and time-consuming, users can quickly obtain results through the application.
This streamlines the process, helping to facilitate faster decision-making.

The predicted water quality indices can then be used to evaluate the overall quality
of the water. These predictions are crucial for classifying water according to established
standards for drinking or irrigation purposes. The classification helps identify if the water
meets the necessary criteria for safe and sustainable use. In cases where the water quality
does not meet the required standards, the application provides immediate feedback, helping
users pinpoint areas for improvement or corrective measures that can be implemented
to address non-compliance. For example, it may suggest methods for treating water to
improve its quality or recommend alternative sources for irrigation.

In summary, this MATLAB application not only provides accurate predictions of
various water quality indices but also significantly simplifies the process of classifying
water based on its suitability for different purposes. It reduces the need for manual
calculations, saving both time and effort, while improving accuracy and reliability. By
providing water quality predictions in real-time, this application empowers water resource
managers, environmental engineers, and farmers to make informed decisions. It ultimately
contributes to better management of water resources, improving the sustainability of water
usage and ensuring that water remains safe for consumption and agricultural practices.

4. Discussion

In this study, an innovative approach leveraging AI was employed to predict wa-
ter quality parameters using field-measurable physicochemical data. This methodol-
ogy offers a significant improvement over traditional methods for classifying drinking
and irrigation water quality, addressing their limitations and enhancing water resource
management [117,118].

One of the key advantages of this AI-driven approach is its ability to reduce re-
liance on complex and resource-intensive laboratory analyses. Traditional methods of-
ten require expensive, time-consuming tests, specialized equipment, and highly trained
personnel [119,120]. By contrast, this study focused on using easily measurable parameters,
such as conductivity, turbidity, pH, and TDS, which can be quickly obtained with portable
devices. This transition streamlines the assessment process, democratizes access to water
quality monitoring, and empowers field personnel to make informed decisions without
delays associated with laboratory testing [121,122].

The ability to conduct real-time monitoring is a game-changer in water quality man-
agement. By integrating AI, the proposed methodology facilitates immediate data analysis
and interpretation, enabling water managers to identify deviations from quality standards
promptly and respond swiftly to potential health risks [121,123]. This immediacy is particu-
larly vital in regions where water contamination poses significant public health challenges.
Providing field personnel with AI tools for real-time analysis enhances both the speed and
effectiveness of responses to emerging issues [121].

At the heart of this approach lies the application of machine learning algorithms
capable of analyzing extensive datasets to identify patterns and correlations between
physicochemical measurements and historical laboratory results. By training AI mod-
els on comprehensive datasets—including seasonal variations and diverse geographical
conditions—the system becomes adept at generating accurate predictions about water
quality [124]. This predictive capability allows stakeholders to anticipate issues rather than
merely react to them, supporting proactive water management.

Another major strength of this AI-based methodology is its inherent flexibility and
adaptability. Regional environmental characteristics and water quality parameters often
vary significantly based on local conditions [125]. Tailoring AI models to reflect the specific
needs and features of various water sources ensures that predictions remain relevant and
contextually accurate [126]. This localized approach empowers water managers to develop
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targeted strategies for treatment and resource management, significantly improving the
effectiveness of interventions [127].

Beyond technical advantages, this methodology also aligns with broader sustainability
goals. By minimizing the need for laboratory analyses, it reduces operational costs and
resource consumption. Additionally, the decreased reliance on transporting samples to
centralized laboratories lowers carbon emissions associated with travel, contributing to
environmental sustainability [128]. In the face of global challenges like climate change
and resource scarcity, implementing such innovative solutions is critical to promoting
sustainable water management practices [129,130].

Real-time on-site results empower decision-makers to take immediate action in re-
sponse to detected water quality issues. This proactive approach not only mitigates risks
to public health but also optimizes overall water resource management [120,131–134].
By leveraging AI-driven predictions, stakeholders can make data-informed decisions re-
garding water usage, treatment strategies, and compliance with regulations, ensuring
sustainable and effective water resource utilization.

This study has also highlighted the significant potential of DNNs to predict and classify
water quality parameters based on field-measurable physicochemical data. While the
methodology is robust and precise within the Médéa region of Algeria, further exploration
is needed to validate its applicability in diverse contexts and address potential limitations.

The model was developed and tested using samples collected in a geographically
diverse environment encompassing Mediterranean and semi-arid zones, demonstrating
its adaptability to varied conditions within a single region. However, its application in
other contexts, such as coastal areas with high salinity, tropical zones rich in organic matter,
or industrialized regions with heavy metal contamination, remains to be fully validated.
Incorporating data from such diverse environments would broaden the training dataset
and enhance the model’s global applicability.

Future research should aim to test the model’s generalizability through comparative
studies across regions with varying climates and diverse water sources, including ground-
water and surface water impacted by industrial or agricultural activities. Although this
AI-based methodology offers remarkable advancements in speed, accuracy, and accessi-
bility for water quality monitoring, additional efforts are necessary to ensure its validity
and sustainability in diverse scenarios. The adoption of a global dataset and testing un-
der varied conditions will bolster its potential as a universal tool for sustainable water
resource management.

5. Conclusions

This study demonstrates the significant potential of artificial intelligence (AI), partic-
ularly deep neural networks (DNNs), for improving the prediction and classification of
water quality based on readily measurable physico-chemical parameters. By integrating AI
models, accurate predictions of key water quality indices such as the sodium adsorption
ratio (SAR), magnesium hazard (MH), sodium percentage (SP), Kelley’s ratio (KR), poten-
tial salinity (PS), exchangeable sodium percentage (ESP), as well as Water Quality Index
(WQI) and Irrigation Water Quality Index (IWQI) were achieved. The results underscore
the capacity of AI-driven approaches to enhance the speed, precision, and accessibility of
water quality assessments, particularly in regions where traditional methods are limited by
resource constraints. The developed model exhibits high predictive accuracy, with correla-
tion coefficients nearing unity and minimal root mean square errors, thereby demonstrating
its robustness. Furthermore, the ability to generate real-time assessments allows for rapid
responses to emerging water quality issues, making this methodology particularly relevant
for sustainable water resource management in the face of increasing pollution and climate
change challenges. The presented approach not only reduces dependency on complex
and time-consuming laboratory analyses but also promotes environmentally sustainable
practices by minimizing the need for transportation and large-scale infrastructure. This
innovative application of AI offers a valuable tool for water managers, facilitating informed
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decision-making processes that can improve both public health outcomes and agricultural
productivity. Future work should explore the scalability of this methodology across dif-
ferent geographical and environmental conditions and extend its application to a wider
range of water quality parameters. The continued integration of advanced AI techniques in
environmental monitoring holds the promise of revolutionizing water quality management
on a global scale.
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