
HAL Id: hal-04832855
https://hal.science/hal-04832855v1

Submitted on 12 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Agrochemicals disrupt multiple endocrine axes in
amphibians

Vance L Trudeau, Paisley Thomson, Wo Su Zhang, Stéphane Reynaud, Laia
Navarro-Martin, Valérie S Langlois

To cite this version:
Vance L Trudeau, Paisley Thomson, Wo Su Zhang, Stéphane Reynaud, Laia Navarro-Martin, et al..
Agrochemicals disrupt multiple endocrine axes in amphibians. Molecular and Cellular Endocrinology,
2020, 513, pp.110861. �10.1016/j.mce.2020.110861�. �hal-04832855�

https://hal.science/hal-04832855v1
https://hal.archives-ouvertes.fr


Agrochemicals disrupt multiple endocrine axes in 1 

amphibians 2 

  3 

 4 

Trudeau VL (1)*, Thomson P (2), Zhang WS (1), Reyaud S (3), Navarro-Martin L (4) 5 

and VS Langlois (2) 6 

 7 

Affiliations: 8 

(1) Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON, 9 

Canada, K1N 6N5 10 

(2) Institut national de la recherche scientifique (INRS), Centre Eau Terre 11 

Environnement, 490 de la Couronne, Québec (Québec), Canada, G1K 9A9 12 

(3) Laboratoire d’Ecologie Alpine, UMR UGA-USMB-CNRS 5553, Université 13 

Grenoble Alpes , CS 40700,  38058 Grenoble cedex 9, France 14 

(4) Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi 15 

Girona 18, 08034 Barcelona, Spain 16 

 17 

Email contact: 18 

Vance L. Trudeau (vance.trudeau@uottawa.ca) 19 

Paisley Thomson (paisley.thomson@ete.inrs.ca) 20 

Wo Su Zhang (szhan165@uottawa.ca) 21 

Stéphane Reynaud (stephane.reynaud@univ-grenoble-alpes.fr) 22 

Laia Navarro-Martin (laianavarromartin@gmail.com) 23 

Valérie S. Langlois (Valerie.Langlois@inrs.ca) 24 

 25 

 26 

 27 

*Corresponding author: 28 

Vance L. Trudeau, Professor 29 

University Chair in Neuroendocrinology 30 

University of Ottawa 31 

30 Marie Curie Private 32 

Ottawa, ON, Canada, K1N 6N5 33 

vance.trudeau@uottawa.ca  34 



 2 

Abstract 35 

Concern over global amphibian declines and possible links to agrochemical use has led 36 

to research on the endocrine disrupting actions of agrochemicals, such as fertilizers, 37 

fungicides, insecticides, acaricides, herbicides, metals, and mixtures.  Amphibians, like 38 

other species, have to partition resources for body maintenance, growth, and 39 

reproduction. Recent studies suggest that metabolic impairments induced by endocrine 40 

disrupting chemicals, and more particularly agrichemicals, may disrupt physiological 41 

constraints associated with these limited resources and could cause deleterious effects 42 

on growth and reproduction. Metabolic disruption has hardly been considered for 43 

amphibian species following agrichemical exposure. As for metamorphosis, the key 44 

thyroid hormone-dependent developmental phase for amphibians, it can either be 45 

advanced or delayed by agrichemicals with consequences for juvenile and adult health 46 

and survival. While numerous agrichemicals affect anuran sexual development, 47 

including sex reversal and intersex in several species, little is known about the 48 

mechanisms involved in dysregulation of the sex differentiation processes. Adult 49 

anurans display stereotypical male mating calls and female phonotaxis responses 50 

leading to successful amplexus and spawning. These are hormone-dependent 51 

behaviours at the foundation of reproductive success. Therefore, male vocalizations are 52 

highly ecologically-relevant and may be a non-invasive low-cost method for the 53 

assessment of endocrine disruption at the population level. While it is clear that 54 

agrichemicals disrupt multiple endocrine systems in frogs, very little has been 55 

uncovered regarding the molecular and cellular mechanisms at the basis of these 56 

actions. This is surprising, given the importance of the frog models to our deep 57 
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understanding of developmental biology and thyroid hormone action to understand 58 

human health. Several agrichemicals were found to have multiple endocrine effects at 59 

once (e.g., targeting both the thyroid and gonadal axes); therefore, the assessment of 60 

agrichemicals that alter cross-talk between hormonal systems must be further 61 

addressed. Given the diversity of life-history traits in Anura, Caudata, and the 62 

Gymnophiona, it is essential that studies on endocrine disruption expand to include the 63 

lesser known taxa. Research under ecologically-relevant conditions will also be 64 

paramount. Closer collaboration between molecular and cellular endocrinologists and 65 

ecotoxicologists and ecologists is thus recommended.  66 

Introduction 67 

 68 

There are countless benefits to intensive agricultural practices, including high 69 

productivity, labour concentration, and efficiencies, and thus, major health and 70 

economic benefits to people. Loss of natural habitat due to agricultural development is 71 

one important contribution to global amphibian declines. This is accompanied by the 72 

use of a range of agrochemicals for crop and farm animal management. There is 73 

accumulating and controversial evidence that some are endocrine disrupting chemicals 74 

(EDCs), or have the potential to disrupt other key physiological control processes that 75 

may contribute to reduced amphibian health and significant population declines. The 76 

most obvious agrochemicals are the various herbicides, insecticides, fungicides, and 77 

fertilizers used (Table 1). However, animal growth promoters, manure and sewage run-78 

off, natural and synthetic steroids, pharmaceuticals and metals can also be considered 79 
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as agrochemical pollutants as they are used and measured near-by agricultural 80 

activities.  81 

 82 

TABLE 1 NEAR HERE 83 

 84 

The class of Amphibia is comprised of three orders: Anura (frogs and toads,~ 85 

6,500 species), Caudata (newts and salamanders, ~680 species), and the 86 

Gymnophiona (caecilians, ~205 species). Of these, most research on basic endocrine 87 

control of development and reproduction, as well as the processes underlying endocrine 88 

disruption are largely undertaken with a few anuran species. For the most part, we limit 89 

the scope of this review to frogs and toads because data are missing in the other 90 

groups. Amphibians appear to be particularly susceptible to disruption of development, 91 

because metamorphosis is dependent on the thyroid hormones (THs), and that THs and 92 

their receptors are often altered by environmental contaminants. Moreover, sexual 93 

development is highly plastic and sex reversal is relatively easy to induce with 94 

exogenous sex steroid treatments, among others. Crosstalk between the thyroid, 95 

metabolic, and gonadal axes  gives rise to additional processes that can be affected by 96 

EDCs. Given that tadpole and adult amphibian skin is permeable, many species can 97 

take up and respond to pollutants at both life-history stages. 98 

Our main objective was to critically review amphibian data on the disruption of 99 

metamorphosis, growth, metabolism, and aspects of sexual differentiation and 100 

behaviour by agrochemicals. Information on the molecular and cellular mechanisms of 101 

action of a given agrochemical may be available, but more often it is not.  In this 102 
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instance, we review the effects of model endocrine disruptors when there is a paucity of 103 

information on agrochemicals.  The second objective was to identify areas requiring 104 

collaborative research concerning disruption of the hypothalamic-pituitary-thyroid (HPT) 105 

axis and the hypothalamic-pituitary-gonad (HPG) axis, and the resultant impacts on 106 

amphibian population health.    107 

2. Metamorphosis and disruption of the hypothalamic-pituitary-thyroid axis 108 

The HPT axis (Figure 1) is critically important in regulating amphibian 109 

development, metamorphosis, and physiology and has been reviewed extensively 110 

(Denver et al., 2002; Shi, 2000; Denver, 2009; 2013). The action of THs, thyroxine (T4) 111 

and triiodothyronine (T3), are mediated through the TH receptors (TRα and TRβ) 112 

(Yaoita and Brown, 1990; Eliceiri and Brown, 1994). The TRs are liganded transcription 113 

factors that dimerize with the retinoic acid receptor (RXR) to induce tissue-specific 114 

actions by binding to thyroid response elements (TREs) in promoter regions of TH-115 

responsive genes, thus, controlling most aspects of the metamorphic progression 116 

(Helbing and Atkinson, 1994; Shi, 2000; Buchholz et al., 2004, 2005, 2017).  117 

The control of the synthesis, secretion, and metabolism of THs has been described for 118 

anurans in several elegant reviews and will not be covered in detail here (Denver et al., 119 

2002; Buchholz et al., 2006; Denver, 2013).  Briefly, metamorphic progression is 120 

accompanied by a gradual increase in THs and developmental- and tissue-dependent 121 

expression patterns of the TRs and deiodinase enzymes. In particular, the type 2 122 

deiodinase (DIO2) is required for local conversion of T4 to the more active T3, and 123 

metabolism of these to less active forms by type 3 deiodinase (DIO3). Contaminants 124 

have the potential to cause adverse effects through interference at many levels: 125 
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synthesis of THs (sodium iodide symporter (NIS), thyroid peroxidase (TPO), thyroid 126 

stimulating hormone (TSH), thyroid stimulating hormone receptor (TSHR)), plasma 127 

transport proteins, cellular uptake mechanisms, TRs, and TH metabolism (e.g., 128 

deiodinase enzymes). Interference with feedback loops and hormonal crosstalk 129 

represent other potential mechanisms of endocrine disruption. Several agricultural 130 

contaminants have been identified as disruptors of the HPT axis in vertebrates 131 

(Leemans et al., 2019). Because TH-signaling is highly conserved across vertebrate 132 

species, and anuran metamorphosis is TH-dependent (Heimeier and Shi, 2010), 133 

amphibians represent ideal animal models to assess endocrine disruption. 134 

Contaminants that affect TH-dependent processes have been associated with 135 

alterations in the rate of metamorphosis (Heimeier and Shi, 2010; Miyata and Ose, 136 

2012). On the cellular and molecular levels, thyroid gland histology or disruption of the 137 

actions of exogenous THs or TH-dependent processes are parameters frequently 138 

studied to assess thyroid disruption. Studies on pituitary TSH and the direct 139 

measurement of T4, T3 and metabolites in anurans are lacking in general and more 140 

specifically as related to endocrine disruption. Measuring and interpreting circulating 141 

hormone levels, particularly in small tadpoles, presents a significant technical challenge. 142 

Therefore, many studies have used highly sensitive molecular endpoints, such as gene 143 

expression of TH-responsive genes, to examine the effects of agrochemicals on the 144 

HPT of amphibians (Crump et al., 2002; Lancôt et al., 2013; Navarro-Martín et al., 145 

2014). 146 

 147 

FIGURE 1 NEAR HERE  148 
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Relevant here is that the developmentally changing levels of T4 and T3, along 149 

with tissue-dependent developmental variations in the TRs in anurans drive 150 

metamorphosis. Tadpoles are an excellent model system to unravel the complexities of 151 

disruption of hormone-dependent developmental processes. Variations in hormone 152 

levels superimposed on changing TRs may lead to major differences in sensitivity and 153 

response to a given agrochemical (Rosenfeld et al., 2017). Therefore, it is essential that 154 

effects be tested at different developmental stages. While this is far from clear, we 155 

provide examples of numerous agrochemicals that impact TH-dependent processes in 156 

amphibians.   157 

 158 

2.1 Fertilizers and Metals 159 

2.1.1 Fertilizers 160 

Nitrogenous fertilizers are commonly applied in agricultural operations and are 161 

present in agricultural runoff (Lawniczak et al., 2016). Nitrate and nitrite have been 162 

shown to affect the HPT axis in several vertebrate species (Edwards et al., 2006) by 163 

competing with uptake of iodide by the thyroid gland, thereby inhibiting TH synthesis 164 

(Tonacchera et al., 2004; De Groef et al., 2006; Ward et al., 2010). Therefore, 165 

nitrogenous fertilizers represent a class of agrochemicals that may potentially interfere 166 

with the HPT axis of wild amphibians. 167 

Several studies indicate that exposure to nitrate altered rates of amphibian 168 

metamorphic development with apparent species-dependent sensitivities (Wyngaarden 169 

et al., 1953; Xu and Oldham, 1997; Edwards et al., 2006; Ortiz-Santaliestra and 170 

Sparling, 2007; Allran and Karasov, 2009; Wang et al., 2015). Chinese toad (Bufo 171 
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gargarizans) tadpoles exposed to a relatively high concentration (100 mg/L) of nitrate 172 

exhibited delayed metamorphosis, reduced circulating T4 and T3 levels, down-173 

regulation of dio2 and up-regulation of dio3 mRNA, and partial colloid depletion in 174 

thyroid gland follicles (Wang et al., 2015). Interestingly, B. gargarizans exposed to 5 - 175 

200 mg/L nitrate at embryonic stages (when maternally-transferred HPT molecular 176 

components are present), exhibited an increased rate of development, down-regulation 177 

of transporter genes (solute carrier family 16 member 2 (slc16a2) and (solute carrier 178 

organic anion transporter family, member 1C) slco1c) and of dio2 and dio3, and an up-179 

regulation of trα (Xie et al., 2019). In this study, T4 levels and trβ expression were not 180 

affected by nitrate exposure. Similarly, exposure 5 and 50 mg/L nitrate did not report 181 

transcriptional alterations of TH-responsive genes (trβ and Rana larval keratin type I) in 182 

Lithobates catesbeianus (American bullfrog) tadpole tail fin tissue (Hinther et al., 2012). 183 

Therefore, it is suggested that nitrate does not interact with T4, but disrupts gene 184 

expression following conversion to reactive nitric oxide; thereby, disrupting essential 185 

proteins, and affecting transcription and mRNA stability (Poulsen et al., 2018). The 186 

species-specific sensitivities and the molecular mechanisms by which nitrate disrupts 187 

the HPT axis in amphibians remains to be elucidated. 188 

2.1.2  Metals 189 

Metals, such as lead (Pb), copper (Cu), and cadmium (Cd), are aquatic 190 

contaminants associated with agricultural operations (Naveedullah et al., 2013). A major 191 

source of metal contamination from agriculture is from the application of fertilizer that is 192 

manufactured from phosphate rock, which includes trace levels of metals (Sabiha-193 

Javied et al., 2009). Some metals are anti-thyroidogenic and decrease metamorphic 194 



 9 

rate, thereby posing a threat to wild amphibians (Thambirajah et al., 2019). Sublethal 195 

concentrations of Pb has been shown to inhibit metamorphosis in Bufo arenarum 196 

(Pérez-Coll et al., 1988, 1990), L. pipiens (Northern leopard frog; Chen et al., 2006), 197 

Pelophylax nigromaculatus (Black spotted frog; Huang et al., 2014) and B. gargarizans 198 

(Yang et al., 2019).  In B. gargarizans, Pb exposure at 1000 µg/L caused follicular cell 199 

hyperplasia and colloid depletion in thyroid glands, increased the transcript levels of 200 

dio2, trα, and trβ, while decreasing dio3 mRNA levels (Yang et al., 2019). 201 

Copper occurs naturally in the environment; however, deposits of anthropogenic 202 

Cu reach surface waters from agricultural runoff. Several studies have demonstrated 203 

that Cu exposure can delay the rate of metamorphosis in L. pipiens (Chen et al., 2007), 204 

L. sphenocephalus (Southern leopard frog; Lance et al. 2012), L. sylvatica (Wood frog; 205 

Peles, 2013),  B. gargarizans (Chai et al., 2014; Wang et al., 2016; Chai et al., 2017), 206 

and B. arabicus (Arabian toad, Barry, 2011). At the histological level, Cu causes 207 

follicular hyperplasia in the thyroid gland of B. gargarizans (Wang et al., 2016). 208 

Exposure to 32 and 64 µg/L Cu induced an up-regulation of dio3 expression, but down-209 

regulations of both trα and trβ (Wang et al., 2016). Similarly, exposure to 64 µg/L Cu 210 

induced down-regulation of dio2, dio3, trα, and trβ mRNA levels in a separate study of 211 

B. gargarizans (Chai et al., 2017). 212 

Phosphate-based fertilizers contain varying amounts of Cd, and agricultural 213 

interventions have been shown to enhance leaching of geogenic Cd from soil 214 

(Hariprasad and Dayanada, 2013). Sub-lethal Cd exposure may have HPT-disrupting 215 

effects in amphibians. Cd exposure at 5 and 54 µg/L was found to accelerate 216 

metamorphosis in Anaxyrus americanus tadpoles (American toad; James and Little, 217 



 10 

2003). In contrast, Cd exposure at 855 µg/L Cd arrested metamorphosis in Xenopus 218 

laevis (African clawed frog; Sharma and Patiño, 2008), and interestingly, these effects 219 

were exacerbated in male X. laevis tadpoles when estradiol-17β (E2) was present 220 

(Sharma and Patiño, 2010). Sharma and Patiño (2008) also observed a reduction in 221 

follicle cell height in X. laevis tadpoles. Chronic Cd exposure (50, 100, and 500 μg/L) in 222 

B. gargarizans tadpoles caused retarded metamorphosis, follicular hyperplasia of the 223 

thyroid, and downregulated dio2, trα, and trβ transcripts (Sun et al., 2018). Similarly, 224 

metamorphosis was arrested at a pro-metamorphic stage in Pleurodeles waltl (Iberian 225 

ribbed newt) exposed to 1.2 mg/L Cd (Flament et al., 2003). Several studies reported 226 

that Cd decreases plasma T4 levels, without altering T3 levels (reviewed in Buha et al., 227 

2018). The direct effect on the thyroid gland is suggested to be due to oxidative stress 228 

in mitochondria of follicular cells; thereby, altering production and/or secretion of T4 229 

(Buha et al., 2018). 230 

2.2. Fungicides 231 

The azole fungicides are broad-spectrum fungicides used widely in agriculture. 232 

The imidazole fungicide, cyproconazole, adversely affected both the HPT and HPG 233 

axes in P. nigromaculata (Zhang W et al., 2019). Chronic cyproconazole exposure 234 

caused a decreased rate of metamorphic development and exposure to 1 mg/L 235 

cyproconazole reduced colloid and follicles of the thyroid gland. Moreover, T3 and T4, 236 

and thyroid-related gene transcript levels were significantly affected in a stage- and 237 

concentration-dependent manner (Zhang W et al., 2019). Similarly, the triazole 238 

fungicide, triadimefon is the most commonly used agricultural fungicide and has been 239 

implicated as having anti-thyroidogenic action in amphibians (Zhang W et al., 2020; Li, 240 
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Li et al., 2016). In P. nigromaculatus, 28-day larval exposure affected the rate of 241 

metamorphosis and significantly altered transcriptional regulation (Zhang W et al., 242 

2020). In the brain, transcripts of tshβ and dio2 were upregulated, while trβ, dio2, matrix 243 

metalloproteinase 2, TH-responsive basic leucine zipper transcription factor (TH/bZIP), 244 

and sonic hedgehog genes were up-regulated in the intestine (Zhang W et al., 2020). 245 

Interestingly, despite the observed inhibitory effects of triadimefon on development, TH-246 

responsive genes were induced, suggesting a compensatory transcriptional response. 247 

Pre-metamorphic (Nieuwkoop and Faber (NF) stage 51) X. laevis tadpoles exposed to 248 

triadimefon for 21 days exhibited similar adverse effects (Zhang W et al., 2020). Anti-249 

thyroidogenic effects were observed, including reduced rate of metamorphosis, 250 

decreased levels of T3 and T4, and an alteration of HPT-related gene expression. The 251 

authors conducted in silico ligand–TR docking computational analyses, which 252 

suggested that triadimefon could interact with TRs; however, direct evidence is lacking.  253 

Mancozeb is a dithiocarbamate that is extensively used in orchard crops and has 254 

been shown to induce adverse effects on TH-related developmental processes in frogs. 255 

Mancozeb (16, 80, and 400 µg/L) reduced growth in a concentration-dependent manner 256 

in L. pipiens (Shenoy et al., 2009) and induced physical deformities in eye and limb 257 

development in A. americanus tadpoles (Harris et al., 2000). TH-disruptive action of 258 

mancozeb (e.g., decreasing circulating T4 levels) has been characterized in other 259 

vertebrates (Nordby et al., 2005; Axelstad et al., 2011; Pandey and Mohanty, 2015), 260 

however, the underlying molecular pathways involved in these effects of fungicides in 261 

amphibians have not yet been assessed using more sensitive analytical tools.   262 
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The imidazole prochloraz, is widely used in Asia, Australia, Europe, and South 263 

America. It has been shown to delay metamorphosis, elevate T3 levels, and cause 264 

thyroid hyperplasia in R. temporaria (European common frog) (Brande-Lavridsen et al. 265 

2008). Similarly, X. laevis tadpoles exposed to 20, 60 and 180 μg/L prochloraz exhibited 266 

elevated T4 level and mild follicular cell hypertrophy in thyroid gland histology of the 180 267 

μg/L treatment group (Haselman et al., 2018). These effects were observed without 268 

concurrent alteration of T3 level or disruption of metamorphic rate. Therefore, it was 269 

suggested that prochloraz exposure interfered with the HPT-axis by altering T4 270 

metabolism in the liver and kidney or through affecting the negative-feedback 271 

mechanisms. Interestingly, prochloraz has also been implicated in the disruption of 272 

other endocrine pathways through aromatase inhibition. Exposure to 115 and 251 µg/L 273 

prochloraz lowered plasma testosterone levels, disrupted gonadal differentiation, and 274 

caused a male-biased sex ratio in R. temporaria (Brande-Lavridsen et al., 2008). It was 275 

suggested that prochloraz may act through an anti-androgen mode of action (Haselman 276 

et al., 2018), but this is far from clear. Given the potential for prochloraz to disrupt both 277 

thyroid and gonadal functions, it will be important to determine the  mechanisms of 278 

action within the context of hormonal crosstalk (Figure 1).  279 

2.3 Insectides and acaricides  280 

Organochlorine compounds are established TH disruptors that likely act through 281 

competition for binding to TH transport proteins in serum (Cheek et al., 1999b). 282 

Dichlorodiphenyltrichloroethane (DDT) is a legacy organochlorine insecticide that 283 

persists in the environment with its metabolites, such as 284 

dichlorodiphenyldichloroethylene (DDE). Arukwe and Jenssen (2005) reported a down-285 
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regulation of trβ in testis and liver of adult male R. temporaria exposed to DDE. 286 

Similarly, in larval R. temporaria, DDE caused a decrease in trβ expression in brain and 287 

tail tissue that was negatively correlated with tail length and width (Mortensen et al., 288 

2006).  289 

The organochlorine miticide dicofol is structurally related to DDT. In binding 290 

affinity assays using [125I]T3  and bulfrog transthyretin (TTR), dicofol was found to have 291 

a biphasic effect. T3 binidng to TTR was stimulated at low concentrations (0.4 – 400 292 

nM) and inhibited at a high concentration (40,000 nM) (Ishihara et al., 2003). Similarly, 293 

the organochlorine pesticide, methoxychlor, was originally introduced as a replacement 294 

for DDT, but was subsequently banned due, in part, to its endocrine disrupting 295 

properties (USEPA, 2004). Fort et al. (2004) explored the sensitivity of X. laevis to this 296 

compound with endpoints related to the HPT and HPG axes. In tadpoles, methoxychlor 297 

exposure delayed metamorphosis, reduced circulating T3 levels, and induced follicular 298 

hyperplasia of the thyroid glands at a concentration of 0.1 mg/L. Reproductive assays in 299 

adult X. laevis indicated that methoxychlor exposure adversely affected fecundity, and 300 

reproductive behaviors in both males and females. Both sexes exhibited a 301 

concentration-dependent reduction in gonad mass and gamete quantity. In breeding 302 

studies where exposed animals were paired with controls, the frequency of amplexus, 303 

fertilization, and embryo viability was affected by adult female methoxychlor exposure, 304 

and to a lesser extent by male exposure (Fort et al., 2004). Therefore, methoxychlor is 305 

an EDC affecting both the HPT and HPG axes in frogs.   306 

Organotin compounds have a variety of applications in agriculture as biocidal 307 

agents and have also been implicated in disruption of both HPG and HPT axes (Santos-308 
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Silva et al., 2018). The acaricide azocyclotin is an organotin compound extensively used 309 

in many agricultural practices due to its wide mode of action of disrupting ATP formation 310 

by inhibiting oxidative phosphorylation (Van Leeuwen et al., 2010). A 21-day exposure 311 

of azocyclotin to X. laevis tadpoles caused delayed metamorphosis, decreased 312 

circulating T3 concentration, and down-regulated expression of thyroid-responsive 313 

genes. More specifically, 0.1 and 0.5 μg/L azocyclotin down-regulated the expression of 314 

trβ, dio2, basic transcription element binding protein (bteb), matrix metalloproteinase 2, 315 

and stromelysin-3 (Li, Cao et al., 2016). Similarly, other organotin pesticides such as 316 

fentin hydroxide and fenbutatin oxide, were shown to induce TH disruption by 317 

decreasing T3 level in X. laevis tadpoles (Li et al., 2019). Both compounds inhibited 318 

metamorphic rate and decreased trβ, bteb , and dio2 expression; thereby, decreasing 319 

T3 level. Transcripts of genes associated with promoting TH production (tshβ and 320 

slc5a5) (Wang et al., 2013) were up-regulated, suggesting a compensatory 321 

transcriptional response to decreased T3 levels. It was also found that fentin hydroxide, 322 

but not fenbutatin oxide antagonizes T3-TRβ complex binding, which affects the TH-323 

dependent transcriptional regulation (Li et al., 2019). The present literature highlights 324 

the need for further investigations into the molecular mechanisms of action of specific 325 

organotin compounds.   326 

Carbaryl is a carbamate insecticide that inactivates acetylcholinesterases. 327 

Bridges (2000) demonstrated that carbaryl exposure retarded metamorphosis in L. 328 

sphenocephalus.  In contrast, Boone (2008) reported that carbaryl also accelerated 329 

metamorphosis in L. clamitans (green frog) and in A. americanus. In a subsequent 330 

study, Boone et al. (2013) revealed that 3 day exposure to 1 mg/L carbaryl did not affect 331 
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L. clamitans metamorphosis, but did induce an up-regulation of trα and trβ transcripts in 332 

the brain, which persisted for several months following metamorphosis. These studies 333 

highlight the importance of exposure timing and life-cycle testing, as well as the 334 

potential legacy impact of a transient exposure to EDCs. 335 

Since their introduction in the early 1990s, neonicotinoids have become the most 336 

commonly used type of insecticide in the world (Jeschke et al., 2011). Although 337 

neonicotinoids have been implicated in the disruption of  HPT function in lizards (Wang, 338 

Xu et al., 2019), birds (Pandey and Mohanty, 2017; 2015), and rats (Ibrahim et al., 339 

2015; Şekeroğlu et al., 2014), there is a relative lack of data concerning their effects in 340 

amphibians. In Eremias argus (Mongolian racerunner lizard), three neonicotinoids 341 

(dinotefuran, thiamethoxam, and imidacloprid) affected the plasma concentrations of T4, 342 

and the transformation of T4 to T3 (Wang, Xu et al., 2019). In larval L. sylvaticus, 343 

exposure to imidacloprid at 10 and 100 μg/L (above current environmental levels), 344 

increased survival and delayed completion of metamorphosis compared with controls 345 

(Robinson et al., 2017), suggesting that the amphibian HPT axis may be altered by 346 

neonicotinoids.  347 

 348 

2.4 Herbicides 349 

2.4.1 Atrazine 350 

The triazine herbicide atrazine is used in ~80 countries and has been shown to 351 

alter TH production in vertebrates (Ghinea et al., 1979; Kornilovskaya et al., 1996; 352 

Stoker et al., 2000). The effects of atrazine on amphibians have been well studied, 353 

primarily with endpoints related to reproduction. Early studies did not demonstrate 354 
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consistent effects of atrazine on the thyroid function in amphibians (Solomon et al., 355 

2008). It is particularly challenging to interpret the current data due to species-specific 356 

sensitivities and non-monotonic effects of atrazine. For example, atrazine reduced in 357 

vitro corticosterone production in L. catesbeianus, but not X. laevis (Goulet and Hontela, 358 

2003). In one study, atrazine exposure delayed metamorphosis at 100 µg/L in X. laevis 359 

(Freeman and Rayburn, 2005). In contrast, other authors report that atrazine exposure 360 

in larval X. laevis at similar concentrations (40 - 160 μg/L) had no effect on the rate of 361 

metamorphosis; whereas, 20 and 320 μg/L of atrazine accelerated or delayed 362 

metamorphosis, respectively (Sullivan and Spence, 2003). Similarly, in L. clamitans, 10 363 

µg/L, but not 25 µg/L atrazine, delayed metamorphosis (Coady et al., 2005). In larval 364 

Ambystoma tigrinum (tiger salamander), atrazine exposure delayed and accelerated 365 

metamorphosis at 75 µg/L and 250 µg/L, respectively (Larson et al., 1998). Both 75 and 366 

250 µg/L treatments caused an elevation of plasma T4 in pro-metamorphic (stage-IV), 367 

but not at pre-metamorphic (stage-II) larvae (Larson et al., 1998).  368 

Several other studies have reported no effects of atrazine on metamorphic 369 

endpoints (rate, forelimb emergence, tail resorption) in X. laevis (Carr et al., 2003; 370 

Coady et al., 2005;  Kloas et al., 2009), Limnodynastes tasmaniensis (spotted grass 371 

frog; Spolyarich et al., 2010), A. americanus (Freeman et al., 2005), or L. pipiens (Allran 372 

and Karasov, 2000; Orton et al., 2006). In an investigation using sensitive gene 373 

expression endpoints, low levels of atrazine (1.8 µg/L) significantly reduced 374 

metamorphic success (number of animals reaching metamorphosis) without affecting 375 

body weight, snout-vent length, or age at metamorphosis in L. pipiens (Langlois et al., 376 

2010).  In the same study, animals that did not metamorphose, exhibited a decreased 377 
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expression of dio3 in the tail, suggesting that these animals were attempting to 378 

compensate for the anti-metamorphic effects of atrazine through a reduction in TH 379 

metabolism. Given the potential for disruption of multiple hormonal axes in some 380 

amphibian species, targeted investigations on the cellular and molecular basis of 381 

atrazine and other triazines (active ingredients and additives to commercial 382 

formulations) is clearly warranted.  383 

2.4.3 Phenylurea herbicides 384 

Urea-based herbicides are widely used in agriculture to control grasses and 385 

broad-leaf weeds and have been associated with chronic toxicity in vertebrates (Marlatt 386 

and Martynuik, 2017). While there is evidence that these compounds may disrupt the 387 

HPT axis in other vertebrates, there is a relative lack of data for these compounds, 388 

especially in amphibians. Diuron is a widely used herbicide of the arylurea class that 389 

acts by inhibiting photosynthesis. Diuron and its metabolite, 3,4-dichloroanilin are 390 

commonly detected in freshwater ecosystems. Both compounds were shown to disrupt 391 

TH-related gene expression and plasma T3 level in L. catesbeianus tadpoles (Freitas et 392 

al., 2016). In transgenic X. laevis tadpoles expressing the TH/bZIP-gfp reporter gene, 393 

linuron exposure significantly increased fluorescence in the head region without T3 co-394 

treatment (Spirhanzlova et al., 2017), inducing TH-like  actions. Additionally, linuron has 395 

anti-androgenic (Marlatt and Martynuik, 2017) and anti-estrogenic effects (Spirhanzlova 396 

et al., 2017). Therefore, phenylurea herbicides having multiple hormonal activities, may 397 

represent a particular threat to wild amphibian populations and should be further 398 

investigated.  399 
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 400 

2.4.3 Chloroacetanilide herbicides  401 

Butachlor is a chloroacetanilide herbicide used extensively in rice agriculture that 402 

has been identified as a HPT disruptor in vertebrates (Zhu et al. 2014; Li, Wang et al. 403 

2016; Shuman-Goodier et al., 2017). Exposure of Rhinella marina (cane toad) tadpoles 404 

to butachlor increased expression of trβ, but did not affect expression of another TH-405 

responsive gene, Krüppel‐like factor 9 (klf9) (Shuman-Goodier et al., 2017), and did not 406 

affect the rate of metamorphosis. In X. laevis, butachlor promoted metamorphosis, 407 

increased T3 and T4 levels and up-regulated trβ expression (Li, Wang et al., 2016). 408 

Acetochlor is another chloroacetanilide type herbicide and the third-most 409 

commonly detected herbicide in surface waters in the USA (Foley et al., 2008). 410 

Acetochlor has been implicated in altering the HPT in other vertebrates (Gobiocypris 411 

rarus, rare minnow; Li et al., 2009), Rattus norvegicus (rat; Rollerovà et al., 2011), 412 

Danio rerio (zebrafish; Yang et al., 2015) and accelerating the rate of metamorphosis in 413 

L. pipiens (Cheek et al., 1999a) and X. laevis larvae (Crump et al., 2002). Several 414 

studies reported no effect of acetochlor in the absence of exogenous T3 (Cheek et al., 415 

1999a; Crump et al., 2002; Turque et al., 2005). In L. catesbeianus and L. pipiens, 416 

exposure to acetochlor during T3-induced metamorphosis resulted in reduced time to 417 

forelimb emergence (Cheek et al. 1999a; Velhoen and Helbing, 2001). Acetochlor 418 

induced an up-regulation of trα and trβ in the brains of premetamorphic L. catesbeianus 419 

tadpoles and this up-regulation was enhanced by exogenous T3 treatment (Helbing et 420 

al., 2006). Moreover, co-exposure of L. catesbeianus to acetochlor and T3 induced a 421 

synergistic up-regulation of trβ (Veldhoen and Helbing, 2001). In T3 pre-treated X. 422 
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laevis tadpoles, acetochlor amplified the transcriptional response of a TH/bZIP 423 

promoter-driven eGFP reporter gene in the head region of transgenic tadpoles (Turque 424 

et al., 2005). That acetochlor magnifies the T3-induced response for many up-regulated 425 

genes and attenuates the response for down- regulated ones, suggests a mechanism of 426 

disruption that involves TH-dependent transcriptional regulation. Because acetochlor 427 

does not appear to bind directly to TRβ (Cheek et al. 1999b), it has been suggested that 428 

epigenetic mechanisms may be involved (Crump et al., 2002; Thambirajah et al., 2019).  429 

While plausible, this hypothesis remains to be rigorously tested.  430 

While acetochlor modulates the HPT axis in amphibians, no studies to date have 431 

reported alterations of the HPG axis or other reproductive-related endpoints in 432 

acetochlor-treated tadpoles. Acetochlor exposure adversely affects reproduction in rats 433 

by interacting with high-affinity to uterine ER (Rollerová et al., 2011, 2000). Thus, the 434 

effects of acetochlor on amphibian reproduction should be investigated.  435 

 436 

2.4.4 Glyphosate 437 

The broad-spectrum organophosphate herbicide glyphosate is used worldwide to 438 

kill weeds and grasses in crop fields. The effects of glyphosate on development and 439 

growth in several frog species has been reported (e.g., Edge et al., 2011, Edge, Gahl et 440 

al, 2014, Edge, Thompson et al., 2014; Bach et al., 2016), but few studies have 441 

examined molecular effects to elucidate its mode of action. In the first studies to 442 

investigate the molecular effects of glyphosate exposure, Roundup® formulations were 443 

shown to disrupt steroidogenesis in mouse Leydig tumour cell line through disruption of 444 
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steroid acute regulatory protein (StAR) expression (Walsh et al., 2000). In several frog 445 

species, Roundup® increased trβ mRNA (Howe et al., 2004).  446 

Laboratory exposures to the glyphosate-based herbicide VisionMax® had direct 447 

effects on the metamorphosis of L. sylvaticus tadpoles by decreasing their development 448 

rates when exposed to 2.9 mg of acid equivalents (a.e.) per L (Navarro-Martín et al., 449 

2014). These glyphosate-exposed animals took an additional 7 days to reach 450 

metamorphic climax when compared to controls. Tadpoles exposed to VisionMax® 451 

were larger in size and in weight with respect to the control group, but no effects on the 452 

condition factor were observed. At the molecular level, VisionMax® reduced normal 453 

developmental changes in tail trβ or dio3, glucocorticoid receptor (grII) mRNA levels in 454 

L. sylvaticus tadpoles, suggesting a partial inhibition of the stress axis. The authors 455 

hypothesized that the up-regulation of transcripts triggering metamorphosis, such as trβ 456 

or dio3, could be the result of a compensatory response to prevent developmental delay 457 

(Navarro-Martín et al., 2014). These data also suggest that VisionMax® could shift the 458 

energy expenditure from development to growth.  459 

In an attempt to mimic a agriculturally-relevant scenario, a parallel study was 460 

conducted to evaluate the effect of the Roundup WeatherMax®, Roundup Vision® as 461 

well as isopropylamine salt of glyphosate (IPA) and the polyethoxylated tallowamine 462 

(POEA) surfactant of Vision® by exposing L. sylvaticus tadpoles to two pulse 463 

applications (Lanctôt et al. 2014). In this case, developmental rates were not affected 464 

and only differences in the condition factor of animals exposed to IPA and POEA were 465 

observed, demonstrating that milder effects resulted from environmentally realistic 466 

exposures. Nevertheless, this study demonstrated that exposures were able to alter the 467 



 21 

developmentally-regulated increases of mRNA levels of key genes controlling 468 

development, such as trb, grII, dio2 and dio3, in tail and/or brain. These results reinforce 469 

the idea that a compensatory mechanism to regulate TH levels may occur in tadpoles 470 

exposed to glyphosate-based herbicides, but the authors did not measure TH levels. 471 

Although no significant effects were found related to growth and development, these 472 

results pointed out the need to elucidate the molecular mechanisms of action that could 473 

translate to long-term effects on fitness in juveniles or adults exposed to glyphosate-474 

based herbicides during early development.  475 

Another study assessed the effects of agriculturally-relevant concentrations of 476 

glyphosate-based herbicides on whole ecosystems using in situ split pond design of 477 

wetland exposures to Roundup WeatherMax® (Lanctôt et al., 2013). Although small 478 

significant differences in growth and development were found in exposed L. sylvaticus 479 

tadpoles compared to controlled wetlands, trends were not consistent between years or 480 

ponds. Based on this, the authors concluded that pulse exposures of Roundup 481 

WeatherMax® may pose minimal risk to larval amphibian development.  Interestingly 482 

and in line with the laboratory studies, however, exposed tadpoles from some wetlands 483 

presented altered mRNA levels of thyroid and stress related genes, supporting the idea 484 

that glyphosate-based herbicides have the potential to alter hormonal pathways during 485 

tadpole development. These results raised several questions that remain to be 486 

answered: 1) would these alterations at the molecular level be translated into 487 

functionally biological changes in juvenile or adult later life? 2) Are the observed 488 

changes due to direct exposure to herbicides or an indirect consequence of alteration of 489 

food resources by these chemicals?   490 



 22 

2.5 Agrochemical mixtures: 491 

Considering that agrochemicals are present in the environment in complex 492 

mixtures, there is a lack of data examining the effects of environmentally relevant 493 

mixtures of agrochemicals on the amphibian HPT axis. Mosconi et al. (2005) 494 

documented elevated plasma T3 and T4 frogs (Pelophylax lessonae and P. esculenta 495 

esculenta) captured in Italy at agricultural sites compared to those from pristine areas. 496 

However, this study did not characterize or quantify the agrochemicals at each site, nor 497 

did they examine other TH-related cellular or molecular endpoints. Hayes et al. (2006) 498 

were amongst the first to specifically adress the effects of pesticide mixtiures in multiple 499 

endocrine systems.  In a complex study of L. pipiens and X. laevis tadpoles, the effects 500 

of low doses four herbicides, two fungicides, and three insecticides used on american 501 

cornfields were assessed. The important conclusion was that study of single pesticide 502 

exposures is underestimating likely effects on growth, metamorphosis, and stress 503 

hormone production. In some cases, mixtures can negate effects, and in other cases 504 

mixtures can synergize.  Recently, A. americanus tadpoles were exposed to water from 505 

a retention pond receiving runoff from a pesticide-treated corn operation. Results 506 

indicated that the complex mixture of agrochemicals accelerated metamorphic timing 507 

and induced a significant up-regulation of trβ and dio3 mRNA in liver at metamorphic 508 

climax (Thomson and Langlois, unpublished) indicating the importance of conducting 509 

ecotoxicological work in real-world settings. It is clear that future studies must consider 510 

relevant mixtures to determine the potential endocerine disruption actions of 511 

agrochemicals.  512 

 513 
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 3. Disruption of growth and metabolism 514 

Life-history theory states that animals have to partition limited resources between 515 

growth and reproduction, and hormones control these processes (Figure 1). Since 516 

resources are limited there are physiological constraints at the larval and the adult 517 

stages that cannot be modified without causing deleterious effects on growth and 518 

reproduction (Lardner and Loman, 2003). At the larval stage, disruption of metabolism 519 

can have a profound and lasting effect across the lifespan of an organism (Mueller et 520 

al., 2015). Indeed, larval development rates determine the period of water availability in 521 

temporary ponds and the size and weight at metamorphosis which are all directly linked 522 

with mortality. At the adult stage, disruption of metabolism can mimic reduction of 523 

resources which is known to increase the risk of mortality associated with reproduction. 524 

In such events, skipping reproduction for allocating resources to growth might postpone 525 

reproductive event at the following year (Lardner and Loman, 2003) and maintaining 526 

reproduction might lead to progeny with reduced growth capacities (Regnault et al., 527 

2018). Amphibians are particularly exposed to agrochemicals through water during 528 

periods critical for optimal metabolism, growth or reproduction, (Fan et al., 2007a, 529 

2007b; Hayes et al., 2011; Duarte-Guterman et al., 2014). 530 

Exposure to agrochemicals during tadpole development has been widely studied 531 

and among effects reported alteration of growth has been associated to all types of 532 

pesticides. Concerning herbicides, atrazine, and glyphosate have been the most studied 533 

for their impacts on tadpole development. Whereas exposures to low environmentally 534 

relevant concentrations have not been associated with significant effects on growth 535 

(Carr et al., 2003; Coady et al., 2005; Orton et al., 2006) or minor effects (Zaya, Amini, 536 
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Whitaker, Ide, 2011; Zaya, Amini, Whitaker, Kohler,Ide, 2011), higher concentrations of 537 

atrazine have been shown to decrease snout vent length, body weight (Diana et al., 538 

2000; Sullivan and Spence, 2003), and survival at metamorphosis (Hoskins et al., 539 

2018). Discrepancy between low doses and high doses atrazine have been associated 540 

with non-monotonous effects (Diana et al., 2000; Freeman et al., 2005; Coady et al., 541 

2005). For example, exposure to atrazine resulted in a significant acceleration of 542 

metamorphosis at 1 mg/L and a significant increase in the duration of metamorphosis at 543 

5 mg/L, whereas no significant difference was observed with 0.1 mg/L (Brodeur et al., 544 

2009). Many studies have shown that exposures to glyphosate and formulations with 545 

POEA and POEA alone increased mortality and decreases size and developmental 546 

rates of tadpoles (Edginton et al., 2004; Howe et al., 2004;  Relyea, 2004, 2005, 2012; 547 

Relyea and Jones, 2009; Jones et al., 2010, 2011; Williams and Semlitsch, 2010; 548 

Moore et al., 2012; Lanctôt et al., 2014). Concerning insecticides and fungicides, fewer 549 

data are available, but a direct link between exposure to these classes of agrochemicals 550 

and growth alterations has been established for the insecticides carbaryl (Boone et al., 551 

2013), α-cypermethrin alone (Xu and Huang, 2017) or in combination with the herbicide 552 

oxadiazon (Mesleard et al., 2016), the carbamate methomyl (Trachantong et al., 2017) 553 

and the fungicides copper (Peles, 2013), triphenyltin (Higley et al., 2013) and 554 

cyproconazole (Zhang W et al., 2019).  555 

 In several studies, alterations of tadpole growth under pesticide exposure have 556 

been associated with metabolic disruption. Tadpoles are required to balance their 557 

limited energy reserves for maintenance, growth, metamorphosis, and locomotion, while 558 

maintaining adequate energy stores for basal metabolism (Melvin et al., 2016). 559 



 25 

Chemical exposure (e.g., naphthenic acids) during sensitive developmental stages can 560 

disrupt energy balance in tadpoles (Melvin et al., 2013) by requiring an animal to 561 

allocate more energy towards detoxification pathways or altering various metabolic 562 

processes that may ultimately influence energy homeostasis (Melvin et al., 2016). 563 

Tadpoles exposed pesticide-contaminated water presented decreased levels of 564 

biochemical constituents, such as glycogen, suggesting compensatory metabolic 565 

mechanisms (Strong et al., 2016, 2017). The relation between atrazine exposure and 566 

modification of tadpole metabolism and growth was first studied by Langerveld et al. 567 

(2009) in X. laevis. In this study, exposure to atrazine at 400 µg/L was associated to a 568 

reduction in fat body size, lipid storage organ, suggesting an energy deficit in these 569 

tadpoles (Langerveld et al., 2009). In addition, X. laevis tadpoles exposed throughout 570 

development to 200 or 400 µg/L atrazine, were smaller and had smaller fat bodies. 571 

These morphological parameters were associated with an increased transcription of 572 

genes involved in the conversion of lipids and proteins into energy and an increase in 573 

ADP:ATP ratios at the end of exposure suggesting tadpoles may have had difficulty in 574 

maintaining energy homeostasis (Zaya, Amini, Whitaker, Ide, 2011; Zaya, Amini, 575 

Whitaker, Kohler, Ide, 2011). These metabolic effects of atrazine were confirmed in A. 576 

americanus and Hyla versicolor (grey tree frog), where exposed tadpoles displayed 577 

perturbations in a number of classes of biological macromolecules, including fatty acids, 578 

amino acids, purine nucleosides, pyrimidines, and mono- and di-saccharides. These 579 

results suggested that higher concentrations of atrazine (≥250 µg/L) impact energy 580 

metabolism of larval amphibians by diverting energy to detoxification, tissue repair and 581 

restoring homeostasis (Snyder et al., 2017). Moreover, atrazine, glyphosate, and 582 
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quinclorac exposure induced a significant decrease in levels of glycogen, proteins, 583 

cholesterol, and total lipids in gill, liver, and muscle in L. catesbeianus (Dornelles and 584 

Oliveira, 2014), suggesting that several classes of herbicides might be associated to 585 

metabolic disorders. Microhyla fissipes tadpoles (farmland frog) exposed to 60–586 

120 mg/L glyphosate-based herbicides showed preference for warm temperatures, 587 

exhibited a suppressed growth, and a reduced tail development, together with the 588 

down-regulation of carbohydrate and lipid catabolism and the up-regulation of the amino 589 

acid catabolism. These results suggested a trade-off between protein synthesis and 590 

energy production with respect to amino acid allocation, and provide a metabolic 591 

explanation as to why growth was suppressed tadpoles exposed to a glyphosate-based 592 

herbicide (Wang, Chang et al., 2019).   593 

Molecular mechanisms and hormonal disruption associated with metabolic 594 

disorders have been poorly studied in tadpoles. Insight into comprehensive mechanism 595 

of pesticide impacts have been pinpointed with the fungicide triphenyltin in L.  sylvaticus 596 

and atrazine in X. laevis. In L. sylvaticus larvae that survived to metamorphic climax 597 

during exposure to triphenyltin for as long as 100 days, abundance of transcripts of 598 

peroxisome proliferator-activated receptors (ppar and ppar),  cytochrome p4504B1 599 

(cyp4b1), fatty acid synthase (fas), and lipoprotein lipase (lpl) were greater than in 600 

controls, suggesting that an up-regulation of lipid metabolism might have been 601 

important for survival and development of these animals (Higley et al., 2013). In X. 602 

laevis tadpoles exposed to atrazine, a decrease in glucocorticoid receptor protein and 603 

an increase in pparβ mRNA were observed, suggesting receptor down-regulation in 604 

response to a glucocorticoid surge associated with changes in energy status and lipid 605 
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metabolism (Zaya, Amini, Whitaker, Ide, 2011; Zaya, Amini, Whitaker, Kohler, Ide, 606 

2011). These results suggest that tadpoles exposed to pesticides undergo a global 607 

stress response that might involve the glucocorticoid axis, and increased metabolism 608 

may be a compensatory mechanism to promote survival (Higley et al., 2013; Strong et 609 

al., 2017). 610 

Alteration of tadpole growth has been also associated with parental disruption of 611 

metabolism following exposure to endocrine disruptors. Although not yet documented 612 

for agrochemical exposure, this pattern has been clearly demonstrated with the 613 

polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP) and the organochlorine, 614 

triclosan (TCS). Both acute and chronic exposure to BaP and TCS can induce marked 615 

metabolic disorders in Silurana tropicalis (Western clawed frog) associated with 616 

impaired lipid and carbohydrate metabolisms (Regnault et al., 2014, 2016, 2018: Usal et 617 

al., 2019). Molecular mechanisms clearly demonstrated that the insulin-regulated 618 

processes were affected by EDC exposure. Indeed, female S. tropicalis exposed from 619 

tadpole stage to BaP or TCS at concentrations of 50 ng·L−1 displayed glucose 620 

intolerance syndrome, liver steatosis, liver mitochondrial dysfunction, liver 621 

transcriptomic signature, and pancreatic insulin hypersecretion, all typical of a 622 

prediabetes state. Moreover, after 1 year of depuration, S. tropicalis that had been 623 

exposed to BaP still displayed hepatic disorders and a marked insulin secretory defect 624 

resulting in glucose intolerance, suggesting a diabetes-like state (Regnault et al., 2018). 625 

The exposed animals produced progeny that metamorphosed later, were smaller and 626 

lighter at metamorphosis, and had reduced reproductive success, thus linking metabolic 627 

disorders in genitors to tadpole development impairments. These multigenerational 628 
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effects have been associated to decreased-lipid levels in eggs, but epigenetic DNA 629 

modifications could also occur (Regnault et al., 2018; Usal et al., 2019).  630 

Despite the absence of clear correlations between disruption of metabolism by 631 

agrochemical in adults and decreased growth capacities of progeny, impacts of 632 

pesticide exposure and metabolism impairments in post-metamorphic amphibians have 633 

been clearly demonstrated (Van Meter et al., 2018). In adults, disruption of lipid, 634 

carbohydrate, and protein metabolism following insecticide exposure has been shown. 635 

For example, a decrease in the total lipid content of liver, muscle, testes, and ovaries 636 

were observed in Minervarya andamanensis (Andaman frog) with lethal concentration of 637 

malathion, whereas exposure to sub-lethal concentrations were associated to an 638 

increase in total lipids, free fatty acids, glycerol, and lipase activity (Gurushankara et al., 639 

2007). A negative relationship between p,p-DDE exposure and protein and 640 

carbohydrate storage associated with increased energy consumed has been shown in 641 

Xenopus muelleri  (Müller’s clawed frog) (Wolmarans et al., 2018). L. sphenocephala 642 

exposed to single, double, or triple pesticide mixtures of bifenthrin (insecticide), 643 

metolachlor (herbicide) and triadimefon (fungicide) presented an increase in amino 644 

acids and other key metabolites concentrations in liver, suggesting depletion of energy 645 

resources (Glinski et al., 2018). Bufo regularis (African toad) exposed to endosulfan 646 

showed an increase in serum glucose levels with a concomitant reduction in liver 647 

glycogen, indicating disorders in carbohydrate metabolism (Isioma and Lawrence, 648 

2013). In addition, an inhibition of normal oxidative metabolism associated to lactic acid 649 

accumulation in blood has been shown following exposure of Hoplobatrachus tigerinus 650 
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(Indus Valley bullfrog) to the organophosphate phosalone (Ramalingam and 651 

Kasinathadurai, 1989). 652 

4. Disruption of sexual differentiation 653 

As in many other vertebrate species, both female and male heteromorphic sex 654 

determining systems occur in amphibians. However, in the majority of species, sex is 655 

genetically determined by homomorphic sex chromosomes (Bachtrog et al 2014), 656 

suggesting that a variety of sex-determining genes exist (Ito 2018). Sexual 657 

differentiation in amphibians is driven by sex steroid hormones. In this regard, sexually 658 

dimorphic expression of steroidogenic-related genes, for example the cytochrome P450 659 

19 (cyp19a1), that converts androgens to estrogens, and the cytochrome 17α-660 

hydroxylase/17,20 lyase (cyp17a1), responsible for the conversion of progestogens to 661 

androgens, have been observed in different frog species, including S. tropicalis and L. 662 

sylvaticus.  These two genes can be used as biomarkers of phenotypic sex (Navarro-663 

Martin et al., 2012). As observed in birds, reptiles, and fish, frog gonadal development is 664 

sensitive to sex steroids (Hayes, 1998). In frogs, this process takes place mostly during 665 

the aquatic larval period making these organisms very sensitive to environmental EDCs. 666 

Moreover, many agrochemical applications occur in Spring, which coincides with the 667 

seasonal period of frog spawning and sensitive phases of tadpole development. Sex 668 

steroids are key players in gonadal differentiation and their action can be disrupted by 669 

estrogenic, androgenic, anti-androgenic, and progestagenic chemicals used in animal 670 

agriculture. Up to now, literature has focused on gonadal morphology, sex ratios 671 

(presence of intersex, as well as sex reversal as endpoints for studying endocrine 672 

disruption). The presence of intersex gonads in frogs have been observed in agricultural 673 
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areas and after expsure to atrazine (Hayes, Collins et al., 2002, Hayes, Haston et al., 674 

2002; Hayes et al., 2003; McCoy et al., 2008).  In contrast, recent studies (Lambert et 675 

al., 2019).  showed that frequency of intersex and sexual genotype-phenotype 676 

discordance were not correlated in L.  clamitans collected from ponds found in 677 

underdeveloped landscapes, forested landscapes, or suburban neighborhoods, 678 

suggesting that the mechanism by which they occur may be different. Lambert et al. 679 

(2019) concluded that the presence of intersex or sex reversal was not associated with 680 

land use, suggesting that sex reversal in natural scenarios could be related to multi-681 

stressor responses (including temperature). Clearly, many queations remain 682 

unanswered. Directed research must be conducted to link early agrochemical exposure 683 

during sexual development with adult frog gonadal status months or years later.  684 

Nevertheless, compelling evidence from laboratory and mesocosms studies of 685 

feminizing or masculinizing effects in frogs by many environmentally relevant chemicals 686 

(such as pharmaceuticals, organic persistent pollutants (PCBs, PBDEs, BPA, PFOS) 687 

pesticides and chemical mixtures among others) have been elegantly summarized 688 

(Orton and Tyler 2015; Slaby et al., 2019).  Many of these compounds are not directly 689 

relevant to agricultural practices but serve to demonstrate that sex differentiation 690 

processes are sensitive to  a range of EDCs. For example, finasteride (5-alpha 691 

reductase inhibitor, the enzyme that converts T to DHT) was found to induce feminizing 692 

effects, while the aromatase inhibitors flavone (MacKenzie et al., 2003) and fadrozole 693 

(Duarte-Guterman et al., 2009) induce masculinization. Therefore, it has been 694 

demonstrated that exposure to synthetic steroids or chemicals can affect steroid 695 

biosynthesis and disrupt gonadal differentiation in anurans. 696 
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Many pesticides alone or combined in mixtures have the ability to act as 697 

androgen receptor (AR) antagonists in vitro and in vivo (Orton et al., 2011; 2012).  698 

Feminizing effects has been observed in S. tropicalis metamorphs exposed to 9 µg/L of 699 

linuron (Orton et al., 2018). The authors conclude that a disruption in the ar/foxl2 700 

signaling during gonadal differentiation could be responsible of the observed feminized 701 

sex ratio. A comparative toxicogenomics database analysis using transcriptomic 702 

datasets suggested that phenylurea herbicides, such as linuron and diuron, exert similar 703 

transcriptomic responses as the ones produced by reproductive hormones (Marlatt and 704 

Martyniuk 2017). In particular, linuron was found to affect transcripts related to steroid 705 

hormone biosynthesis and metabolism of xenobiotics by cytochrome P450, among 706 

others. Numerous studies have revealed effects leading to gonadal feminization caused 707 

by atrazine in many vertebrate species (Hayes et al. 2011); however, several 708 

researchers have failed to demonstrate anuran feminization (reviewed by Orton and 709 

Tyler, 2015). In addition to this controversy, the mode of action of atrazine remains 710 

unclear and needs to be elucidated. From one side, it was shown that it can perturb 711 

steroidogenesis in vitro in amphibian tissues (Goulet and Hontela, 2003; Orton et al., 712 

2009), overstimulate endogenous estrogen production (Crain et al., 1997; Sanderson et 713 

al., 2001), up-regulate of brain erα mRNA levels as well as disrupting of 5β-reductase 714 

activity which regulates androgen bioavailability by catalyzing the conversion of 715 

testosterone to 5β-dihydrotestosterone (Langlois et al., 2010). On the other hand, in 716 

vitro receptor binding assays failed to demonstrate that atrazine directly interact with 717 

either the estrogen or androgen receptors (Kojima et al., 2004; Orton et al., 2009) and 718 

does not alter aromatase activity in vivo (Rohr & McCoy, 2010).   719 
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Masculinizing effects in amphibians have also been observed by exposure to 720 

androgens and progestogens. Testosterone and trenbolone acetate (a synthetic 721 

androgen) are used as growth promotants (to increase muscle growth and appetite) in 722 

animal agriculture. Exposure to trenbolone acetate has been shown to masculinize P. 723 

nigromaculatus (Li et al., 2014) and S. tropicalis (Olmstead et al., 2012), accelerate 724 

Müllerian duct regression in X. laevis (Haselman et al., 2016), induce adverse effects on 725 

gonadal morphology and differentiation in X. laevis, Bufo viridis, and Hyla arborea 726 

(Rozenblut-Kościsty et al., 2019). Although the reproductive effects of trenbolone 727 

acetate have been reported,  cellular and molecular mechanism of action remains 728 

unknown.  729 

A very recent study has shown alterations of gonadal development and the 730 

synthesis of endogenous hormones in adolescent mice. This study demonstrates a 731 

decrease of serum testosterone levels in mice after trenbolone exposure together with 732 

the downregulation of the expression of three genes (3b-HSD, P450scc and Cyp17a1) 733 

involved in steroidogenesis (Zhang S et al., 2019). Progesterone (P4) and its synthetic 734 

analogue, melengestrol acetate, a veterinary pharmaceutical used to suppress estrus 735 

and promote growth in cattle (Orlando and Ellerstad, 2014), were shown to alter 736 

expression of sex-steroid-related genes in S. tropicalis embryos (Thomson and 737 

Langlois, 2018).  Relatively high concentrations of P4 have been implicated in male-738 

biased sex ratios in amphibians (reviewed in Hayes, 1998). The mechanism of 739 

androgenic action is possibly through the AR, following biotransformation of P4 to an 740 

androgenic steroid (Lutz et al., 2001); however, further investigation is required to 741 

confirm this hypothesis.  742 
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Masculinizing effects can be induced not only directly by interacting with ARs, but 743 

also indirectly by blockade of estrogen synthesis through aromatase inhibition. For 744 

example, when the irreversible aromatase inhibitor 4-hydroxyandrostenedione (4-OHA) 745 

was implanted intraperitoneally into L. catesbeianus tadpoles, gonadal abnormalities at 746 

the histological level were observed (Yu et al., 1993). These included degenerating 747 

ovaries with regressed oocytes (4 %), intersex (17 %), and full differentiation into testes 748 

(79 %). Moreover, these gonadal alterations were accompanied by decreased E2 and 749 

increased T secretions (Yu et al., 1993). Agrochemicals may exert adverse effects in 750 

amphibians by acting through similar mechanisms. For example, the acaracide 751 

azocyclotin may have both androgenic and anti-estrogenic action in X. laevis (Li et al., 752 

2017). Tadpoles exposed chronically (4 months) to 0.05 - 0.5 ug/L exhibited a male-753 

biased sex-ratio, increased T and pregnenolone levels, hermaphroditic gonadal 754 

development, and altered gene expression of steroidogenic enzymes (cyp17 and 755 

aromatase). Another example can be found in R. temporaria in which waterborne 756 

exposures from hatch to metamorphosis to the fungicide and aromatase inhibitor 757 

prochloraz (115 and 251 μg/L) significantly increased the proportion of histological 758 

males (80-85.7 %) and hermaphrodites in the final population (Brande‐Lavridsen et al., 759 

2008).  760 

Levonorgestrel (LNG) is a contraceptive progesstagen not usually associated 761 

with agriculture, but  may be  applied to  fields  through  human sewage applications 762 

(Tang et al., 2012), and can serve here as a model progestagen.  So far, no effects on 763 

sex ratios have been observed by exposures to LNG during tadpole development in X. 764 

laevis and S. tropicalis (Kvarnryd et al 2011, Lorenz et al 2011, Säfholm et al 2016). 765 
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However, effects on ovarian and oviductal development were observed in adults, 766 

demonstrating that developmental exposures can have long-term effects (Kvarnryd et al 767 

2011). These long-term effects seem to be mediated by perturbations in the anti-768 

mullerian hormone and progesterone signalling since LNG exposures altered amh, 769 

amhr2, ipgr and mpgr beta mRNA levels in a concentration-, sex- and developmental 770 

stage-specific manner (Säfholm et al 2016). Given that synthetiv proestagens can affect 771 

development, it will be important to screen agrichemicals for progesterone-like activities 772 

in amphibians.  773 

Amphibians have divergent patterns of sex determination, sexual differentiation, 774 

and development, and therefore, variable responsiveness to hormones and EDCs.  The 775 

degree of sensitivity a species has to a particular contaminant must be considered when 776 

assessing the toxicity of a compound. Piprek et al. (2012) classified amphibians into two 777 

categories: highly sensitive and less sensitive species. Rank sensitivities depends not 778 

only on the species being studied, but also on the type of EDC being tested (Bridges 779 

and Semlitsch, 2000). Another important factor to be considered is the different 780 

sensitivities of tadpole life stages (Hogan et al., 2008), indicating that prior to any 781 

comparative study, windows of exposure sensitivity assessments are required. 782 

Comparative studies have examined the spectrum of amphibian sensitivities to sex 783 

steroids and EDCs at both the family and population level. L. pipiens has been reported 784 

to be more susceptible to sex reversal and to develop intersex gonads than L. sylvaticus 785 

(Mackenzie et al., 2003). However, L. sylvaticus appeared to be more sensitive than L. 786 

pipiens when developmental endpoints, such as mortality and body size were examined 787 

following similar estrogenic exposures (Hogan et al., 2006). When sex ratios and 788 
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gonadal histology were assessed in three frog species (H. arborea, B. viridis and X. 789 

laevis) exposed to bisphenol A (BPA), the intensity of these effects varied across the 790 

three families (Hylidae, Bufonidae and Pipidae) (Tamschick, 2016; Tamschick et al., 791 

2016). There may be some relevance of BPA to agriculture, as in some cases, human 792 

sewage is being applied to fields as fertilizer, and thus BPA has been detected in 793 

agricultural soils (Zhang Z et al., 2015). Another pollutant of concern are polychlorinated 794 

biphenyls (PCBs) that have been associated with the use of organic waste as fertilizers 795 

in agricultural soils in some countries (Antolín-Rodríguez et el., 2016). A study that 796 

assessed effects of PCBs on X. laevis found that there was no effect of PCB3 and 797 

PCB5 on the proportion of females, but they observed a reduction of males with 798 

morphologically normal testes (Qin et al., 2003). Compared to L. clamitans, L. pipiens 799 

tadpoles were found to have lower hatching success and survival with higher incidences 800 

of edema when exposed to PCBs (Rosenshield et al., 1999). These results suggest that 801 

different species sensitivity related to sex differentiation might exist for this compound. 802 

Further evidence in X. laevis supports variations among population responsiveness 803 

when sex ratios were evaluated following E2 exposure (Luong, 2016). In this regard, 804 

Orton and Routledge (2011) studied differences in growth, metamorphic development, 805 

and sexual differentiation in eggs from Bufo bufo (common toad) collected from sites 806 

with different agricultural intensity activities. Their results suggested that maternal 807 

exposures and/or in ovo events could have more influence on this developmental 808 

process than the tadpole rearing environment. For that reason, they concluded that 809 

traditional exposure scenarios (starting at the larval stage) could be missing crucial 810 

developmental windows to assess amphibian sensitivity to pollutants. 811 
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One of the challenges to assess the effects of agrochemicals in aquatic 812 

organisms is that in most cases, the manufacturers do not provide the information on 813 

the full composition of formulations and that the same active compound can be 814 

manufactured under different names and by different companies. A clear example is the 815 

glyphosate-based herbicides. For example, a study carried out using glyphosate-based 816 

herbicides containing POEA as the surfactant (Roundup Original® and Roundup 817 

Transorb® formulations) revealed the presence of gonadal abnormalities in L. pipiens, 818 

but no effects were observed when glyphosate was tested alone (Howe et al., 2004). 819 

However, no observed effects in sex ratios or gonadal abnormalities were observed in 820 

L. sylvaticus exposed to VisionMax® under chronic laboratory conditions or to Roundup 821 

WeatherMax® under environmental pulse laboratory and field conditions (Lanctôt et al., 822 

2013, 2014, Navarro-Martín et al., 2014). 823 

5. Disruption of anuran vocalization 824 

Vocalization is the main form of communication in anurans, conveying 825 

information on identity, location, and quality. Vocalization is sexually dimorphic, with 826 

males producing advertisement calls to attract females for mating. As such, vocalization 827 

is influenced by both inter- and intra-sexual selection.  828 

Androgens play an important role in male courtship and reproduction (Figure 1). 829 

Amplexus, the mating position of anurans, occurs when a male clasps a female to 830 

externally fertilize the eggs. In X. laevis, amplexus and vocalization can both be induced 831 

by human chorionic gonadotropin (hCG), an analog of luteinizing hormone which 832 

triggers gonadal steroid production. In castrated adult males, hCG no longer promotes 833 

calling. However, exogenous testosterone and dihydrotesterone both restore calling, 834 
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and laryngeal muscles are dense in AR, suggesting that the behavior is dependent on 835 

testicular androgens (Wetzel and Kelley 1983). Calling was also inhibited by castration 836 

and restored with exogenous androgens in several other species such as Hyla cinerea 837 

(green tree frog; Burmeister and Wilczynski 2001). In L.  pipiens, amplexus and 838 

vocalization were induced in intact males with pituitary implants, inhibited in castrates, 839 

and restored with testicular implants (Palka and Gorbman 1973).  840 

Atrazine has been associated with feminization in frogs. Male X. laevis exposed 841 

to atrazine from embryo to adult had lower plasma testosterone levels than controls, 842 

and were out-competed by controls when attempting to mate with females. They also 843 

displayed female-like morphology, including changes in larynx structure, vocalization 844 

quality was not assessed (Hayes, Khoury et al., 2010). Vinclozolin, a commonly used 845 

fungicide with anti-androgenic effects, affected songs of X. laevis. Exposed males 846 

experienced a decrease in advertisement calls and an increase in types of call 847 

indicating sexual non-receptivity (Hoffmann and Kloas 2010). A recent metabolomic 848 

study found that Limnodynastes peronei (striped marsh frog) larvae exposed to atrazine 849 

presented alterations in steroidogenesis and cholesterol metabolism and suggested that 850 

detected changes in formic acid could be related to alterations in the steroidogenic 851 

conversion of androgens into estrogens (Melvin et al., 2018).  Exposure to flutamide, a 852 

model compound for anti-androgenicity, also reduced advertisement calls (Behrends et 853 

al. 2010). As expected, opposite effects were produced with the potent androgen 854 

agonist methyl-dihydrotestosterone (MDTH; Hoffmann and Kloas 2012a). This 855 

androgen is used in fish aquaculture, so there is a possibility for amphibian exposures 856 

to occur because of. water watse disposal.   The DDT metabolite DDE was found to 857 
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provoke both anti-androgenic-like effects, such as a decrease production of 858 

advertisement calls, and estrogenic-like effects, denoted by an increased amount of 859 

rasping and a slightly higher bandwidth (Hoffmann and Kloas 2016). This duality was 860 

found to be concentration-dependent with lower DDE concentrations  (10−11 M) resulting 861 

in estrogen-specific responses, while higher concentrations (10−9 M) affected producing 862 

anti-androgenic responses.   863 

Androgens also contribute to the development of sexually dimorphic calls. 864 

Gonadectomized juvenile X. laevis of both sexes given testicular implants produce male 865 

advertisement calls as adults, but only if the frogs received the implant at <6 months 866 

old, suggesting a critical period. This is likely related to sexually dimorphic vocal organs, 867 

which has been extensively described in X. laevis. Nerves in male laryngeal muscles 868 

are able to contract and relax more quickly than in females, allowing the production of 869 

rapid trills that make up the advertisement calls. Males also have more fast-twitch fibers, 870 

while females have more slow-twitch. The surge in THs during metamorphosis is 871 

required for the larynx to become androgen-sensitive (Cohen and Kelley 1996; 872 

Robertson and Kelley, 1996).  As thyroid disruption has been well-studied in tadpoles 873 

and juvenile frogs, effects on adult laryngeal biomechanisms and ability to vocalize as 874 

adults could be a future area of research. Since atrazine can feminize larynx 875 

morphology in adult male frogs (Hayes, Khoury et al. 2010), sound quality is likely to be 876 

disrupted. 877 

Estrogens can also affect vocal communication. Pharamceutical estrogens enter 878 

water through use of contraceptives, but livestock waste is also a major source of 879 

estradiol, estrone, and estriol (Hanselman et al., 2003). In male X. laevis exposed to 880 
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17α-ethinylestradiol (EE2), total calling duration was not affected, but a lower proportion 881 

of the calls were advertisement calls, which also had fewer clicks. They also produced 882 

more rasping calls, indicating a sexually unreceptive state (Hoffmann and Kloas 2012b). 883 

The effects of EE2 were reversed by co-exposure to either tamoxifen or fluverstrant, 884 

both pharmaceutical anti-estrogens (Hoffmann and Kloas 2012c). Estrogens had 885 

contrasting effects in the Western clawed frog (S. tropicalis); exposure to estradiol and 886 

4-tert octylphenol increased the number of calls from males (Schwendiman and Propper 887 

2012). This may be due to species differences, or how data was collected. Behaviors 888 

were noted by an observer rather than recorded with microphones, which is difficult to 889 

do so accurately as calls are underwater. Duration and type of call was also not 890 

evaluated in this study.  891 

As males produce mating calls, females respond with phonotaxis, or movement 892 

relative to acoustic stimuli. Playback experiments have demonstrated hormone-893 

dependent phonotaxis towards conspecific calls. In Engystomops pustulosus (tungara 894 

frogs), injections of hCG led to a dose-dependent increase in plasma E2, as well as 895 

increasing phonotactic response to male calls. Phonotaxis could also be induced with 896 

exogenous E2 alone, and co-injection of E2 and P4 (Chakraborty and Burmeister 2009). 897 

Exposure to recordings of male choruses also increased plasma E2, demonstrating the 898 

physiological importance of E2  (Lynch and Wilczynski 2006). 899 

Phonotaxis has been poorly studied in the context of endocrine disruption. Direct 900 

disruption was tested with female X. laevis exposed to the androgen agonist MDHT. 901 

Exposed female frogs showed a slightly stronger phonotactic response, although the 902 

effect was only significant at one dose on two of four days tested (Hoffmann and Kloas 903 
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2012a). Indirect endocrine disruption was tested with X. laevis using playbacks of males 904 

exposed to EE2 and females preferred calls from control males over exposed 905 

(Hoffmann and Kloas 2012b). In both these cases, phonotaxis was measured as time 906 

spent near the speaker, which may or may not be due to attraction to the sound, and 907 

the effect sizes were small. Since E2 is able to induce phonotaxis, effects of other (anti)-908 

estrogenic compounds on phonotaxis should be examined. While estrogenic 909 

compounds may increase phonotactic response, preference and selectivity may be 910 

affected. Using established attractive and unattractive playbacks for E. pustulosus 911 

female choosiness was found to decrease as receptivity (latency to approach) 912 

increased. The less selective frogs were also closer to egg-laying (Lynch et al. 2005).  913 

Mate choice is conditional, and a large body of evidence shows that higher quality 914 

females show a stronger preference for attractive traits in males (Cotton et al., 2006). 915 

For example, larger female Hyperolius marmoratus (African reed frogs) show a stronger 916 

preference for low-pitched male calls (Jennions et al., 1995). Female crickets on a high-917 

quality diet show stronger preference for high call rate and responded faster to 918 

playbacks with typically preferred features (Hunt et al.,  2005). Therefore, negative 919 

effects of EDCs on stress and overall health may further disrupt mate choice.  920 

Behavioural effects of endocrine disruption have not been as well-studied 921 

compared to other endpoints. While underused, behaviour can be an effective indicator 922 

as it is the output of integrating neural, endocrine, anatomical, and physiological 923 

responses to EDCs. Measurement of behavioural endpoints have the practical 924 

advantage of being non-lethal, allowing for repeated measures and long-term studies. 925 

Methods should be standardized, especially for more cryptic and subjective behaviors 926 
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like phonotaxis. However, vocalization is much more obvious and can be a particularly 927 

easy and cost-effective endpoint to measure. Previous studies have largely analyzed 928 

acoustic waveforms manually, however the process could be automated for higher 929 

throughput and accuracy.  930 

 931 

6. Conclusions and future directions 932 

 Evidence suggests that many classes of agrochemicals, including fertilizers, 933 

fungicides, insecticides, acaricides, herbicides, metals, and mixtures negatively affect 934 

endocrine signaling in amphibians. In most cases, there is very little known about the 935 

mechanisms of actions of these chemicals to lead to adverse outcomes in development, 936 

growth, metabolism and reproduction. In numerous cases, investigators observe effects 937 

on gene expression endpoints targeting specific endocrine pathways, but it is unclear if 938 

these are linked to the apical responses, or the result of the downstream effect on 939 

metamorphosis, sexual development, or some other phenotype observed.   940 

Thyroidal physiology is essential to development and metamorphosis in anurans, 941 

however, the underlying molecular pathways involved in disruption of growth and 942 

metamorphosis in amphibians have rarely been assessed using sensitive analytical 943 

tools. Given that the general plan of hypthalamo-pituitary control of endocrine 944 

physiology is known (Fig, 1), is it surprising that few studies have attempted to quantify 945 

effects at the brain and pituitary. Future investigations should further categorize 946 

compounds implicated in the alterations of metamorphic rate through analysis of 947 

molecular endpoints (e.g., gene expression of TH-responsive genes). A confounding 948 

factor when assessing EDCs of the HPT axis is that compounds may induce 949 
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developmental stage-dependent differential effects, so experimental designs that 950 

employ exposures at multiple life history stages are of paramount importance. 951 

Moreover, there are few examples of studies assessing the effects of agrochemicals on 952 

TH levels. There are numerous reasons for this.  Firstly, synthesis, interconversion and 953 

metabolism of THs by the DIOs is complex and difficult both to assess and interpret. 954 

The lack of specificity, bias and imprecision are analytical problems associated with 955 

many extraction methods and assays previously utilized for the determination THs. 956 

Emerging methods such as ultrahigh-performance liquid chromatography coupled to 957 

tandem mass spectrometry that are optimized for amphibians (Luna et al., 2013; 958 

Hornung et al., 2015; Hansen et al., 2016) will be essential to comprehensive analysis 959 

of thyroid disruption.  960 

Many of the agrochemicals lead to disruption of sexual development, including 961 

sex reversal. Additionally, more recent data indicate that metabolic disruption may 962 

impact reproductive success in subsequent generations. Maternal transfer of chemicals 963 

and epigenetic inheritance of potential effects should be investigated in amphibian 964 

models. Emerging evidence indicates significant cross-talk between the thyroid and 965 

reproductive axes, yet few studies have attempted to determine the consequential 966 

effects of disruption of one on the other.  Certain chemicals (e.g., atrazine) have been 967 

implicated as EDCs of the thyroid, reproductive, and interrenal axes. In contrast, the 968 

apparent lack of pleiotropic effects by others (e.g., acetochlor), represents an important 969 

gap in our knowledge of cross-talk. Therefore, targeted investigations to characterize 970 

the cellular and molecular basis of interactions between endocrine axes are required 971 

and would contribute significantly to our understanding of neuroendocrine disruption 972 
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processes (Rosenfeld et al., 2017). Future studies must target the molecular pathways 973 

underlying sex reversal in tadpoles, and additionally, the consequences for reproductive 974 

success. Although sexual differentiation in amphibians is determined genetically, it is 975 

highly plastic where sex steroids, environmental factors, or contaminants may interact to 976 

affect developmental outcomes. Cause-and-effect studies are clearly lacking. For 977 

example, that an estrogenic or antiandrogenic agrochemical can affect sex ratios is 978 

suggestive of steroid-mediated disruption, but if that effect was blocked by a known 979 

receptor antagonist, it would be strong evidence that indeed the agrochemical was 980 

acting via nuclear estrogen or androgen receptor signaling. Given that there are also 981 

important differences in the responses of the various taxa and species, it is therefore 982 

critical that future studies be designed to determine the mechanisms of action of 983 

agrochemicals in Amphibia.  984 

Many investigations to date have focused on single-agrochemical exposures. 985 

Considering that agrochemicals are present in the environment in complex mixtures, 986 

there is a relative lack of data examining the effects of environmentally relevant 987 

mixtures. It is therefore pertinent to evaluate the potential interactive effects of 988 

agrochemicals on amphibian health at the cellular and molecular levels. Field studies 989 

are very informative of the state of amphibian populations; however, it is challenging to 990 

establish causality between the exposure scenarios and the observed phenotypes in 991 

agricultural field settings, since there are many confounding variables. Therefore, we 992 

suggest that laboratory studies be designed in collaboration with field biologists, thus 993 

that mechanisms of action of agrochemicals can be established under more relevant 994 

scenarios.  995 
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In the broader context, several authors have attempted to link exposure 996 

to pollutants, including agrochemicals, to amphibian population declines (Hayes, Falso 997 

et al., 2010; Orton and Tyler 2015). On the global scale, population declines are unlikely 998 

to be linked to a single agrochemical, or even a single class of compounds. On the 999 

other hand, it is clear that numerous agrochemicals, alone and in mixtures, have 1000 

multiple actions to disrupt development, metabolism, stress,  and reproduction.  Some 1001 

agrochemicals result in detrimental effects in the descendant generation. There is thus 1002 

the potential for major effects on the physiology of amphibian species. That many 1003 

populations of amphibians are exposed to agrochemicals in addition to being subjected 1004 

to other ecosystem threats, such as habitat loss and climate change, indicates that 1005 

future research must attempt to address both cellular and molecular mechanisms of 1006 

endocrine disruption under multiple stressor scenarios in this class of vertebrates.   1007 
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Captions for table and figures 1020 

 1021 

TABLE 1. Summary of major endocrine-disrupting effects of agricultural fungicide, 1022 

herbicides,  fertilizers and metals in select amphibian species/. Please note that. This 1023 

table serves to illustrate the range of effects and species. Studies and other key 1024 

examples can be found in the relevant sections of the main text.   1025 

 1026 

FIGURE 1. Hormonal control system in anurans.  1027 

Corticotropin-releasing factor (CRF) is a dual function neuropeptide (thick black arrows 1028 

and associated pathways) in anurans. The CRF is secreted from hypothalamic nerve 1029 

terminals in the median eminence and transported to the pituitary to trigger synthesis 1030 

and release of thyroid stimulating hormone (TSH) from the pituitary gland. In turn, TSH 1031 

stimulates the development of the thyroid, leading to initial synthesis and release of 1032 

THs. It is principally T3 that drives the positive autoregulation of the TH receptors to 1033 

induce metamorphosis-related genes and to reduce the expression of growth-related 1034 

genes. The CRF system is better known for the neuroendocrine regulation of the stress 1035 

axis. It stimulated the synthesis and release of adrenocorticotropic hormone (ACTH) 1036 

from the pituitary, which in turn, stimulates corticosterone (CORT) from the 1037 

steroidogenic cells of the interrenal (amphibian equivalent to mammalian adrenal cortex 1038 

embedded within the kidney complex). Corticosteroids negatively feedback at the level 1039 

of CRF and ACTH to attenuate glucocorticoid synthesis. Corticosterone is the main 1040 

adrenal steroid in amphibians. While CORT does not drive metamorphosis alone, it can 1041 

potentiate the actions of THs to accelerate the process. The tripeptide thyrotropin-1042 

releasing hormone (TRH) was originally named for that action because of its role in 1043 

mammals. In anurans, it does not effectively stimulate TSH. On the other hand, it 1044 

stimulates prolactin (PRL) and growth hormone (GH; grey arrows and associated 1045 

pathways) to promote tadpole growth. Both PRL and GH can negatively regulating 1046 

several metamorphic processes.   Growth hormone-regulated hepatic insulin-like growth 1047 

factor (IGF) production and IGFs (thin dashed arrow) regulate numerous growth-related 1048 

processes, and potentially aspects of metamorphosis. Pancreatic hormones, such as 1049 

insulin (INS), are important for many aspects of growth, metabolism, and 1050 

metamorphosis (thin black arrows and associated pathways). Recent data indicate that 1051 

the pancreas is also a target for endocrine disruption. Metabolic disruption can also lead 1052 

to reduced reproduction. While often not considered along with the thyroid axis, there is  1053 

accumulating evidence indicating important  1054 

regulation of the thyroid and reproductive axes (shown by the X; see also Flood et al. 1055 

2013 and Duarte-Guterman et al., 2014). The principal stimulatory neuropeptide 1056 

gonadotropin-releasing hormone (GnRH) stimulates the pituitary synthesize the 1057 

gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) (hatched 1058 

arrows and associated pathways). The gonadotropins stimulate development of the 1059 

ovaries and testes, and drive steroidogenesis. These include progesterone (P4), 1060 

testosterone (T), 5α-dihydrotestosterone (5α-DHT), and estradiol (E2) (see Vu and 1061 
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Trudeau, 2016). The THs can  regulate numerous systems within the hypothalamo-1062 

pituitary-gonadal axis to affect sexual development in tadpoles, or reproductive 1063 

processes in adults. Similarly, the sex steroids can impact the thyroid- and growth 1064 

systems to modulate metamorphosis. Note that feedback regulation at the 1065 

hypothalamus and pituitary by THs, CORT, and sex steroids exists, but is not depicted 1066 

on the figure. For further details, refer to documented actions of endocrine disrupting 1067 

chemicals in the main text. 1068 

 1069 

  1070 
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Chemical Species Exposure Effects Reference 

Fungicides 
    

Triphenyltin L. sylvaticus 
100 days at 

0.1 – 1 μg/L 
Upregulated lipid metabolism. 

Higley et al., 

2013 

Triclosan S. tropicalis 
1 yr at 200 

ng/L 
Disrupted energy metabolism. 

Regnault et 

al., 2018 

Triadimefon 
P. 

nigromaculatus 

28 days at 26 

mg/L 

Reduced metamorphic rate. 

Upregulated tshβ, dio2, trβ, dio2, 

matrix metalloproteinase 2, 

TH/bZIP, and sonic hedgehog. 

Zhang W et 

al., 2018 

Vinclozolin X. laevis 

4 days at 28.6 

ng/L – 286 

μg/L 

Reduced advertisement calling. 

Increased rasping (unreceptive 

call). Altered acoustic properties. 

Hoffmann & 

Kloas, 2010 

Herbicides     

Atrazine 

X. laevis  
NF 47-62 at 

400 μg/L 
Disrupted energy metabolism. 

Zaya et al., 

2011 

L. pipiens 
GS 25-42 at 

1.6–3.7 µg/L 

Downregulated dio3. Reduced 

metamorphic success. 

Langlois et 

al., 2010 

L. pipiens  
GS 27-42 at 

1.6–3.7 µg/L 
Female-biased sex ratio. 

Langlois et 

al., 2010 

L. pipiens 

GS 23-

metamorphic 

climax at 0.1-

25 ppb 

Female-biased sex ratio, gonadal 

dysgenesis. 

Hayes et al., 

2003 

Glyphosate-

based 

(VisionMax®) 

L. sylvaticus 
GS 25-42 at 

2.9 mg a.e./L 

Reduced metamorphic rate. 

Downregulated dio2. Upregulated 

trβ dio2, dio3, trβ, and grII. 

Navarro-

Martín et al., 

2014 

Glyphosate-

based 

(WeatherMax®) 

L. sylvaticus 
GS 6-37 at 

2.9 mg a.e./L 
Downregulated trβ. 

Lanctot et al., 

2013 

Linuron S. tropicalis,  

Embryo to NF 

stage 40 at 9 

µg/L 

Female-biased sex ratio. 
Orton et al., 

2018 



Fertilizers and Metals    

Nitrate B. gargarizans 

GS 26-
metamorphic 
climax at 100 
mg/L 

Reduced metamorphic rate. 
Partial colloid depletion. 
Reduced T3 and T4 levels. 
Downregulated dio2. 
Upregulated dio3. 

Wang et al., 
2015 

Lead B. gargarizans 
GS 26-42 at 
50 - 1000 
µg/L 

Follicular hyperplasia and colloid 
depletion.  
50 µg/L: Increased metamorphic 
rate. Upregulated dio2, trα, and trβ. 
Downregulated dio3.  
1000 µg/L: Decreased 
metamorphic rate. Downregulated 
↓ dio2, trα and trβ. Upregulated 
dio3. 

Yang et al., 
2019 

Other pesticides 
   

Azocyclotin X. laevis 
21 d at 0.1-
0.5 µg/L 

Reduced metamorphic rate and T3 
level. 
Downregulated dio2, trβ, bteb, 
matrix metalloproteinase 2, 
stromelysin-3. 

Li et al., 2016 

DDE 
(metabolite of 
DDT) 

X. laevis 
4 days at 
3.18-318 ng/L 

Reduced advertisement calling, 
increased rasping (unreceptive 
call). 

Hoffmann & 
Kloas, 2016 
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