
HAL Id: hal-04832783
https://hal.science/hal-04832783v1

Submitted on 12 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Computing e -th roots in number fields
Olivier Bernard, Pierre-Alain Fouque, Andrea Lesavourey

To cite this version:
Olivier Bernard, Pierre-Alain Fouque, Andrea Lesavourey. Computing e -th roots in number fields.
ALENEX 2024 - SIAM Symposium on Algorithm Engineering and Experiments, Jan 2024, Alexandria,
United States. pp.207-219, �10.1137/1.9781611977929.16�. �hal-04832783�

https://hal.science/hal-04832783v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Computing e-th roots in number fields
Olivier Bernard

olivier.bernard@normalesup.org

Zama

Paris, France

Pierre-Alain Fouque

pierre-alain.fouque@irisa.fr

Univ Rennes, IRISA

Rennes, France

Andrea Lesavourey

andrea.lesavourey@irisa.fr

Univ Rennes, CNRS, IRISA

Rennes, France

ABSTRACT
We describe several algorithms for computing e-th roots of elements

in a number field K , where e is an odd prime integer. In particu-

lar we generalize Couveignes’ and Thomé’s algorithms originally

designed to compute square-roots in the Number Field Sieve algo-

rithm for integer factorization. Our algorithms cover most cases

of e and K and allow to obtain reasonable timings even for large

degree number fields and large exponents e . The complexity of our

algorithms is better than general root finding algorithms and our

implementation compared well in performance to these algorithms

implemented in well-known computer algebra softwares. One im-

portant application of our algorithms is to compute the saturation

phase in the Twisted-PHS algorithm for computing the Ideal-SVP

problem over cyclotomic fields in post-quantum cryptography.

KEYWORDS
Roots, Number fields, CRT, p-adic lifting, Couveignes

1 INTRODUCTION
Computing roots of elements is an important step when solving

various tasks in computational number theory. It arises for example

during the final step of the General Number Field Sieve [9, 12]

(NFS). This problem also intervenes during saturation processes

while computing the class group or S-units of a number field [7].

Recently, such computations were found to be important to study

the Ideal-SVP problem used in Lattice-based Cryptography [4].

Generally speaking, elements are given in a “factored” form,

meaning that an element y for which a root needs to be computed

is given as a product of relatively small elements y =
∏r

i=1 u
ei
i .

Note that the two contexts mentioned previously are somewhat

orthogonal ones to each other. Indeed, for the NFS, the length r of
the product is very large while the degree of the number field is

typically small, about 10, and one needs to compute square roots

(e = 2). In saturation processes, such as the ones we are interested

in (see [4] for practical cases), r is typically a few times the de-

gree of the field, which is potentially large, say between 100 and

200. Moreover the exponent e may be very large as well, 90 bits.

Thus, most strategies to compute an e-th root developed in the NFS

context become intractable in this setting if not carefully adapted.

Our contributions
In this article, we explain how to efficiently compute an e-th root

of an element y ∈ K , where K is a number field and e is an odd

The authors would like to thank Dr. Razvan Barbulescu and Dr. Aurel Page for suggest-

ing using Schirokauer maps to detect huge e-th powers. The authors would also like

to thank the anonymous reviewers for their interesting and useful comments. Most

of this work was done while Olivier Bernard was employed by Thales, Gennevilliers,

France. Andrea Lesavourey is funded by the Direction Générale de l’Armement (Pôle

de Recherche CYBER), with the support of Région Bretagne.

prime power. We aim at designing a workable method for large
exponents e and dimension [K : Q] for all cases.

• When K and e are such that there exist infinitely many prime

integers p such that ∀p | p, pfp . 1 mod e (condition (∗)),

we reconstruct x from

(
x mod p1, . . . , x mod pk

)
using the

Chinese Remainder Theorem (CRT), where each (x mod pi)
is itself computed through a CRT procedure on prime ideals

of K . We call this generalisation of Thomé’s square-roots

algorithm [24] the Double-CRT (Algorithms 2 and 3).

• Generically, we can use p-adic lifting when there is an inert

prime, or the p-adic reconstruction of Belabas [3]. Both use

a Hensel’s lifting, that we adapt to compute e-th roots while

avoiding inverse computations in §3 (see Algorithm 1). While

both methods work for any e , inert primes do not always exist

and p-adic reconstruction scales poorly with the dimension

of K . However, sometimes they can be very useful and we

indeed use them in our last recursive algorithm.

• When good conditions on K and e are not satisfied, we show
how one can adapt Couveignes’ approach for square roots [12]

to relative extensions of number fields K/L, provided [K :

L] is coprime to e and sufficiently many prime integers p
verify that each prime ideal p of OL above p is inert in K .
We then turn this strategy into a recursive procedure, calling

the previous algorithms until the smallest possible subfield is

reached (Algorithms 4 and 5).

This leads to the following global strategy to compute an e-th root

of an element y ∈ K , which we use in our implementation:

(1) if condition (∗) is satisfied, use the Double-CRT (Algorithm 3);

(2) else, if inert primes exist in K , use a p-adic lifting (see §3.1);
(3) otherwise, try to use the relative Couveignes’ strategy, going

back to step (2) for computing an e-th root of NK/L(y) in L;
(4) finally, resort to the p-adic reconstruction given in §3.2.

Experimental results
We ran experiments to evaluate the performances of our algorithms

when compared to standard methods and implementations, espe-

cially Pari/Gp nfroots. We focused on cyclotomic fields, as they are

the main fields used in our application domain, i.e., lattice-based

cryptography, but our algorithms extend to other number fields

in most cases. All of our implementations are done using Sage-

Math [20] with few optimisations. Meanwhile, we compare with

Pari/Gp, and still achieve several orders of performance (between

10 to 10000+ when n and e increase). Thus, our timings could be

further improved with an optimised C implementations. All our

codes are freely available at https://github.com/ob3rnard/eth-roots.

Over “good” cases, our CRT generalisation algorithm is clearly

more efficient than Pari/Gp nfroots, see e.g. Figure 1, and the gap

explodes when the exponent e increases. Our algorithm scale well

https://orcid.org/0000-0002-3410-3134
https://orcid.org/0000-0002-3410-3134
https://orcid.org/0000-0003-4997-2276
https://orcid.org/0000-0003-4997-2276
https://orcid.org/0000-0001-8318-4922
https://orcid.org/0000-0001-8318-4922
https://github.com/ob3rnard/eth-roots

Olivier Bernard , Pierre-Alain Fouque , and Andrea Lesavourey

and we can use it without any problems for e of 94-bits prime

(see Table 1), which would be completely irrealistic for Pari/Gp.

Over “bad” cases, experiments show that our generalization

of Couveignes’ algorithm is also more efficient than Pari/Gp nf-
roots [19], see Figures 2 and 3. Our algorithm is always faster, and

the gap with nfroots becomes larger when e and n increase.

Finally, we tested our algorithms in a real-life situation, namely

saturating full-rank multiplicative sets of S-units arising from Stick-

elberger’s theorem using the code of [4], see §6, Table 1 and Figure 4.

Again, our implementation of our algorithms is more efficient than

Pari/Gp nfroots for all ranges of exponents or dimensions.

2 PRELIMINARIES
Let K = Q(α) be a number field defined by a monic irreducible

polynomial f ∈ Z[t] of degree n s.t. f (α) = 0. In this paper, we shall

suppose that we know a reasonable (e.g., LLL-reduced) basis (ωi)
of some order Z[α] ⊆ O ⊆ OK and f0 ≥ 1 such that f0OK ⊂ O.

Complexities. We use the standard O(·) notation. Let us denote
by M(s) the complexity of multiplying two s-word integers, and by

M(d, s) the complexity of multiplying two polynomials of degree d
whose coefficients are taken modulo an s-word integer, i.e., using

fast arithmetic (see e.g., [15, Cor. 11.8 and 11.10]),

M(d, s) ≤ O(d logd loglogd · s log2 s loglog s).

2.1 Bounds on root coefficients
In all the methods of this paper, we need a bound on the coeffi-

cients of the seeked e-th root on the basis (ωi). Such bounds are

usually obtained by computing a lazy estimation of the inverse of a

Vandermonde-like matrix linking complex embeddings of elements

of K to their coefficients corresponding to (ωi).
More precisally, let Ω = (bi j) ∈ M(Q) be s.t. ωi =

∑
j bi jα

j−1
,

and Vα =
(
σj (α)

i−1)
the Vandermonde matrix corresponding to f .

For x =
∑
i ciωi , let C(x) = (ci) be the coefficient embedding of x

and Σ(x) = C(x) ·
(
ΩVα

)
be its canonical embedding to C.

Lemma 1. Define by ∥A∥∞ = maxj
∑
i |ai j | the infinity norm of a

matrix A, and let C∞ =

V −1α Ω−1

∞
. Then we have

∥C(x)∥∞ ≤ ∥Σ(x)∥∞ · C∞.

Proof. This is a direct adaptation of [3, Lem. 3.3] (see also [13,

Lem. 6]), noting that the given definition of the infinity norm for

matrices is equivalent to ∥A∥∞ = supy,0
(
∥yA∥∞ /∥y∥∞

)
. □

Hence, for any x ∈ K , the coefficient norm ∥C(x)∥ is only a

constant factor away from the usual norm ∥Σ(x)∥, and in practice

only a loose estimation of this factor is necessary. In particular,

for y ∈ (K∗)e , it is easy to evaluate the size of the (canonical)

embedding norm of its e-th root x as ln ∥Σ(x)∥∞ =
1

e ln ∥Σ(y)∥∞,
and Lemma 1 gives the intuition that generically, the coefficients

of x are roughly e times smaller than those of y, which holds well

in practice.

Moreover, in our particular case of interest, y is given in factored
form, i.e., there exist (ui)1≤i≤r ∈ K∗ and (ai)1≤i≤r ∈ ⟦0, e − 1⟧r
s.t. y =

∏
1≤i≤r u

ai
i . In this situation, the following lemma shows

that the size of the coefficients of x = y1/e does not depend on e ,
but only on the total size of the ui ’s.

Lemma 2. Let y =
∏

i u
ai
i be an element of (K∗)e in factored form

as above, and let x be such that y = xe . Then

ln ∥Σ(x)∥∞ <
∑
1≤i≤r ln ∥Σ(ui)∥∞ .

Proof. For any embedding σ , we have

ln|σ (x)| = 1

e · ln|σ (y)| =
1

e ·
∑
1≤i≤r ai ln|σ (ui)|.

As ai < e for all 1 ≤ i ≤ r , the lemma follows. □

This motivates the design of algorithms that never compute y
globally, which is absolutely crucial when e is very large.

2.2 Computing e-th roots in finite fields
Let Fq be a finite field of characteristic p > 2 with q = pd . For the
local-global methods of this paper, an important tool consists in

computing an e-th root in Fq , where e is given modulo q − 1.
Let y = xe in F∗q . If q . 1 mod e , then every element y is an e-th

power and we can simply compute x as ye
−1

mod (q−1)
. If q ≡ 1 mod

e , then we need to work in the subgroup of order (q − 1)/e of F∗q .

If q . 1 mod e2, we can again compute x as ye
−1

mod (q−1)/e
. Both

cases can be treated efficiently in O
(
logq ·M(d, logp)

)
operations.

In very rare cases, we will have no choice but to consider q ≡ 1

mod e2, thus we resort to the Adleman-Manders-Miller algorithm

[1, Th. IV], which is an adaptation of Tonnelli-Shanks algorithm to

the case e > 2, and has complexityO
(
(e logq+ log2 q) ·M(d, logp)

)
in the worst case. Alternatively, we can use generic factorisation

methods such as the Cantor-Zassenhaus algorithm [10, Alg. 3.4.6],

whose complexity inO
(
e2 log1+ϵ e log(qe) ·M(d, logp)

)
[22] might

be competitive for small e < logq.
For simplicity’s sake, we will denote by R(e,q) the complexity

of computing an e-th root in Fq in all cases.

3 GENERIC LOCAL-GLOBAL METHODS
In this section, we present two local-global methods that apply un-

conditionnally w.r.t. e , namely p-adic lifting (e.g., [24, §1.1]), and p-

adic reconstruction [3]. Both methods rely on a p-adic (resp. p-adic)
Newton iteration, or Hensel’s lift, that we tweak in the particular

case of e-th roots to avoid p-adic (resp. p-adic) inversions.
Despite their genericity, both methods have severe drawbacks.

The p-adic lifting relies on the existence of inert primes, which

rules out many families of number fields, e.g., cyclotomic fields of

composite conductors. The p-adic reconstruction does not scale

well as the degree of the number field grows, since it requires LLL-

reducing a possibly badly-skewed ideal lattice.

Nevertheless, the techniques developed here will be used as

a base case for our (recursive) relative Couveignes’ method §5.2,

which aims at reducing the dimension of the e-th root computation.

3.1 p-adic lifting
The classical p-adic lifting approach applies whenever there exist

inert prime ideals p in K . It relies on the fact that Kp , the p-adic
completion of K at p, is then a degree n = [K : Q] unramified

extension of Qp , and the morphism sending a root in K of the

defining polynomial f to a root of f in Kp is injective. Thus, a

sufficiently good approximation in Kp of the image of x ∈ K allows

us to retrieve directly the coefficients of x . This is done by means

of Newton iterations in Kp .

https://orcid.org/0000-0002-3410-3134
https://orcid.org/0000-0003-4997-2276
https://orcid.org/0000-0001-8318-4922

Computing e-th roots in number fields

Let h(z) = ze − y, with y = xe for some x ∈ K∗, and let p be

an inert prime of K with gcd(p, e) = 1. The Newton iteration for h
writes as follows. At each step i ≥ 0, suppose that we know a p-

adic approximation xi of x at precision k = 2
i
, i.e., xi = x +O(pk).

For i = 0, this approximation is found by usual methods in Fpn

(§2.2). Then, h(xi) = O(p
k) and an approximation xi+1 at precision

2k is obtained by computing the following iteration modulo p2k :

xi+1 = xi −
1

e ·
(
xi −

y
xe−1i

)
.

Let B > 0 be an upper bound on the coefficients of x , then this

iteration is performed κ =
⌈
log

2
max{1, logp 2B}

⌉
times. In partic-

ular, only the knowledge of y at precision p2
κ
is needed. This is

especially useful when e is large, since in that case the size of the

coefficients of x is roughly e times smaller than for y (see §2.1).

In practice, each iteration above requires an inverse computation.

For e = 2, a known trick to avoid this consists in first computing

the inverse square root, then using y1/2 = y ·y−1/2 [8, §2]. We adapt

this trick in our case by seeking first a root x of the polynomial

д(z) = ye−1ze − 1.

Then (y · x) verifies (yx)e = y · (ye−1xe) = y as expected. The

Newton iteration for д now writes without inverses as

xi+1 = xi −
1

e xi
(
ye−1xei − 1

)
. (1)

The complete p-adic lifting using this new iteration is summarized

in Algorithm 1.

Algorithm 1 p-adic lifting for e-th root

Require: y ∈ (K∗)e in factored form y =
∏

i u
ai
i , p an inert prime

in K with gcd(p, e) = 1.

Ensure: x ∈ K∗ such that y = xe .
1: Compute B s.t. ∥C(x)∥∞ ≤ B ▷ Using Lemmas 1 and 2

2: κ ← ⌈log
2
max{1, logp 2B}⌉

3: a ←
(∏

i u
ai
i
)e−1

mod p2
κ

▷ Reduce ui ’s first

4: x0 ← (a mod p)1/e in Fpn ≃
O⧸pO ▷ Using §2.2

5: for 0 ≤ i < κ do
6: xi+1 ← xi −

1

e xi
(
axei − 1

)
▷Work in O modulo p2

i+1

7: end for
8: x ← a · xκ mod p2

κ

9: return x with coefficients mapped in [−B,B]

Proposition 1. Algorithm 1 is correct, and runs in time at most
O
(
log e · (r + log s) ·M(n, s) + R(e,pn)

)
, where s is the total input

size, i.e., s = O
(∑

i log ∥Σ(ui)∥∞
)
.

Proof. Let x be a root of д(z) = ye−1ze − 1. At any stage i ≥ 0,

let xi be a p-adic approximation of x at precision k = 2
i
, i.e., x =

xi +O(p
k), and let εi = д(xi) = O(pk). We shall show that εi+1 =

д(xi+1) = O(p
2k), which implies correctness. Working modulo p2k ,

and plugging the Newton iteration formula for xi+1 into д, we get

εi+1 = y
e−1 (xi − 1

e xiд(xi)
)e
− 1 = ye−1

(
xi −

1

e xiεi
)e
− 1

= −1 + ye−1xei
(
1 − e 1e εi +O(ε

2

i)
)

= −1 + (εi + 1) − εi (εi + 1) +O
(
ε2i
)
= O

(
ε2i
)
= O

(
p2k

)
.

As for the complexity, note that, by Lemma 2, logB = O(s), thus

κ = O(log s). Computing the degreen polynomial (a mod p2
κ
) costs

at most O
(
r log e ·M(n, s)

)
using that ai < e , and all polynomials

(a mod p2
i
) for the loop can be iteratively deduced in negligible

O(nM(s) log s) time. Likewise, computing all (1/e mod p2
i
) costs

O(s log e log s). Computing (a mod p)1/e in Fpn costs R(e,pn) by
§2.2. Finally, using these values, each of the O(log s) Newton itera-

tions at precision k = 2
i
costs at most O

(
log e ·M(n,k logp)

)
for a

total of O
(
log e log s ·M(n, s)

)
. □

3.2 p-adic reconstruction
When the field K contains no inert primes, the above method can

still be used, for any unramified prime ideal p of inertia degree

f (p|p) < n, to obtain a p-adic approximation in Kp , the completion

of K at p, which is an unramified extension of Qp of degree f (p|p).
Starting from a low-precision e-th root in

OK⧸p ≃ Fp f (p|p) , Equa-
tion (1) allows for its lifting modulopa for any a. If a is large enough,
it is possible to reconstruct the root inK from thisp-adic embedding

approximation, as is done in [3, §3], by solving a Bounded Distance

Decoding problem in the LLL-reduced lattice corresponding to pa .

The main drawback of this method is that the ideal pa is all the

more badly-skewed that the inertia degree of p is small and n is

large, so that the LLL-reduction quickly dominates [3, §3.7].

In practice, we estimate a using the analysis of [3]. Suppose that

we have a bound B′ on the coefficient norm of x . By [3, Lem. 3.7], the

reconstruction succeeds when rmax > B′, where rmax is explicitly

given by [3, Lem. 3.8], which provides a lower bound on a as in

[3, Lem. 3.12]. Hence, using γ ≈ 1.022 as the root-Hermite factor

achieved by LLL [14], we start from the smallest a = 2
κ
such that

a >
n

f (p|p) · lnp

(
ln 2B′ +

(n(n−1)
4
− 1

)
lnγ

)
.

This value of a is controlled a posteriori by computing the corre-

sponding rmax, checking whether rmax > B′ and doubling a while

necessary. In practice, the above estimation is rarely invalidated.

4 USING CHINESE REMAINDER THEOREM:
THE EASY CASES

In this section, we describe how one can compute e-th roots using

the Chinese Remainder Theorem in number fields when e verifies

∃∞ primes q s.t. ∀q | q,qfq . 1 mod e . (2)

This condition ensures that none of the residue fields contain a

primitive e-th root of unity. In cyclotomic fields of conductorm,

this condition is equivalent to assuming gcd(e,m) = 1, since in that

case all primes verify the assumption and conversely.

In the context of the Number Field Sieve, Thomé described a CRT-

based method to compute square-roots [24, §4]. A major problem

for e = 2 is to guess the correct signs modulo each prime ideal,

which is handled by solving a knapsack problem. However, as n
grows as well as e , this approach quickly becomes intractable.

4.1 A CRT-based method for e-th roots
First, we show in Algorithm 2 how to retrieve an e-th root mod-

ulo q, where q is a prime integer verifying (2), using the Chinese

Remainder Theorem in number fields.

Olivier Bernard , Pierre-Alain Fouque , and Andrea Lesavourey

Algorithm 2 Number field CRT for e-th root mod q

Require: An unramified prime q in K verifying (2), and y ∈ (K∗)e

in factored form y =
∏

i⩽r u
ai
i , where the ui ’s are given mod

q.

Ensure: x ≡ y1/e mod (q).
1: S ← {q1, . . . , qд} := {q; q | qO} ▷ Using Cantor-Zassenhaus

2: Compute all (ui mod qj)i , j ▷ Use a product tree

3: for q ∈ S do
4: yq ←

∏
i (ui mod q)ai

5: xq ← y
1/e
q mod q ▷ Using §2.2

6: end for
7: return CRTK

(
{xq}q∈S , {q}q∈S

)
Algorithm 3 Double CRT for e-th root

Require: y ∈ (K∗)e in factored form y =
∏

i⩽r u
ai
i .

Ensure: x ∈ K∗ such that y = xe .
1: Compute B s.t. ∥C(x)∥∞ ≤ B ▷ Using Lemmas 1 and 2

2: Choose primes q1, . . . ,qk verifying (2) s.t.

∏
j qj ≥ 2B.

3: Compute all (ui mod qj)i , j ▷ Use a product tree

4: for 1 ≤ j ≤ k do
5: x j ← (y mod qj)

1/e ▷ Using Algorithm 2

6: end for
7: x ← CRTZ

(
{x j }j , {qj }j

)
▷ Coefficient by coefficient

8: return x with coefficients mapped in [−B,B]

Proposition 2. Algorithm 2 is correct, and runs in time at most
O
(
rn logq · (M(max{ fq}, logq) + log e)

)
.

Proof. Since q is unramified in K , i.e., (q) =
∏
q∈S q, one has

OK⧸(q) �
∏
q |(q)

OK⧸q �
∏
q |(q)

Fqf (q |q) .

For all q ∈ S , the condition qfq . 1 mod e implies F∗qfq = (F
∗
qfq)

e
,

so that any element of
O⧸q has a unique e-th root. Consequently,

step ?? of Algorithm 2 is properly defined and x ≡ xq mod q. Thus

the output of step ?? is indeed congruent to x modulo q.
As for the complexity, the first step, factorising a degreen polyno-

mial over Fq , can be done in O
(
n2 log1+ϵ n logqn ·M(logq)

)
using

Cantor-Zassenhaus. Computing the product tree for the qj ’s and

reducing {ui }1≤i≤r modulo all qj ’s cost (r+1)·O
(
logд ·M(n, logq)

)
[15, Lem. 10.4 and Th. 10.15]. For a given q | q, computingyq costs at

mostO
(
r fq logq·M(fq, logq)

)
(mapping eachai moduloqfq−1), and

the e-th root in Fqfq costsO
(
fq logq ·M(fq, logq)

)
since by hypothe-

sis qfq . 1 mod e . Since all fq sum ton, the whole loop costs at most

O
(
rn logq ·M(max fq, logq)

)
. Note that if e is large, we can reduce it

as well as the ai ’s oncemoduloqn−1, and use these smaller versions

thereafter, yielding an extra O(r log e · n logq) term in the worst

scenario. The last CRT step can be done in O
(
logn ·M(n, logq)

)
[15, Cor. 10.23], which is negligible. □

Remark 1. Note that the complexity of Algorithm 2 does not

depend heavily on e . Furthermore, the proof shows that it is best

to consider primes with small maximum inertia degrees. If there

are sufficiently many totally split primes, e.g., in cyclotomic fields,

the complexity even drops to O
(
rn log2+ϵ q + r logq log e

)
.

We now explain how to compute x via computations modulo

primes q1, . . . ,qk that all verify (2). This is done in Algorithm 3.

Proposition 3. Algorithm 3 is correct, and runs in time at most
O
(
rns · (M(n,κ)+ log2+ϵ s + log e)

)
, where s = O

(∑
i log ∥Σ(ui)∥∞

)
is the total input size.

Proof. Step ?? computes the solution modulo the ideal gener-

ated by qj , for each j ∈ ⟦1,k⟧. Thus the CRT in step ?? computes

x mod (Q), where Q =
∏

j qj , and Q > 2B ensures that there is a

unique element z ≡ x mod (Q) with coefficients in [−B,B].
Let κ = maxj logqj . To fix ideas, κ is taken as to fit a machine

word and all qj ’s are chosen evenly, so k · κ ≈
∑
logqj = O(s) and

κ = O(1). Computing the product tree for the qj ’s and reducing one
coefficient of the ui ’s modulo each qj costs O

(
M(logQ) · logk

)
by

[15, Th. 10.24], hence in totalO
(
rn ·M(s) log s

)
. Using Proposition 2,

the loop has a total cost of O
(
rn logQ · (M(n,κ) + log e)

)
. By [15,

Th. 10.25], the final CRT has a negligible O(n ·M(s) log s) cost. □

Remark 2. Likewise, using Remark 1, the overall complexity drops

to O
(
rnM(s) log s + rs log e

)
when many totally split primes exist.

4.2 Bad cases: existence of cyclotomic subfield
In this section, we give the following result, which characterises

number fields which are “bad” fields for e . This result can also be

found in [17, §C, Pr. 2.1], and we give the proof for completeness.

Theorem 1. Let K be a number field. The two following assertions
are equivalent :

(i) For almost all prime p ∈ N, ∀p | p, pf (p |p) ≡ 1 mod e ;
(ii) Q(ζe) is a subfield of K .

For this we will need a result due to Bauer mentioned in [18].

Notation. Given L/K a number field extension we denote by

P(L/K) the set {p unramified prime of K | ∃P, f (P|p) = 1}.

Lemma 3 (Bauer in [18]). If L/K is Galois andM/K is an arbitrary
finite extension, then P(M/K) Û⊆P(L/K) ⇐⇒ L ⊆ M .

Proof of Theorem 1. The first assertion is true for Q(ζe), so
(ii) =⇒ (i) is clear by multiplicativity of the inertia degree. Now

assume (i). Let p ∈ P(K/Q) and p s.t. f (p|p) = 1. Condition (i) im-

plies that almost all such prime satisfies p ≡ 1 mod e , which implies

p is completely split in Q(ζe), i.e., p ∈ P(Q(ζe)/Q). Consequently,
we have P(K/Q) Û⊆P(Q(ζe)/Q) and Lemma 3 gives (ii). □

In all generality, the class of fields for which Algorithm 3 cannot

be used is larger than the one described by Theorem 1. However, if

one considers Galois fields only, the two are equivalent.

4.3 Experimental results
We compared in practice Algorithm 3 to standard algorithms and

implementations such as Pari/Gp nfroots. For specific exponents
e ∈ {3, 71, 1637, 13099}, and focusing on suitable cyclotomic fields,

we computed the average time taken to compute the e-th roots of

y = xe where x is a random element with coefficients of bit size

logB ∈ {1, 50, 100}. We stress that with this protocol, Algorithm 3

does not take advantage of being designed for treating factored

forms. The results obtained for logB = 100 are displayed in Figure 1.

https://orcid.org/0000-0002-3410-3134
https://orcid.org/0000-0003-4997-2276
https://orcid.org/0000-0001-8318-4922

Computing e-th roots in number fields

(a) e = 3 (b) e = 71 (c) e = 1637 (d) e = 13099

Figure 1: Timings (s) for nfroots and Algorithm 3 plotted against the degree, for various prime e over cyclotomic fields.

Conductorm 113 256 137 149 169 243 249 167 173 179 181 235 197 199

Degree φ(m) 112 128 136 148 156 162 164 166 172 178 180 184 196 198

log
2
(e), with e | h−m 43.4 44.7 45.4 68.8 47.5 39.7 53.9 82.1 66.0 93.5 62.3 57.1 92.9 41.5

log
2
(∥x ∥∞), x = y1/e 215.0 263.9 311.9 346.9 381.9 395.6 393.4 469.1 320.7 410.0 461.5 488.4 546.3 492.7

Double CRT (Alg. 3) 2.5 3.4 5.7 9.3 8.7 8.6 24.7 12.3 9.1 14.0 14.6 24.5 17.3 16.2

Schirokauer maps 176 15 748 1035 100 20 822 1526 2408 4913 286 998 5426 1864

Table 1: Timings (s) for e-th roots within the saturation of Stickelberger S-units [4] for selected cyclotomic fields

Remark 3. For small exponents, i.e., such that 3e ⩽ [K : Q], the
function nfroots from Pari/Gp uses Trager’s method [25]; in these

experiments, this is the case only when e = 3. Otherwise it follows

the ideas developed in [3, 13].

From Figure 1, we see that our implementation of Algorithm 3

using SageMath is, in all cases, much more efficient than nfroots
when the dimension increases. Further, the gap increases with the

exponent. Remark, e.g., in Figure 1(b), that Algorithm 3 is more

stable than Pari/Gp nfroots.
Finally, as expected, the performances of our algorithm are not

much influenced by the size of the exponent e , to the point where it
is perfectly fine to compute e-th roots for very large e’s. For example,

Table 1 shows timings for large e’s in a real-life application, namely

the computation of S-units in cyclotomic fields, by saturating a

full-rank multiplicative S-units subset arising from Stickelberger’s

theorem, as suggested in [4]. Concretely, our biggest example here

is for e = 14458667392334948286764635121 in Q(ζ179), a 94-bits

prime dividing h−
179

, for which an e-th root in dimension n = 178 is

computed in only 14 seconds.

5 A RELATIVE COUVEIGNES’ METHOD: THE
BAD CASES

In this section we will describe how one can compute e-th roots in

the bad cases, i.e., when for all primes p ∈ N, there exist at least

one p | p such that pfp ≡ 1 mod e .

5.1 A relative Couveignes’ method
Couveignes’ method for square-root computation [12, 24] allows

identifying together the rootsmodulo a set of inert primesp1, . . . ,pk ,
assuming that the degree of the number field [K : Q] is odd. In the

following, we show how to generalise this method to e ⩾ 3.

A key ingredient of Couveignes’ method is the fact that the norm

maps NK : K → Q and NFpn :
OK⧸(p) ≃ Fpn → Fp are coherent

when p is an inert prime integer, meaning that for any x ∈ K we

have NK (x) mod p = NFpn (x mod p). We will use a generalisation

of this property to relative extensions.

Lemma 4. Consider K/L a number field extension, p an inert prime
ideal of OL and P the prime ideal of OK above p. Then the following
diagram is commutative.

OK
OK⧸P

OL
OL⧸p

NK/L N⟲

Proof. Elements of OK can be seen as polynomials with coeffi-

cients in L with degree less than [K : L], as OK � OL[T]/(PK/L(T))
for some irreducible polynomial PK/L ∈ L[T]. Similarly, elements

of FP := OK⧸P are class of polynomials in Fp :=
OL⧸p. Since P | p

is inert, one can define FP/Fp using the same polynomial PK/L ,
i.e., FP � Fp[T]/(PK/L(T)). Consequently, if α ∈ OK is written

as

∑[K :L]−1
i=0 αiT

i
, with αi ∈ OL , then its embedding into FP is

expressed as

∑[K :L]−1
i=0 α iT

i
where · : OL → Fp . Now, recall that

the relative norm of an element α in a field extension E/F is the

determinant of the multiplication map [α], seen as a F -linear map

of E. Since both extensions K/L and FP/Fp are given by the same

defining polynomial, one can consider the action [α] and [α] over
the “same” basis, i.e., [α] and · commute. This transfers to the de-

terminant, so that det[α] mod p = det[α mod P]. □

Another key ingredient of Couveignes’ method for e = 2 is that,

as soon as the degree of the field is odd, N(±x) = ±N(x). We present

an extension of this property to e-th roots of unity and relative

extensions.

Lemma 5. Let E/F be a field extension of finite degree and e ∈ N∗

such that ζe ∈ F . Assume additionnally that gcd([E : F], e) = 1. Then,

Olivier Bernard , Pierre-Alain Fouque , and Andrea Lesavourey

for any y ∈ (E∗)e , the norm map NE/F induces a bijection between
the zeroes ZE (X e − y) in E and ZF

(
X e − NE/F (y)

)
in F .

Proof. The set ZE (X
e − y) is of the form {ζ iex | i ∈ ⟦0, e − 1⟧}

where x is a fixed e-th root of y in E. Similarly, we have

ZF
(
X e − NE/F (y)

)
= {ζ ie · NE/F (x) | i ∈ ⟦0, e − 1⟧}.

Now, since ζe ∈ F , NE/F
(
ζ ie ·x

)
= ζ

i[E :F]
e ·NE/F (x). Thus, it suffices

to prove the result for the e-th roots of unity, which follows from

the fact that gcd([E : F], e) = 1. □

Remark 4. Note that Lemma 5 can be applied indifferently to

number field extensions or finite field extensions. Since both OL
and OL/p contain a primitive e-th root of unity, Lemma 5 applies

to both sides of the commutative diagram from Lemma 4.

Algorithm 4 Relative Couveignes’ method for e-th root modulo p

Require: A number field extension K/L of degree prime to e ≥ 3,

y ∈ (K∗)e in factored form, a fixed e-th root a = NK/L(y)
1/e

, a

prime integer p s.t. each p above p in OL is inert in K/L.

Ensure: x ≡ y1/e mod (p) in K .
1: Compute {p1, , . . . ,pд | pOL =

∏
i pi }

2: Compute {P1, , . . . ,Pд | piOK = Pi }

3: for 1 ≤ i ≤ д do
4: xi ← y1/e mod Pi ▷ Pick one root in the residue field

5: ai ← a mod pi ▷ Expected relative norm mod pi
6: zi ← ai/NK/L(xi) ▷ e-th root of unity mod pi

7: xi ← xi · z
[K :L]−1 mod e
i

8: end for
9: return CRTL

(
{xi }i ∈⟦1,д⟧, {Pi }i ∈⟦1,д⟧

)
.

Lemma 6. Consider K/L a number field extension and e ∈ N∗ such
that ζe ∈ L. Assume additionnally that gcd([K : L], e) = 1. Then
Algorithm 4 is correct and runs in polynomial time.

Proof. The output is correct if for each i ∈ ⟦1,д⟧, xi is the
embedding in FPi :=

OK⧸Pi
of a fixed e-th root of y in K , denoted

by x . This is ensured by the combination of Lemmas 4 and 5, which

state that in each residue field FPi there is exactly one element of

ZFPi (X
e − xi) whose relative norm over

OL⧸pi is ai . □

Fixing a root in L of the relative norm of y allows us to make a

consistent choice of residues in Lmodulo eachP from their relative

norms modulo p in L. As shown by Lemma 6, this allows us to

compute a root x mod p ∈ K for a given prime integer without the
enumeration process that would otherwise be needed to guess the

correct combination of residues in the CRT. The same idea applies

across several prime integers, see Algorithm 5.

Theorem 2. Consider K/L a number field extension and e ≥ 3 such
that ζe ∈ L. Assume also that gcd([K : L], e) = 1. Then, Algorithm 5
is correct and runs in polynomial time in [K : Q] and e .

Note that for Algorithm 5 to be usable as a generic method over

a fixed field K together with an exponent e , it is necessary that

there is a subfield L ↪→ K ensuring the existence of infinitely many

prime integers with the right splitting condition mentioned. If K/L

Algorithm 5 Relative Couveignes’ method for e-th root

Require: A number field extension K/L of degree prime to e ≥ 3,

y ∈ (K∗)e in factored form.

Ensure: x ∈ K∗ such that y = xe .
1: Compute B s.t. ∥C(x)∥∞ ≤ B ▷ Using Lemmas 1 and 2

2: a ← NK/L(y)
1/e ▷ Using §3 or this algorithm in L

3: Choose prime integers p1, . . . ,pk s.t. each prime ideal above pj
in OL is inert in K/L and

∏
j pj ≥ 2B.

4: for 1 ≤ j ≤ k do
5: x j ← RelativeCouvModp (e,y,a,pj) ▷ Algorithm 4

6: end for
7: x ← CRTZ({x j }j , {pj }j ▷ Coefficient by coefficient

8: return x with coefficients mapped in [−B,B].

is Galois, one can deduce from Chebotarev density theorem that

this is equivalent to K/L being cyclic [11, 18].

One of the most costly steps is the computation of NK/L(y),
whose cost is mitigated by using a factored form for y. The overall
complexity depends on the algorithm used to compute its e-th root.

5.2 A recursive relative Couveignes’ method
Algorithm 5 can be turned into a recursive algorithm, noting that

one important step is to compute the e-th root of NK/L(y). We will

focus on the Galois case. Thus, let us fix a Galois number field K
and denote by G its Galois group.

Recall that we assume that Q(ζe) ↪→ K , as we are in the “bad”

case. Let L be a subfield of K such that Algorithm 5 can be applied,

i.e., gcd([K : L], e) = 1, Gal(K/L) is cyclic and Q(ζe) ↪→ L. In order

to apply Algorithm 5 recursively for the computation of NK/L(y)
1/e

,

one needs the existence of a subfield of L satisfying the same condi-

tions. We thus get Proposition 4, which describes Galois extensions

for which a recursive version of Algorithm 5 is applicable.

Proposition 4. Consider K/L a Galois extension of number fields.
Then one can apply a recursive version of Algorithm 5 with respect to
K/L and e ∈ N if, and only if, K/L is Abelian and gcd([K : L], e) = 1.

Proof. If K/L is suitable for a recursive version of Algorithm 5,

then there is a tower of subfields

L = L0 ↪→ L1 ↪→ · · · ↪→ Lr−1 ↪→ Lr = K

such that for all i ∈ ⟦0, r − 1⟧ the extension Li+1/Li is cyclic and

gcd([Li+1 : Li], e) = 1. Since Gal(K/L) �
⊕r−1

i=0 Gal(Li+1/Li) and

[K : L] =
∏r−1

i=1 [Li+1 : Li], K/L is Abelian with gcd([K : L], e) = 1.

Conversely, denoting byG the Galois group ofK/L, if this extension
is Abelian then G admits a cyclic refinement [16]. The part on the

dimension is clear as well. □

5.3 Experimental results
We report now on experimental results we obtained from our im-

plementation of Algorithm 5 in SageMath [20]. In these simple

experiments we chose to consider cyclotomic fields of the form

Q(ζpq) where p is a prime integer and q ∈ N satisfies suitable

conditions. The prime p is constant in each experiment.

We considered two sets of experiments. In the first, we chose

q to be a prime integer as well, and fixed [K : L] = p thus e = q

https://orcid.org/0000-0002-3410-3134
https://orcid.org/0000-0003-4997-2276
https://orcid.org/0000-0001-8318-4922

Computing e-th roots in number fields

(a) p = 5 (b) p = 11 (c) p = 23

Figure 2: Timings (s) for nfroots and Alg. 5 plotted against n, over fields Q(ζpq) with constant [K : L] = p − 1 and e = q.

(a) p = 5 (b) p = 11 (c) p = 23

Figure 3: Timings (s) for nfroots and Alg. 5 plotted against n, over fields Q(ζpq) with constant e = p and [K : L] = φ(q).

and L = Q(ζq). In the second, e = p so one consider L = Q(ζe)
and [K : L] = q. We chose to compare the performances of our

implementation to the ones of Pari/Gp nfroots. Results can be

found in Figures 2 and 3.

One can see that Algorithm 5 is more efficient than nfroots in all

cases. Recall that Pari/Gp nfroots uses Trager’s method [25] when

3e ⩽ [K : Q], which is the case in our experiments for which e = p.
Otherwise, Pari/Gp nfroots uses the ideas developped in [3, 13].

All of these observations tend to show that our generalisation of

Couveignes’ method is more effective than previous algorithms

used to compute e-th roots.

An important constatation is that most of the running time of Al-

gorithm 5 comes either from the computation of NK/L(y) when
[K : L] is large (as predicted by the theoretical complexity), see Fig-

ure 3. In practice it amounts for more than 90% of the computation

time. Improving the efficiency of this task would render our relative

Couveignes’ method (and its implementation) even more impactful.

Indeed we compute these norms as products of polynomials which

might not be the most efficient in all cases. Instead, one could use a

half-gcd version of resultants to be quasi-linear.

6 SATURATION: A REAL-LIFE EXAMPLE
In this section, we first briefly describe the saturation process that

can be used during the computation of S-unit groups, when a sub-

group of finite index is already known [2, 4, 7]. Usually, the satura-

tion is performed for small primes e dividing this index. We show

here the efficiency of our methods to handle much larger values of

prime-power e’s.
Assume that we have access to E = {y1, . . . ,ys } a generating set

of H , a subgroup of a multiplicative group G. To fix ideas, G is the

group K, S of S-units of a number field K for some set S of prime

ideals, and H a full-rank subgroup [4, 5]. We also assume elements

of E are given in factored representation, i.e., their factorisation on a

given multiplicative basisU = {u1, . . . ,ur } is known as:

∀i ∈ ⟦1, s⟧, ∃(ei , j)1≤j≤r ∈ Zr s.t. yi =
r∏
j=1

u
ei , j
j .

The overall saturation mechanism can be summarized as follows:

(1) detect elements of H ∩ (K∗)e , as we will see, this is actually
the most costly part;

(2) compute the corresponding e-th roots, this is exactly the sub-

ject of this paper;

(3) compute a multiplicative basis of a subgroup of index divided

by e; this part benefits from being realized only once for all

possible e’s dividing the index of H in G, in order to contain

the size of the elements, and won’t be discussed further.

A precise theoretical analysis can be found in [7].

6.1 Detecting e-th powers
Let e be a prime-power. In this section we describe how one can

efficiently detect e-th powers. At a very high level, it goes as follows:

(1) select characters χQ : (H ,×) → (Z/eZ,+) such that y ∈
He =⇒ χQ(y) = 0 for sufficiently enough primes Q;

(2) compute the kernel of of χ : y ∈ H 7→ (χQ(y))Q .

The characters selected in step (1) have to be numerous enough so

that the morphism χ contains non trivial e-th powers. Theoretically,
the validity of this step is controlled by the Grunwald-Wang theo-

rem, and a practical instantiation of the problematic cases where

the Grunwald-Wang theorem does not directly apply, can be found

Olivier Bernard , Pierre-Alain Fouque , and Andrea Lesavourey

in [6, §4.2]. We shall only keep in mind that problematic cases only

arise when e is a power of 2.

6.1.1 Conditions on the primes. Prime integers q below suitable

Q verify some conditions. The reduction map ϕQ : OK ↠ OK /Q
needs to be extendable to H which is not included in OK in general.

Thus, q should not divide the numerator or the denominator of any

yi for i ∈ ⟦1, s⟧. We will write ϕQ as well for this extended map.

Then recall that we wish to detect non trivial e-th powers, so the

residue field should contain elements which are not e-th powers.

This is equivalent to Q ≡ 1 mod e , where Q = NK/Q(Q).

6.1.2 Definition of the characters. Once an element y has been

embedded into a residue field O/Q, one needs to detect whether

ϕQ(y) is an e-th power or not. One can note that for any element t ∈
F∗Q , its power t (Q−1)/e is an e-th root of unity, and is equal to 1 if, and

only if, t ∈ (F∗Q)
e
. Thus one puts χQ : y 7→ logζe (ϕQ(y)

(Q−1)/e),

with ζe is a primitive e-th root of unity.

Actually, this infinite family of characters can be completed with

easier-to-compute alternative characters, but of which we only

have finitely many. For instance, when considering multiplicative

subsets of S-units for some set S of prime ideals, we can include the

p-adic valuations modulo e , for each p ∈ S . Another very important

finite family of characters is given by Schirokauer maps [21], which
can be viewed as an approximation of the e-adic logarithm. Namely,

in our large e’s experiments, we compute

λ : y ∈ K 7−→
yρe − 1 mod e2

e
,

where ρe is the least common multiple of the

��(OK /e)∗�� for all
prime ideals e dividing eOK . This yields [K : Q] characters — one

per coefficient — modulo e [21, Pr. 3.8].

6.1.3 Number of characters. In order to detect non trivial powers,

i.e., elements in Ge \ He
, one only has to intersect ker χQ for suf-

ficiently many Q. If s is the cardinal of a generating family E of

H , then the rank of H/(H ∩ (K∗)e) is s ′ ⩽ s . If we consider the

χQ to be uniformly distributed in the dual then [9, Lem. 8.2] can

be modified to show that s ′ + r characters generate the dual with
probability at least 1 − e−r .

6.2 Practical considerations
6.2.1 Computing suitable primes. Discarding the condition regard-

ing the denominators of elements of E, suitable prime integers q | Q
only need to verify e | NK/Q(Q) − 1. As we have to compute a dis-

crete logarithm in FQ , it is desirable to restrict to primes of inertia

degree 1. Hence, instead of drawing random primes of a given bit-

length, it is best to test primality on integers q ≡ 1 mod e until
sufficiently many primes of inertia degree 1 are found. Note that,

contrary to the CRT case, small primes give as much information

as big primes for the characters.

In the Galois case, this comes down to find completely split

primes q, and Chebotarev density theorem assures us that the den-

sity of those primes in the set of all prime integers is 1/[K : Q].
Hence, we expect to find k ≥ s ′ + r suitable primes q ≡ 1 mod e
of a given bitsize in O(k[K : Q]) trials.

For cyclotomic fields Km = Q(ζm) the situation is even better, as

a prime q completely splits in K if, and only if, q ≡ 1 modm. Thus

one needs to find k primes that directly verify the congruence q ≡ 1

mod lcm(e,m), which can be done at a given bitsize in O(k) trials.

6.2.2 Computing non trivial relations. Once characters have been
selected as a set of prime ideals S = {Q1, . . . ,Qk } above suitable

prime integers q, one needs to compute the values χQ(yi) for all Q
and i ∈ ⟦1, s⟧, then identify the kernel of χ yielding H ∩ (K∗)e .

Recall that each element yi of the generating set E is known

through its decomposition in the multiplicative basis U . Since a

character is a morphism, the image of χQ is determined by the

collection of elements χQ(uj) ∈ Z/eZ. As the uj are expected to be

small, it is generally more efficient to compute first all χQ(uj) and
reconstruct each χQ(yi) as

∑r
j=1 ei , j χQ(uj).

The image χ (H) is then generated by the rows of the matrix

M =
(
χQ(yi)

)
i∈⟦1,s⟧
Q∈S

∈ Ms ,k
(
Z/eZ

)
.

Therefore, the left kernel of M in Z/eZ yields (after lifting to Z)
vectors (α1, . . . ,αt) ∈ ⟦0, e − 1⟧t such that

∏s
i=1 y

αi
i ∈ (K

∗)e .

Note that when e is a prime-power, we can use Howell’s normal

form [23]. This form might give redundant solutions, but those will

be sorted out in the final reconstruction phase.

6.2.3 Complexity analysis. Actually, detecting of e-th powers can

be problematically long if the sizes of the different finite fields are

too large. This mecanically happens when e is large. The bottleneck
is the computation of discrete logarithms in subgroups of order e ,
and we need to do it rk times. The cost is then O(rk

√
e) using

generic techniques. It can be mitigated by using index calculus

methods, which can also benefit from a precomputation phase

when computing many (r here) discrete logarithms.

Instead, in our practical case of interest, p-adic valuations and

Schirokauer maps give just enough characters to be able to detect

e-th powers. Considering that p-adic valuations are known (this is

arguably often the case), the cost of detecting e-th powers amounts

to computing those Schirokauer maps. In cyclotomic fields, ρe is at

most en−1, so the total cost of detection isO(r ·n log e ·M(n, 2 log e)).
Timings for the computation of Schirokauer maps are given in

Table 1, and unexpected variations directly relate to the size of ρe .

6.3 Experiments
In this section, we report the impact of the algorithms presented

here on the running time in saturation processes while computing

S-units in the manner of [4]. In particular, elements are always

given in factored form, and we do never require to compute the

product. Timings can be found in Figure 4 and Table 1.We separated

“good” cases where e ∤m and “bad” cases where Q(ζe) ⊆ K , and we
selected e to be the largest prime factor of h−m (resp. s.t. gcd(m,h−m)).

We note a significant gain using Algorithm 3 in good cases, espe-

cially when n is large. In bad cases, Algorithm 5 also outperforms

Pari/Gp nfroots when n is large, though its impact is smaller in this

case. The running time of nfroots is greatly influenced by the size

of e , whereas Algorithm 3 is relatively stable with respect to this

parameter. Finally, we stress that much data is missing for Pari/Gp

nfroots, due to its asymptotical limitations.

In order to get a more precise picture of the power of the Double-

CRT algorithm, we gathered in Table 1 its performances for very

large exponents e .

https://orcid.org/0000-0002-3410-3134
https://orcid.org/0000-0003-4997-2276
https://orcid.org/0000-0001-8318-4922

Computing e-th roots in number fields

(a) e ∤m (b) e | m

Figure 4: Timings (s) for nfroots and Alg. 4 plotted against the dimension for saturation process.

REFERENCES
[1] Leonard Adleman, Kenneth Manders, and Gary L. Miller. 1977. On Taking Roots

in Finite Fields. In 18th Annual Symposium on Foundations of Computer Science.
IEEE Computer Society, 175–178.

[2] Jens Bauch, Daniel J. Bernstein, Henry de Valence, Tanja Lange, and Christine

van Vredendaal. 2017. Short Generators Without Quantum Computers: The Case

of Multiquadratics. In Advances in Cryptology – EUROCRYPT 2017, Jean-Sébastien
Coron and Jesper Buus Nielsen (Eds.). Springer International Publishing, Cham,

27–59.

[3] Karim Belabas. 2004. A relative van Hoeij algorithm over number fields. J. Symb.
Comput. 37 (05 2004), 641–668. https://doi.org/10.1016/j.jsc.2003.09.003

[4] Olivier Bernard, Andrea Lesavourey, Tuong-Huy Nguyen, and Adeline Roux-

Langlois. 2022. Log-S-unit lattices using Explicit Stickelberger Generators to

solve Approx Ideal-SVP. In Advances in Cryptology – ASIACRYPT 2022 (LNCS),
Vol. 13793. Springer, 677–708.

[5] Olivier Bernard and Adeline Roux-Langlois. 2020. Twisted-PHS: Using the Prod-

uct Formula to Solve Approx-SVP in Ideal Lattices. In Advances in Cryptology –
ASIACRYPT 2020, Shiho Moriai and Huaxiong Wang (Eds.). Springer, 349–380.

[6] Jean-François Biasse, Muhammed R. Erukulangara, Claus Fieker, Tommy Hof-

mann, and William Youmans. 2022. Mildly Short Vectors in Ideals of Cyclotomic

Fields Without Quantum Computers. Mathematical Cryptology 2, 1 (Nov. 2022),

84—-107. https://journals.flvc.org/mathcryptology/article/view/132573

[7] Jean-François Biasse, Claus Fieker, Tommy Hofmann, and Aurel Page.

2020. Norm relations and computational problems in number fields.

arXiv:math.NT/2002.12332

[8] Richard P. Brent. 1975. Multiple-precision zero-finding methods and the com-

plexity of elementary function evaluation. Analytic Computational Complexity
(1975), 151–176.

[9] Joe P. Buhler, Hendrik W. Lenstra, and Carl Pomerance. 1993. Factoring integers

with the number field sieve. In The development of the number field sieve, Arjen K.

Lenstra and Hendrik W. Lenstra (Eds.). Springer, 50–94.

[10] Henri Cohen. 1993. A Course in Computational Algebraic Number Theory.
Springer.

[11] Henri Cohen. 2012. Advanced Topics in Computational Number Theory. Springer.
[12] Jean-Marc Couveignes. 1997. Computing A Square Root For The Number Field

Sieve. 1554 (06 1997). https://doi.org/10.1007/BFb0091540

[13] Claus Fieker and Carsten Friedrichs. 2000. On Reconstruction of Algebraic

Numbers. In Algorithmic Number Theory, Wieb Bosma (Ed.). Springer, 285–296.

[14] Nicolas Gama and Phong Q. Nguyen. 2008. Predicting Lattice Reduction. In

EUROCRYPT (LNCS), Vol. 4965. Springer, 31–51.
[15] Joachim von zur Gathen and Jürgen Gerhard. 2013. Modern Computer Algebra (3

ed.). Cambridge University Press.

[16] Serge Lang. 2012. Algebra. Vol. 211. Springer Science & Business Media.

[17] Pascal Molin. 2010. Intégration numérique et calculs de fonctions L. Ph.D. Disser-
tation. L’Université Bordeaux I.

[18] Jürgen Neukirch. 1999. Algebraic Number Theory. Grundlehren der mathematis-

chen Wissenschaften, Vol. 322. Springer Berlin, Heidelberg.

[19] The PARI Group 2022. PARI/GP version 2.13.4. The PARI Group, Univ. Bordeaux.
available from http://pari.math.u-bordeaux.fr/.

[20] The Sage Developers. 2023. SageMath, the Sage Mathematics Software System
(Version x.y.z). https://www.sagemath.org.

[21] Oliver Schirokauer. 1993. Discrete logarithms and local units. Philosophical
Transactions: Physical Sciences and Engineering 345, 1676 (1993), 409–423.

[22] Victor Shoup. 1993. Factoring polynomials over finite fields: Asymptotic com-

plexity vs. reality. In Proceedings of the IMACS Symposium. 124–129.

[23] Arne Storjohann. 2013. Algorithms for Matrix Canonical Forms. Ph.D. Dissertation.
Swiss Federal Institute of Technology, Zurich.

[24] Emmanuel Thomé. 2012. Square Root Algorithms for the Number Field Sieve. In

Arithmetic of Finite Fields, Ferruh Özbudak and Francisco Rodríguez-Henríquez

(Eds.). Springer, 208–224.

[25] Barry M. Trager. 1976. Algebraic Factoring and Rational Function Integration. In

Proceedings of the Third ACM Symposium on Symbolic and Algebraic Computation
(SYMSAC ’76). ACM, 219–226.

https://doi.org/10.1016/j.jsc.2003.09.003
https://journals.flvc.org/mathcryptology/article/view/132573
https://arxiv.org/abs/math.NT/2002.12332
https://doi.org/10.1007/BFb0091540
http://pari.math.u-bordeaux.fr/
https://www.sagemath.org

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Bounds on root coefficients
	2.2 Computing e-th roots in finite fields

	3 Generic local-global methods
	3.1 p-adic lifting
	3.2 p-adic reconstruction

	4 Using Chinese Remainder Theorem: the easy cases
	4.1 A CRT-based method for e-th roots
	4.2 Bad cases: existence of cyclotomic subfield
	4.3 Experimental results

	5 A relative Couveignes' method: the bad cases
	5.1 A relative Couveignes' method
	5.2 A recursive relative Couveignes' method
	5.3 Experimental results

	6 Saturation: a real-life example
	6.1 Detecting e-th powers
	6.2 Practical considerations
	6.3 Experiments

	References

