
HAL Id: hal-04832692
https://hal.science/hal-04832692v1

Submitted on 12 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Scaling Properties of Speech Language Models
Santiago Cuervo, Ricard Marxer

To cite this version:
Santiago Cuervo, Ricard Marxer. Scaling Properties of Speech Language Models. Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, Nov 2024, Miami, France.
pp.351-361, �10.18653/v1/2024.emnlp-main.21�. �hal-04832692�

https://hal.science/hal-04832692v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 351–361
November 12-16, 2024 ©2024 Association for Computational Linguistics

Scaling Properties of Speech Language Models

Santiago Cuervo and Ricard Marxer
Université de Toulon, Aix Marseille Université, CNRS, LIS. Toulon, France

{santiago.cuervo, ricard.marxer}@lis-lab.fr

Abstract

Speech Language Models (SLMs) aim to learn
language from raw audio, without textual re-
sources. Despite significant advances, our cur-
rent models exhibit weak syntax and semantic
abilities. However, if the scaling properties of
neural language models hold for the speech
modality, these abilities will improve as the
amount of compute used for training increases.
In this paper, we use models of this scaling
behavior to estimate the scale at which our cur-
rent methods will yield a SLM with the English
proficiency of text-based Large Language Mod-
els (LLMs). We establish a strong correlation
between pre-training loss and downstream syn-
tactic and semantic performance in SLMs and
LLMs, which results in predictable scaling of
linguistic performance. We show that the lin-
guistic performance of SLMs scales up to three
orders of magnitude more slowly than that of
text-based LLMs. Additionally, we study the
benefits of synthetic data designed to boost se-
mantic understanding and the effects of coarser
speech tokenization.

1 Introduction

Inspired by the remarkable ability of preschool
children to learn language from raw sensory in-
puts, Lakhotia et al. (2021) introduced in their sem-
inal paper the textless NLP (Natural Language Pro-
cessing) project. The project aimed to leverage
advances in self-supervised speech representation
learning for unsupervised unit discovery (Hsu et al.,
2021; Chung et al., 2021) and generative neural
language models (Brown et al., 2020) to jointly
learn the acoustic and linguistic characteristics of
a language from audio alone, without access to
textual supervision (e.g. lexicon or transcriptions).
They formalized this goal in the task of Genera-
tive Spoken Language Modeling (GSLM), in which
a language model is trained on sequences of self-
supervised learned speech units.

Beyond bridging the gap between human and
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Figure 1: Speech Language Models test loss curves for
all our single-epoch runs. Axes are in logarithmic scale.
The envelope of minimal loss per FLOP (black dots)
follows a power law (dashed line).

machine language acquisition, the textless NLP
project hoped to democratize access to NLP tech-
nologies by extending them to the millions of users
of languages with little or no textual resources (e.g.
due to a lack of standardized orthography). These
languages are unlikely to be supported by current
technologies, which are heavily dependent on mas-
sive volumes of text data. In today’s landscape,
where NLP-based AI systems are becoming in-
creasingly relevant and pervasive, it is all the more
pressing to expand their inclusivity by building
speech-based systems that can match the capabili-
ties of their text-based counterparts.

Despite a significant body of research on these
Speech-based Language Models (SLMs) (Lakhotia
et al., 2021; Kharitonov et al., 2022; Borsos et al.,
2023; Hassid et al., 2023), they are still far from
matching the syntactic and semantic abilities of
text-based systems (Hassid et al., 2023). Therefore,
the promise of textless NLP is yet to be realized.
However, if the scaling behavior of text-based neu-
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ral language models (Brown et al., 2020; Kaplan
et al., 2020) holds for the speech modality, we can
reasonably expect those abilities to improve as the
amount of compute used for training increases.

In this work, we apply recently proposed models
of the scaling behavior of neural language models
to SLMs, and use them to estimate the scale at
which our current methods will match the linguistic
performance of Large Language Models (LLMs),
generative text-based systems that have achieved
remarkably strong performance across a wide range
of NLP applications (Brown et al., 2020). The main
contributions of this work are:

• We trained over 50 SLMs with different num-
ber of parameters and data budgets. We show
that the test loss of SLMs follows scaling
power laws as those observed in text-based
LLMs (Figure 1), and use the methods from
Hoffmann et al. (2022) and Muennighoff et al.
(2023) to model the scaling behavior of SLMs.

• We establish a strong correlation between the
test loss of neural LMs and the downstream
metrics commonly used to evaluate their syn-
tactic and semantic abilities. Therefore, the
linguistic performance of LMs follows similar
scaling laws (Figure 2). We leverage this in-
sight to determine the relative efficiency with
scale of SLMs relative to LLMs.

• We speculate that SLMs require more context
than fits in their context window to acquire
from commonly used speech datasets the se-
mantic understanding measured by our met-
rics. Accordingly, we propose a new speech
dataset to boost semantic understanding in
SLMs. Specifically, we synthesized a spo-
ken version of the Tiny Stories dataset (Eldan
and Li, 2023), and show that its use during
pre-training improves downstream semantic
performance.

• On the basis of our previous observation, we
studied the use of unigram tokenization to
shorten sequences and pack more information
in the context window of SLMs. However,
our results suggest that a coarser tokenization
is detrimental to downstream performance.

The training source code, data, and models
will be released at https://github.com/
tiagoCuervo/slm_scaling.

2 Background

2.1 Generative spoken language modeling
We follow the GSLM framework from Lakhotia
et al. (2021). The general GSLM pipeline is com-
posed of three separately trained models: (i) a
speech tokenizer, (ii) a language model, and (iii) a
vocoder (token-to-waveform) module. In the fol-
lowing, we provide background for the speech tok-
enizer and LM, as these are the components we use
in this work. For details about the vocoder please
refer to Lakhotia et al. (2021).

Speech tokenizers transform raw speech wave-
forms into discrete representations. A speech en-
coder is used to extract continuous representa-
tions that are then transformed into discrete se-
quences through vector quantization. Formally,
let X ∈ R denote the domain of audio sam-
ples, a waveform is therefore a sequence of sam-
ples x = (x1, . . . , xT ), where xt ∈ X for all
1 ≤ t ≤ T . An encoder F : Xm → Rd trans-
forms windows of samples of width m into d di-
mensional continuous frame representations. Ap-
plying F to x yields a sequence of frame represen-
tations z = (z1, . . . , zT ′), where usually T ′ < T .
Subsequently, a k-means algorithm is applied to
the encoder output to generate a sequence of dis-
crete speech tokens u = (u1, . . . , uT ′), where
ui ∈ {1, . . . ,K} for 1 ≤ i ≤ T ′, and K is the
size of the vocabulary.

Language models aim to learn the joint proba-
bility of token sequences P (w1, . . . , wn). By the
chain rule of probability, the probability of a se-
quence can be computed as a product of its condi-
tional probabilities:

P (w1, . . . , wn) =

n∏

i=1

P (wi|w1, . . . , wi−1) (1)

Neural LMs, parameterized by θ, are neural
networks that model the conditional probabilities
Pθ(wi|M(w1, . . . , wi−1)), where M is a represen-
tation of the previous tokens. The network is opti-
mized to minimize the negative log-likelihood of
observed ground truth sequences:

L = −
n∑

i=1

Pθ(wi|M(w1, . . . , wi−1)) (2)

Nowadays, the network is typically a transformer
(Vaswani et al., 2017). LLMs are large transformer
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Figure 2: Downstream linguistic performance scaling with compute for LLMs and SLMs. Axes are in logarithmic
scale. Syntactic (BLIMP) and semantic (tStoryCloze and sStoryCloze) metrics follow a power law before starting to
saturate. Linguistic performance scales up to three orders of magnitude more slowly in SLMs relative to LLMs.

LMs trained on large text corpora (billions of pa-
rameters and tokens). SLMs are neural LMs ap-
plied to speech tokens u.

2.2 Scaling laws for neural language models

The performance of deep learning models often
behaves predictably as a function of model size,
dataset size, and compute (Hestness et al., 2017).
Kaplan et al. (2020) showed that the loss L (Equa-
tion 2) of large neural LMs scales with a power law
behavior as a function of these three scale factors:

L(C) ∝ Cγ , L(N) ∝ Nα, L(D) ∝ Dβ (3)

Where C is the amount of compute (in FLOPS), N
is the number of parameters of the model, and D is
the number of training tokens.

Building upon their work, Hoffmann et al. (2022)
proposed a parametric function to model the final
loss of neural LMs trained for a single epoch as a
function of N and D:

L̂(N,D) = E +
A

Nα
+

B

Dβ
(4)

Where the first term is the loss for an ideal LM, and
should correspond to the entropy of the distribution
of token sequences. The second term captures the
approximation error that results from using a neural
network with N parameters to approximate the
ideal generative process. The final term reflects
that the model is not trained to convergence, as a
finite number of optimization steps are performed
on a sample of size D from the real distribution.

Hoffmann et al. (2022) aimed to solve the prob-
lem of optimal allocation of resources given a fixed
compute budget Cavail. They proposed to approx-
imate the compute needed to train a transformer
LM with N parameters on D tokens as C ≈ 6ND.

Then, the problem of optimal allocation of compute
for model size and training data is:

min
N,D

L̂(N,D), s.t. 6ND = Cavail (5)

For which the solution is:

Nopt(C) = G

(
C

6

)a

Dopt(C) =
1

G

(
C

6

)b (6)

With:

G =

(
αA

βB

) 1
α+β

, a =
β

α+ β
, and b =

α

α+ β

Muennighoff et al. (2023) generalized Equation
4 to the case of multi-epoch training by replacing
D and N with terms corresponding to the effective
data D′ and effective model parameters N ′:

L̂(N ′, D′) = E +
A

N ′α +
B

D′β (7)

Where D′ ≤ D is the number of effective training
tokens, assuming that the value of repeated tokens
decays exponentially. Similarly, they note that over-
sized models offer diminishing returns per param-
eter, as excess parameters learn the same features
and do not add value (in the extreme). They pro-
pose an exponential decay model for them, yielding
a number of effective parameters N ′ ≤ N . They
derived the expressions for D′ and N ′ as:

D′ = UD + UDR
∗
D(1− e

−RD
R∗
D )

N ′ = UN + UNR∗
N (1− e

−RN
R∗
N )

(8)
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SIZE LAYERS MODEL DIM. HEADS

20M 6 512 8
85M 12 768 12
155M 12 1024 16
309M 24 1024 16
823M 16 2048 32

Table 1: Models description.

Where UD is the number of unique tokens used,
RD = D

UD
− 1 is the number of repetitions (0 for

a single epoch), UN is the number of parameters
needed to optimally fit UD according to Equation 6,
RN = N

UN
− 1 is the number of excess parameters,

and R∗
D and R∗

N are constants.
The constants E, A, B, α, β, R∗

D and R∗
N can

be estimated empirically by fitting Equation 4 or
7 to a set of tuples (N,D,RN , RD, L) obtained
from training experiments with different budgets.

3 Experimental setup

3.1 Models and training
We adhere to the framework described in Section
2.1. For the speech tokenizer, we use a pre-trained
HuBERT model (Hsu et al., 2021) with frame-rate
of 25 Hz as the speech encoder F , and a vocabulary
size of K = 500. This setup reports the best per-
formance among publicly available models (Hassid
et al., 2023). For the SLMs we use the Llama archi-
tecture (Touvron et al., 2023) with context window
of 2050 tokens. Table 1 describes the model sizes
used in our experiments. For the LLMs, we use the
Pythia suite of pre-trained LLMs (Biderman et al.,
2023), ranging in size from 14M to 6.9B param-
eters (we do not use the largest 12B model), and
trained with ∼300B tokens.

All SLMs are optimized using AdamW
(Loshchilov and Hutter, 2019) with weight decay
of 0.1, maximum learning rate of 5e-4, half-cycle
cosine decay learning rate schedule to 5e-5, and
a warm-up initial stage of max(100, 0.01niters)
steps, where niters is the number of training steps,
which varies for each experiment according to the
data budget. We use batch sizes of 64, 128, 256
and 512 for the models with 20M, 85M, 155M and
309M, and 828M parameters, respectively.

To fit the constants in Equations 4 and 7, we
adopt the approaches of Hoffmann et al. (2022)
and Muennighoff et al. (2023), utilizing the Huber
loss with δ = 0.03 as the error function and L-
BFGS as optimizer. Following Muennighoff et al.
(2023), we first fit the parameters E, A, B, α, and

β using the single-epoch runs, and afterwards fit
R∗

D and R∗
N using the multi-epoch runs.

3.2 Evaluation

For upstream performance, we report and use the
average loss (Equation 2) on the test set in all cases
including the parametric fits. For downstream eval-
uation we rely on the zero-shot metrics used in
the textless NLP literature, which evaluate LMs’
linguistic knowledge by comparing likelihoods of
positive and negative speech samples. We focus on
metrics evaluating syntax and semantic knowledge.
In all cases, performance is measured as the bi-
nary accuracy with which the model assigns higher
likelihood to the positive samples.

Syntax: We use the SBLIMP task from the Zero
Resource Speech Challenge (Nguyen et al., 2020).
In SBLIMP, the model is presented with mini-
mal pairs of sentences, where one is grammatically
correct (positive) and the other is not (negative),
targeting specific syntactic contrasts.

Semantics: To evaluate semantic understanding
we use the spoken Story Cloze benchmark from
Hassid et al. (2023), a spoken version of the Sto-
ryCloze textual benchmark (Mostafazadeh et al.,
2016), which consists of 4k five-sentence common-
sense stories. In StoryCloze, the model receives as
input the first four sentences of a story, and has to
assign higher probability to the correct final sen-
tence than to an adversarial negative sample.

The spoken Story Cloze benchmark comes in
two versions: sStoryCloze and tStoryCloze. The
difference between them lies in how the negative
sample is generated. sStoryCloze uses the same
negative samples as the textual benchmark, which
are carefully constructed to evaluate models’ ability
to grasp causal and temporal commonsense rela-
tions. In tStoryCloze, the negatives are randomly
sampled from the whole dataset, and therefore mea-
sures the ability of the model to stay on topic. Since
in tStoryCloze the negatives are randomly sampled,
they are not specifically designed to violate causal
or temporal logic. Instead, they are more likely to
be incoherent or irrelevant in a more obvious way,
making it an easier task than sStoryCloze.

3.3 Data

3.3.1 Datasets
We use a collection of publicly available English
speech datasets for training: LibriSpeech (Panay-
otov et al., 2015), LibriLight (Kahn et al., 2020),
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DATASET HOURS
HUBERT
TOKENS

UNIGRAM

LIBRISPEECH 960 67M 38M
LIBRILIGHT 53K 3.74B 2.11B
SWC 1K 32M 19M
TEDLIUM 1.6K 0.11B 67M
PEOPLE 7K 0.48B 0.29B
VOX POPULI 24K 1.64B 1.08B
STINYSTORIES 72K 4.82B 2.71B

TOTAL 160K 10.89B 6.31B

Table 2: Datasets statistics. The UNIGRAM column cor-
responds to the dataset of HuBERT tokens compressed
through unigram tokenization.

SWC (Baumann et al., 2019), Tedlium (Hernandez
et al., 2018), People’s Speech (Galvez et al., 2021),
and Vox Populi (Wang et al., 2021b); and a novel
dataset: STINYSTORIES, a spoken version of the
Tiny Stories dataset (Eldan and Li, 2023) that we
synthesized using the single-speaker TTS system
provided by Wang et al. (2021a). Tiny Stories is
a synthetic text corpus of short stories designed
to boost commonsense reasoning in neural LMs.
We propose STINYSTORIES because we hypoth-
esize that the semantic understanding that tasks
such as sStoryCloze measure is hard to acquire
from commonly used speech datasets. Consider
for instance the audiobooks in LibriLight. The
data has long-range dependencies spanning multi-
ple pages, whereas our SLMs can ingest roughly a
dozen sentences of spoken text in their context win-
dow. Other datasets, which were mainly designed
to serve as training data for automatic speech recog-
nition systems, consist of too small fragments of au-
dio that lack meaningful causal structure. STINYS-
TORIES consists of full stories with causal structure
that fit within the context window of our SLMs.

We do not include samples from STINYSTORIES

in our test set, as we intend to use our test loss as
measure of the quality with which SLMs model nat-
ural language, not synthetic one. For other datasets
we use the defined held-out sets for testing. In cases
where a held-out set is not defined, we randomly
sampled 1% of the data to serve as test set. See
Table 2 for dataset sizes.

3.3.2 Data budgets

In order to have a representative set of sam-
ples to fit Equations 4 and 7, for each model
size, we performed training runs with a ratio of
training tokens D to parameters N : D/N ∈
{2, 4, 8, 10, 20, 32, 64, 100}. This setup yields
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Figure 3: Gains from synthetic data on downstream
semantic performance of SLMs. Pre-training on sTinyS-
tories yields consistent improvements on semantic un-
derstanding relative to pre-training on audiobooks (Lib-
riSpeech plus LibriLight). Performance gains hold for
mismatched train and test speakers.

single-epoch and multi-epoch runs for the larger
models but not for the smaller models (e.g. for the
model with 85M parameters the maximum number
of training tokens corresponds to 0.99 epochs). To
better fit Equation 7, we performed additional ex-
periments so that for each model size there were
runs with training epochs in {2, 4, 8, 10}, with the
exception of the 828M parameter model, for which
the maximum was 8 epochs.

4 Results

4.1 Gains from sTinyStories

In order to determine if STINYSTORIES meaning-
fully contributes to the semantic understanding
of SLMs, we compare the performance on tSto-
ryCloze and sStoryCloze of models trained on one
epoch of the union of LibriSpeech and LibriLight,
against models trained on an equivalent amount
of STINYSTORIES tokens. Figure 3 shows the ob-
tained results. Models trained on STINYSTORIES

consistently outperform those trained on audio-
books across all model scales. A factor that could
contribute to the observed performance gain is the
match between training and evaluation speakers, as
both STINYSTORIES and Story Cloze were synthe-
sized using the single-sepaker TTS from Wang et al.
(2021a). However, we believe this to be unlikely
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as the speech tokenizer we use likely captures little
speaker-specific information (Nguyen et al., 2023).
To isolate the potential impact of speaker mismatch
between training and evaluation data, we created
a multi-speaker version of the sStoryCloze bench-
mark using Bark TTS 1, and repeat the evaluations.
The results, also shown in Figure 3, indicate that
even with mismatched train and test speakers train-
ing on STINYSTORIES yields performance gains.

4.2 Benchmarking our setup
To validate our setup, we compared our best per-
forming model with other models in the SLM lit-
erature in Table 3. Our model outperformed all
other speech-only LMs on the semantic tasks, and
performed second best in general, even relative
to hybrid speech-text LMs. Notably, our model
outperformed models with a larger compute bud-
get. Considering that the models from Hassid et al.
(2023) and Nguyen et al. (2024) use similar hyper-
parameters (same speech tokenizer and the Llama
architecture for LMs); the most likely factor to ex-
plain the performance difference is the data used.
We believe these results further illustrate the bene-
fits from using STINYSTORIES.

4.3 Scaling laws
We trained multiple SLMs for each model size with
different data budgets as described in Section 3.3.2.
The resulting learning curves for single-epoch runs
are presented in Figure 1 as a function of compute,
and show that the envelope of minimal loss per
FLOP follows a power law.

4.3.1 Downstream scaling with compute
We analyzed the relationship between the upstream
and linguistic downstream performance in SLMs
and LLMs. Figure 4 shows the obtained results.
Downstream linguistic metrics before saturation
are strongly correlated with the upstream test loss
in both LLMs and SLMs. Therefore, the envelope
of maximum downstream performance per FLOP
also follows a power law, i.e. for a downstream per-
formance function Q, Q ∝ Cγq . The power laws
for the different performance metrics are presented
in Figure 2 and the exponents in Table 4.

These results allow us to compare the efficiency
with scale of LLMs and SLMs. For each metric,
we can interpret the ratio between the γq exponents
of the power laws of LLMs and SLMs as the rel-
ative efficiency with scale. For BLIMP, the ratio

1https://github.com/suno-ai/bark

is 0.066
0.021 = 3.14, indicating that for an increase in

compute ∆C yielding a ∆Q in LLM’s syntactic
performance, SLMs require 103.14∆C to get the
same ∆Q. Similarly, for tStoryCloze and sSto-
ryCloze the ratios are 1.56 and 2.7, respectively.

4.3.2 Scaling with parameters and tokens
We fitted the functions from Equations 4 and 7 to
our data using the procedure described in Section
3.1. We present the empirically fitted scaling law
parameters and compare them to the ones obtained
for text by Muennighoff et al. (2023) in Table 5.
From Equation 6, Nopt ∝ Ca and Dopt ∝ Cb. For
both modalities a ≈ b ≈ 0.5, suggesting that as
compute increases, model size and data should be
scaled equally for optimal performance. Contrary
to text, R∗

N > R∗
D, indicating that repeated tokens

decay faster than excess parameters (albeit both
slower than in text). Therefore, in SLMs, compute
allocated to parameters should scale faster than
compute allocated for epochs.

4.4 Unigram tokenization

As mentioned in Section 3.3, we believe that the
limited context window of SLMs could cripple their
ability to model the long-range dependencies in
language required for causal reasoning. Seeking
to mitigate this limitation, we apply unigram to-
kenization to shorten the length of speech token
sequences. We use the SentencePiece tokenizer
(Kudo and Richardson, 2018) with a vocabulary
size of 5000. We choose the vocabulary size on
the scale of previous works that have used simi-
lar tokenization strategies for speech applications
(Chang et al., 2023). The resulting dataset sizes
after compression are presented in Table 2.

We train a set of Speech LMs on the compressed
datasets, with model sizes up to 309M parame-
ters and data budgets ranging from 740M to 6.31B
tokens. We analyze the scaling behavior of the
upstream and downstream metrics and compare
it with SLMs trained on raw HuBERT speech to-
kens in Figure 5. SLMs trained on unigram com-
pressed speech tokens show similar upstream scal-
ing with compute, but worse downstream scaling.
Notably, the performance on the StoryCloze bench-
mark does not seem to scale with compute.

We fitted the function from Equation 4 to the
results obtained on the compressed dataset. Table 5
presents the resulting scaling law parameters. Sim-
ilar to the previous findings, for a given compute
budget, scaling model size and training data equally
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PARAMETERS TOKENS BLIMP TSTORYCLOZE SSTORYCLOZE
Speech-only language models
GSLM (LAKHOTIA ET AL., 2021) 100M - 54.2 66.6 53.3
AUDIOLM (BORSOS ET AL., 2023) 150M - 64.7 - -
HASSID ET AL. (2023), COLD-INIT 1.3B 1.3B 10.8B 56.5 - -
NGUYEN ET AL. (2024) 7B 100B 58.0 72.9 54.8
OURS (BEST MODEL) 823M 82B 61.3 78.0 56.7
Speech language models initialized from text language models
TWIST (HASSID ET AL., 2023)

- WARM-INIT 1.3B 1.3B 10.8B 57.1 70.6 52.4
- WARM-INIT 7B 7B 36B 59.0 74.1 55.1
- WARM-INIT 13B 13B 36B 59.2 76.4 55.4

Mutltimodal speech-text language models initialized from text language models
SPIRIT-LM (NGUYEN ET AL., 2024) 7B 100B 58.3 82.9 61.0
Toplines
PYTHIA (BIDERMAN ET AL., 2023) 6.9B 6.9B 300B 80.0 97.5 76.21
HUMAN (HASSID ET AL., 2023) - - - 90.2 79.9

Table 3: Models benchmarking. The best model resulting from our experiments obtains the best semantic perfor-
mance across speech-only models, and the second best overall in all tasks.
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Figure 4: Correlation between downstream linguistic performance and test loss for LLMs and SLMs. Syntactic
(BLIMP) and semantic (tStoryCloze and sStoryCloze) metrics are strongly linearly correlated with the upstream test
loss before saturation.

MODALITY
γq

BLIMP TCLOZE SCLOZE

TEXT 0.066 0.039 0.046
SPEECH 0.021 0.025 0.017

Table 4: γq power law coefficients of downstream per-
formance with compute as depicted in Figure 2.

is optimal for performance. Due to the poor down-
stream results obtained with unigram tokenization
and the lack of sufficient compute resources, we
did not perform multi-epoch training experiments.

5 Related work

Previous works have studied the scaling behavior
of neural networks on speech applications. Droppo
and Elibol (2021) showed that acoustic models
trained with an auto-predictive coding loss follow
similar power laws to those observed in neural LMs.
Aghajanyan et al. (2023) used the scaling laws from
Hoffmann et al. (2022) to model the scaling behav-
ior of the upstream loss of neural LMs on multiple

E A B α β R∗
N R∗

D

TEXT
MUENNIGHOFF ET AL.

1.87 521 1488 0.35 0.35 5.31 15.4

SPEECH 1.73 13.9 39.8 0.25 0.24 31.0 25.0

SPEECH
(UNIGRAM) 1.42 3.85 8.90 0.15 0.16 - -

Table 5: Scaling law parameters fit to Equations 4 and 7
for different language tokenizations.

modalities, including speech. They used a speech
tokenizer with higher framerate (50 Hz) and vo-
cabulary size (K = 2000) than the one we used
(Section 3.1). Such fine-grained tokenizers capture
a lot of the paralinguistic information in speech
(Nguyen et al., 2023). Therefore, their speech to-
kens can be considered almost a different modality
due to the acoustic variance. Furthermore, they do
not study the behavior with scale of downstream
performance. In this work, we focus on the linguis-
tic content of the signal. As reported by Hassid
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Figure 5: Comparison of the scaling behavior of SLMs trained on raw speech tokens and unigram compressed
tokens. Axes are in logarithmic scale. The upstream loss of SLMs trained on unigram tokens scales better with
compute, but downstream performance scales worse. Notably, the sStoryCloze metric for SLMs trained on unigram
tokens does not seem to improve with increased compute.

et al. (2023), our speech tokenizer performs best
on downstream linguistic applications, and is there-
fore a more suitable choice to study the scaling
behavior of the linguistic performance of SLMs.

This paper is most closely related to the work
of Hassid et al. (2023). We largely follow their
setup in terms of hyperparameters and evaluation
metrics. They reported improved linguistic down-
stream performance with scale in SLMs, but did
not characterize their scaling behavior. Our scaling
laws allow practitioners to determine the compute
needed to attain a specific loss, syntactic and/or se-
mantic performance; and its optimal allocation with
respect to parameters and tokens. To the best of our
knowledge, we are the first to model the scaling
properties of downstream linguistic performance in
SLMs, and to study the scaling of the considered
downstream metrics on text-based LLMs. This en-
ables a comparison between the two modalities in
terms of scaling efficiency.

6 Discussion

Our work showed that the upstream and down-
stream linguistic performance of our current meth-
ods for GSLM scales predictably with com-
pute. This suggests that, with sufficient compu-
tational resources, the goal of the textless NLP
project—achieving neural LMs trained exclusively
on speech, and matching the linguistic proficiency
of their text-based counterparts—is achievable.
However, the cost of such models could be pro-
hibitive, as we estimate that they will require up
to three orders of magnitude more compute than a
text-based LLM to achieve equivalent performance.
We believe this points to the need for leveraging
the rich language representations already learned
by text LLMs. This seems to be the current trend
in the community, as several recent works have
sought to improve SLMs through transfer learn-

ing from text-based models (Hassid et al., 2023;
Zhang et al., 2023; Nguyen et al., 2024). However,
considering one of the grand goals of the textless
NLP project—extending the benefits of large-scale
language modeling to low-resource or non-written
languages—we will have to address the question
of how knowledge transfer from text LLMs per-
forms when the speech data is in a different lan-
guage than the one the text LLM was trained on.
If cross-lingual knowledge transfer between text
and speech modalities proves to be unfeasible, then
purely speech-based SLMs, such as the ones stud-
ied here, could still offer a compelling solution for
low-resource languages.

We explored the use of synthetic data and coarser
tokenization to increase the semantic abilities of
SLMs. Our synthetic dataset improved seman-
tic performance, but using a coarser tokenization
led to overall degradation of downstream perfor-
mance. We do not have yet an hypothesis for why
coarser tokens degrade performance, as this seems
counter-intuitive, and contradicts the findings on
other speech applications (Chang et al., 2023). We
leave this as an interesting issue to address in fu-
ture work. Moreover, we believe that working on
methods that allow to increase the information den-
sity per context-window of SLMs holds promise to
improve their scaling behavior.

7 Limitations

Any extrapolation from our models of the scal-
ing behavior of SLMs should be considered opti-
mistic for the following reasons: 1) Our models
for downstream performance ignore the fact that
the metrics saturate. As observed in text LLMs,
the improvements with scale slow down as perfor-
mance approaches the saturation value. It is likely
that, due to saturation, the compute required to
yield a particular performance will be larger than
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predicted. Moreover, due to the lower density of
linguistic information per context window in SLMs
relative to LLMs, the saturation values of the met-
rics may be lower for SLMs. 2) The LLMs from
the Pythia suite that we used in this study are likely
overtrained (all models were trained with ∼300B
tokens). Optimally trained LLMs (according to
Equation 6) should show better performance with
scale, and therefore widen the gap with the scaling
efficiency of SLMs. 3) The envelope of minimal
loss per FLOP (Figure 1) might show a slight neg-
ative curvature at larger scale (Hoffmann et al.,
2022), reducing the scaling efficiency.

Muennighoff et al. (2023) note that the scaling
law coefficients for text LLMs, and consequently
the optimal compute allocation, can vary depend-
ing on the training datasets used in the scaling
study. Commonly used text datasets are signifi-
cantly larger and more diverse than the academic
speech datasets typically used for GSLM, such
as those in this study. As a result, these speech
datasets represent a more biased sample of the over-
all distribution of speech data, making scaling laws
derived from them less likely to generalize. There-
fore, we cannot guarantee that the scaling laws we
have developed will be universally applicable to
other datasets. However, we do not expect signif-
icant deviations that affect the conclusions here
presented. Future research could explore validat-
ing the predictions from this study on larger and
more diverse datasets, such as the recently released
Yodas (Li et al., 2023).

8 Conclusions

We have trained a large set of SLMs with different
compute budgets and studied the scaling properties
of their upstream and downstream performance us-
ing recently proposed models of scaling laws for
neural LMs. The obtained models allow practition-
ers to optimally allocate compute to attain a spe-
cific loss, syntactic, and/or semantic performance.
We showed that the pre-training loss and down-
stream linguistic performance of SLMs and LLMs
is highly correlated, and both scale predictably ac-
cording to power laws. This allowed us to compare
the scaling properties of SLMs and LLMs, from
which we established that the linguistic abilities of
SLMs scale up to three orders of magnitude more
slowly. Additionally, we proposed a new speech
dataset, STINYSTORIES, and showed that its use
during pre-training improves downstream seman-

tic performance. Finally, we explored the use of
coarser speech tokenization as a method to increase
the amount of tokens per context window in SLMs,
but obtained worse downstream performance.
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