

Kinetics and Mechanism of Austenite Isothermal Decomposition in Carbonitrided Low-alloy Steel

Hugo P. Van Landeghem S.D. Catteau, J. Teixeira, J. Dulcy, M. Dehmas, M. Véron, A. Redjaïmia and S. Denis

hugo.van-landeghem@grenoble-inp.fr

Understanding carbonitriding

- What are the phase transformations happening during the treatment sequence?
- What is the influence of the added carbon and nitrogen?
- What is the influence of the transformation temperature?

Materials & HT

23MnCrMo5 base alloy (wt. %)

С	Mn	Cr	Мо	Si	Ni
0.246	1.21	1.31	0.1	0.237	0.184

Enriched samples

Gas / solid reactions at 900°C:

- $CH_{4(g)} \rightarrow C_{[Fe]} + 2 H_{2(g)}$
- $NH_{3(g)} \rightarrow N_{[Fe]} + 3/2 H_{2(g)}$

List of samples:

Alloy		wt. % C (± 0.04 %)	wt. % N (± 0.07 %)	B ₈ (°C)	$\mathbf{M}_{\mathbf{S}}\left(^{\circ}\mathbf{C} ight)$
Ι	Base alloy	0.23	-	550 ± 25	385
С	Carburized	0.57	-	500 ± 25	260
Ν	Nitrided	0.12	0.26	400 × D × 500	-
CN	Carbonitrided	0.65	0.25	$400 < B_{\rm S} < 500$	205

Innovative & Sustainable Metallurgy

Carburized

- Martensite + RA ٠
- No secondary phases ٠

light micrograph

900°C

Cı

Isothermal Kinetics @ T > B_S

Dilatometry, 600°*C*

Base alloy (I)	Carburized (C)	Nitrided (N)	Carbonitrided (CN)
 2-stage kinetics Proeutectoid ferrite Pearlite 	 Increased incubation ~100 % pearlite 	 Decreased incubati Finer microstructur Nitride stimulat Enhanced transform 	on re red nucleation?

Ι

 $25 \, \mu m$

 $\begin{array}{l} N,\,650~^\circ C,\,3~h\\ HV_{300g}\approx 250 \end{array}$

 $HV_{300g} \approx 250$

Pearlite

N, 650 °C, 3 h $HV_{300g} \approx 250$

17 October 2024

 $\begin{array}{l} N,\,650~^\circ C,\,3~h\\ HV_{300g}\approx 250 \end{array}$

N, 650°C, 3 h

In a ferrite grain

 $\begin{array}{l} N,\,650~^\circ C,\,3~h\\ HV_{300g}\approx 250 \end{array}$

17 October 2024

Isothermal Kinetics @ $T < B_s$

In-situ synchrotron HEXRD, 400°C

900°C

NH₂

CH₄+NH₂

900°C

400°C

300°C

200°C

 B_{s}

12

Carbonitrided Transformed @ T < B_S

CN, 200 °*C*, 3 *h* $HV_{300g} \approx 700$

Phase

200 nm

Carbonitrided Transformed @ T < B_S

 $\begin{array}{l} CN,\,200 \,\,^\circ C,\,3 \,\,h \\ HV_{300g} \approx 700 \end{array}$

 B_{S}

Innovative & Sustainable Metallurgy

Carbonitrided Transformed @ T < B_S

CN, 200 °*C*, 3 *h* $HV_{300g} \approx 700$

> B tual

COM vir

mas

CENAM Laboratoire d'excellence

900°C

NH₂

CH₄+NH₂

900°C

400°€

300°C

200°C

Austenite

250

300

Carbonitrided Transformed @ T < B_S

 $\begin{array}{l} CN,\,200~^\circ C,\,3~h\\ HV_{300g}\approx 700 \end{array}$

ENAM poratoire d'excellence

Both twins always have KS OR with parent austenite

900°C

NH₂

CH₄+NH₂

900°C

400°€

300°C

200°C

 B_{S}

Conclusion

References

- J. Teixeira, S.D. Catteau, H.P. Van Landeghem, J. Dulcy, M. Dehmas, A. Redjaïmia, S. Denis, M. Courteaux, Bainite Formation in Carbon and Nitrogen enriched Low Alloyed Steels: Kinetics and Microstructures, HTM Journal of Heat Treatment and Materials 73 (2018) 144–156. <u>https://doi.org/10.3139/105.110352</u>.
- H.P. Van Landeghem, M. Véron, S.D. Catteau, J. Teixeira, J. Dulcy, A. Redjaïmia, S. Denis, Nitrogeninduced nanotwinning of bainitic ferrite in low-alloy steel, Scripta Materialia 155 (2018) 63–67. <u>https://doi.org/10.1016/j.scriptamat.2018.06.021</u>.
- H.P. Van Landeghem, S.D. Catteau, J. Teixeira, J. Dulcy, M. Dehmas, M. Courteaux, A. Redjaïmia, S. Denis, Isothermal decomposition of carbon and nitrogen-enriched austenite in 23MnCrMo5 low-alloy steel, Acta Materialia 148 (2018) 363–373. <u>https://doi.org/10.1016/j.actamat.2018.02.008</u>.
- S.D. Catteau, H.P. Van Landeghem, J. Teixeira, J. Dulcy, M. Dehmas, S. Denis, A. Redjaïmia, M. Courteaux, Carbon and nitrogen effects on microstructure and kinetics associated with bainitic transformation in a low-alloyed steel, Journal of Alloys and Compounds 658 (2016) 832–838. <u>https://doi.org/10.1016/j.jallcom.2015.11.007</u>.

18