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1 Introduction
Our approach uses EEG signals to detect the occurrence of er-
rors deliberately introduced during flexion and extension with
an orthosis device, as well as to estimate the timing of these
errors. It has been developed and tested on the IntEr-HRI
competition dataset [Kueper et al., 2023].

2 Methodology
The whole processing pipeline is available on github at https:
//github.com/mathiasrihet/IntEr-HRI.git.

2.1 Preprocessing and segmentation
In order to account for a realistic scenario, both training and
test data have been loaded in a 900 ms buffer as a first step. A
15 Hz low-pass-filter and a common average reference (CAR)
were then applied. Finally, a 500 ms sliding window with a
leap of 100 ms allowed to segment data for classification.

A window was labelled as ”error” if a physiological re-
sponse to error (ERN) or to an odd event (P300) was expected

in it [Yeung et al., 2004]. As the P300b component has been
noticed as particularly relevant to discriminate error condition
according to training data first analysis, this response was se-
lected as the main classification target. Thus, a window was
labelled as ”error” if the onset of a deliberately introduced
error was present 400 ms before one point of the window.

It can be worth noticing that, despite this focus on the
P300b component, the classification pipeline still processes
the whole 500 ms window. Thus, any other relevant physio-
logical response present inside the window can be integrated
by the model.

2.2 Classification
All the steps described hereafter were performed on 32 chan-
nels selected from the 10/20 system.

Initially, the training set was prepared by randomly bal-
ancing the classes and normalized by dividing each sample
by the standard deviation of the set. The testing set was
subsequently normalized using the standard deviation of the
training set. Classification was then carried out using a Rie-

Figure 1: Confusion matrices of the 8 within subject 10-fold cross-validations.
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mannian approach, employing the pyriemann Python library
[Barachant et al., 2022]. Covariance matrices were com-
puted and spatially filtered using a Riemannian variation of
the common spatial pattern (CSP) algorithm [Barachant et
al., 2010]. These matrices were finally projected from the
Riemannian space to the tangent Euclidean space in order to
train an SVM model.

2.3 Sample selection
Due to the infrequent occurrence of errors, the tested model
generated a substantial number of false positives, failing to
accurately predict the required number of 6 errors for the
competition. Consequently, an additional step was introduced
to identify the most probable real errors among those pre-
dicted by the model.

The predicted errors were organized into clusters using a
straightforward adjacency rule, where errors predicted on ad-
jacent windows were grouped together. Clusters exceeding a
predetermined threshold were then chosen. To ensure the se-
lection of the smallest subset with a count higher than 6 clus-
ters, an iterative process was employed to define the thresh-
old. Subsequent processing enabled the retention of only the
six most evenly distributed clusters within the subset.

While the last part is a pure offline technique, it may be
worth noticing that the used threshold could be learned from
the training set.

Finally, the centroid window of each selected cluster was
subjected to peak detection to identify the targeted physiolog-
ical response. Although it was possible to calculate the typi-
cal latency between this response and the error onset to pre-
dict the error onset with a higher accuracy, we opted against
this technique. The reason behind this decision was that it
could potentially lead to predicting errors before their actual
occurrence. Instead, we considered the sample of the detected
peak as the representative error sample.

3 Results
3.1 Error potential detection
The approach was evaluated within each subject using a 10-
fold cross-validation on the 8 provided datasets. In addition,
because these data were not totally independent, special at-
tention was paid to fold construction. Indeed, a classical
leave-one-out 10-fold cross-validation could have included
windows in the training set that overlap with windows from
the testing set. Thus, for each fold, the 8 runs were randomly
split into 6 runs for training and 2 for testing. This method-
ology was expected to introduce less bias and generalize well
to the validation step on test data by following a similar ap-
proach.

The mean confusion matrices of these cross-validations
can be found in Figure 1. For a more intuitive evaluation
of the detection performance, the true positive rate (TPR) and
true negative rate (TNR) were also reported.

TPR = TP/(TP + FN) (1)

TNR = TN/(TN + FP ) (2)

3.2 Error onset estimation
Following the clustering step designed to allow for sample
detection, sample indices of errors detected in each run of the
test data are presented in Table 1.

4 Conclusion
The methodology proposed here is a first step towards online
error detection in order to provide a means to monitor human-
system interaction, and eventually to adapt this interaction for
increased efficiency. It will be completed for the online stage
of the competition by addressing online specific issues such
as cross-subject and cross-session classification.

Participant Run Error samples
AA56D 5 22898 38618 52668 65100 80687 105767
AA56D 6 45922 58361 76681 97301 109949 124565
AC17D 5 24771 45009 65716 86053 106129 121108
AC17D 6 43028 50743 59532 86156 116132 124529
AJ05D 5 39728 46623 59578 73669 121492 129899
AJ05D 6 34691 58134 72881 83627 121534 134377
AQ59D 6 31185 45557 95164 105995 116682 132537
AQ59D 7 15209 20705 35082 51383 73555 119644
AW59D 5 16166 28509 53695 82479 95132 104986
AW59D 6 80220 80356 90004 99578 108166 116035
AY63D 5 30978 44811 76371 101424 116300 132576
AY63D 6 6355 68807 69857 89114 106391 123696
BS34D 5 40133 50415 67127 84092 111066 128742
BS34D 6 32915 39619 70110 83531 100290 113748
BY74D 5 36075 46036 55689 85030 85199 108113
BY74D 6 63393 63536 79888 79889 100588 116639

Table 1: Samples predicted on test data for validation phase.
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