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Abstract. Digital breast tomosynthesis (DBT) is a recent medical imag-
ing tool that increases accuracy and interpretability compared to tradi-
tional full-�eld digital mammogram (FFDM). However, DBT interpre-
tation time is estimated to be twice longer than for FFDM, explainable
by its 3D nature. Computer-aided diagnosis (CAD) systems can help
radiologists in their diagnostic tasks and workload reduction. However,
computation times and costs are important for CADs, thus facing the
same challenge as health practitioners. This study addresses the prob-
lem concerning the processing of DBTs with high cancer detection rates
while meeting the constraints of the clinical world. To this end, we pro-
pose a method relying on the slabbing approach which generates a set
of 2D thick slices "slabs" that summarize a whole DBT volume. We
propose a comprehensive benchmark on slabbing exploring several pa-
rameters such as slab thickness and overlap between slabs. Our method
uses a fully 2D convolutional neural network (CNN) as a binary classi-
�er, trained solely on FFDMs, exploiting the similarity between FFDMs
and slabs. We report metrics on the two publicly available datasets con-
taining DBTs: Breast Cancer Screening-DBT (BCS-DBT) and EA1141.
This is the �rst study to explore DBTs of the EA1141 dataset, so we pro-
vide data strategy details and make it publicly available on GitHub3. We
report breast-wise AUCROC of 0.90 on both BCS-DBT validation and
test subsets and 0.97 on EA1141. We achieve competitive speci�cities
at 90% of sensitivity breast-wise with 0.84 and 0.79 on BCS validation
and test respectively, while not training on DBTs.

Keywords: Breast Cancer · Digital Breast Tomosynthesis · Slab · Thick
slices · Deep Learning · Classi�cation · CNN.

1 Introduction

Breast cancer is the most diagnosed type of cancer among women and the sec-
ond leading cause of death worldwide [19]. Digital breast tomosynthesis (DBT)
is a recent 3D medical imaging tool that can be used in breast cancer screening

3 https://github.com/racoon-z/dbt-slabbing
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programs. Compared to the traditional full-�eld digital mammography (FFDM),
DBT can lead to better accuracy in the diagnosis of breast cancer [11, 12]. Its
3D nature o�ers better context and interpretability for complex lesions such as
micro-calci�cations [9]. While overdiagnosis can lead to invasive surgical pro-
cedures for patients and increased workload for radiologists, early detection of
breast disease remains crucial to patient care [19].

Despite its advantages, DBT analysis results in a signi�cant increase in read-
ing time, with the estimated interpretation time for radiologists using DBT be-
ing twice as long as for radiologists using FFDM [15]. Computer-aided diagnosis
(CAD) systems aim to help health practitioners increase their cancer detection
rates and reduce their workload [18]. The main current and future challenges for
DBT concern the reduction of CAD computation time while maintaining high
performance. Indeed, end-to-end DBT processing is resource-hungry for deep-
learning-based methods, especially for convolutional neural network (CNN) due
to the high resolution of the modality4.

The current literature can be divided into three DBT processing strategies:
1) a single synthesized 2D view (S2D) summarizing a DBT entirely, 2) focusing
on 3D patches of the region of interest (ROI), and 3) using the entire DBT in
slices or generating thick slices, called "slabs".

The �rst approach is based on methods that process S2Ds generated by
DBT manufacturers, comparable to the processing of FFDMs using a single 2D
projection of the breast [6, 20]. It cancels out the advantages of DBT which
o�ers 3D visualization of the lesion, and therefore reverts to FFDM usage. In
addition, these views are not systematically provided by manufacturers and S2Ds
can generate high-intensity artifacts that could be mistaken for lesions.

The second strategy relies on global model which identi�es 3D ROI patches
and then exploit neighborhood pixel information, fusing inter-slices features
along the z axis of the DBT [21, 26]. These methods take greater account of
the DBT nature by extracting multi-dimensional features from patches using
both 2D and 3D grouped convolutions. While this approach remains interesting,
it does not answer the stated clinical constraints above, as a global model is
required to analyze all slices to extract ROIs.

The last identi�ed strategy consists in DBT slices [5, 13, 14, 24] or thick
slices processing [4, 22]. El-Shazli et al. [5] and Mota et al. [13] propose a per-
slice DBT processing approach solely based on 2D convolutions, without using
inter-slice information. Moreover, they both do a harsh slice resizing (≈ 224×224
and 512 × 512 respectively) which induces a signi�cant loss of information on
the xy planes. Park et al. [14] and Wang et al. [24] process DBT in an end-
to-end manner and use both 2D and 3D information. However, these methods
require large-scale computing infrastructures and signi�cant costs which are not
meeting clinical resources limitations. Lastly, Doganay et al. [4] and Tardy et

4 Standard slice thickness is approximately 1mm, and the in-plane resolution is around
50µm to 140µm. For example, for a DBT with dimensions of 80× 2500× 2000, the
total number of pixels is approximately 400 million.
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Fig. 1. Schema of the proposed method for an end-to-end classi�cation of DBT vol-
umes. First, we summarize a DBT volume V into M slabs. Then, a CNN architecture
process the slabbed DBT to assess the risk of malignancy of the entire volume.

al. [22] summarize DBT pixel information along the z axis generating thick slices
(slabs). However, they present relatively low performances on limited datasets.

Given the above constraints and our analysis of the state of the art, we
propose a method leveraging the anisotropic property of DBT. While in-plane
pixel information is crucial to detect small lesions such as micro-calci�cations,
we believe dimensionality reduction can be done along the z axis. A CNN-based
classi�er aims to assess the risk of malignancy for a slabbed DBT, summarizing
all slices into a subset of slabs. In addition, our CNN is trained only on FFDMs
to solve the problem of the lack of well-annotated DBT datasets. Finally, our
contributions can be summarized as follows:

1. A comprehensive benchmark on the impact of slabbing for a CNN-based
method to classify DBT volumes according to their risk of malignancy;

2. Large-scale metrics on all state-of-the-art clinically relevant DBT public
datasets: Breast Cancer Screening DBT (BCS-DBT) validation and test
sets [1], and EA1141 [2];

3. To the best of our knowledge, we are the �rst study to speci�cally use DBTs
from EA1141, paving the way for the community to use a new dataset by
providing details on data management and free access to our code.

2 Method

The speci�c details of our approach are: 1) the generation of slabs to summarize
DBT volumes (slabbing) in Sec. 2.1 and 2) the use of a 2D CNN-based classi�er
trained solely on FFDMs in Sec. 2.2.

2.1 Slabbing

Slabbing is an e�ective approach for radiologists to reduce the interpretation time
while having similar diagnostic accuracy [16, 17]. Indeed, DBT pixel information
is not equally distributed along the volume as the in-plane (xy) resolution is
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higher than in the z axis, proving the anisotropic nature of DBT. Our method
relies on this property to generate a sequence of slabs from the input volume.
This reduces the dimensionality, and therefore the computation time and cost,
required to perform the whole volume classi�cation task.

Let a DBT volume VH,W,Z where H, W , and Z denote slice height, width,
and depth respectively. The main aim of slabbing is to divide the volume V into
a set of M slabs, along the z axis. Each slab is a 2D projection of a subset of
slices from a DBT. The number of generated slabs is computed according to
several parameters: the slab thickness T ∈ [1, N ], the overlapping ratio between
slabs O ∈ [0, 1)5, and the number of slices N = Z − θtop − θbot. θ ∈ N represents
the number of skipped slices at the boundaries usually su�ering from substantial
noise due to the nature of reconstruction. The number of slabs M is de�ned as
in Eq. (1).

M =

⌈
1 +

N − T

T × (1−O)

⌉
(1)

Once the new slabbed DBT thickness is de�ned, we use an aggregation func-
tion A to generate the 2D slabs. The new volume VH,W,M

slabbed = A(VH,W,Z) is
dimensionally reduced along the z axis. In our method, we use the maximum
intensity projection (MIP) as A, computing the maximum value of a voxel stack
along the z axis [3]. This strategy has the advantage of enhancing the microcal-
ci�cations contrasts, however, it may generate high-intensity artifacts [3].

2.2 CNN

The classi�cation is performed using a deep convolutional neural network (CNN)
relying on UNet3+ [7] and with architecture modi�cations as described in [23].
These modi�cations include the multi-task and multi-scale output strategies de-
signed to improve classi�cation performance. Despite the use of a U-shape archi-
tecture recognized for segmentation tasks, this modi�ed version of the UNet3+
improves classi�cation performance compared to other state-of-the-art CNN clas-
si�cation methods [23]. Moreover, architectural changes such as the use of depth-
wise separable 2D convolutions, and the reduction of convolution �lters by a
factor 2 aim to decrease model complexity. This is crucial for processing FFDM
or DBT slabs which are high-resolution 2D images.

We introduce further adaptations to �t the needs of the study. We trained
our CNN for the binary classi�cation task of full FFDM images assessing the risk
of malignancy. Our CNN classi�er has been trained solely on 2D mammography
images and without using a single DBT exam due to the lack of well annotated
datasets. Moreover, our method takes advantage of the similarity between FFDM
and DBT slabs allowing us to minimize training resources.

In our method, we propose to use this CNN architecture as a classi�er for
our slabbed volume Vslabbed as follows. Classi�cation function C generates a set

5 O = 1 is excluded as it indicates that each slab fully overlaps the previous one,
resulting in a stride of 0, which causes the algorithm to get stuck in an in�nite loop.
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of M predictions (ŷ) according to binary classi�cation problem as in Eq. (2).
The two classes c predicted are benign (c = b) and malignant (c = m).

C(VH,W,M
slabbed ) = [{ŷb1, ŷb2, · · · , ŷbM}, {ŷm1 , ŷm2 , · · · , ŷmM}] (2)

where ŷci is the generated prediction for the ith slab of the c class. Global

tensors are: Ŷ benign = {ŷb1, · · · , ŷbM} and Ŷ malignant = {ŷm1 , · · · , ŷmM}.
Finally, we aim to obtain a single score for the entire volume ŶV to assess the

risk of malignancy from the above set of predictions. To that end, we compute
the maximum from the malignant class predictions, i.e., ŶV = max(Ŷ malignant),
meaning capturing a malignancy on one slab at least.

3 Experiments

3.1 Datasets

The two public datasets containing DBT exams from clinical practice have been
used: Breast Cancer Screening-Digital Breast Tomosynthesis (BCS-DBT) [1],
and EA1141 [2]. BCS-DBT is a large-scale and well-annotated public DBT
dataset that has become state-of-the-art since its release in 2021 in the con-
text of a DBTex Lesion Detection Challenge [8]. To allow the comparison to the
results of the challenge we used the validation and test subsets. These subsets are
referred to as BCSval and BCStest respectively. EA1141 is a dataset composed of
multi-modal exams, including FFDMs, DBTs, and magnetic resonance images
(MRIs). All required information to understand the speci�c processing applied
to sort images according to modalities and identify DBT exams is available on
the GitHub mentioned on the �rst page.

We evaluate the method in two scopes: image-wise (IW) and breast-wise
(BW). Our goal is to distinguish benign and normal DBTs from malignant ones
focusing on biopsy-proven malignant lesions. For the two BCS-DBT subsets, it
means that "Cancer" labels only were considered as malignant and "Benign",
"Actionable", and "Normal" ground truths were assigned to the benign class (we
refer the reader to the original manuscript for the details). The sorting strategy
for EA1141 was di�erent as the dataset contains both an MRI and a DBT clinical
outcome. Therefore, we propose the two following strategies: 1) samples with
malignant biopsy outcome from DBT vs. the rest, excluding malignant exams
detected from MRIs (this subset is referred to as EADBT), and 2) malignant
biopsy outcome from DBT and MRI vs. the rest (referred to as EAMRI). The
malignancy class was assigned when "DCIS" or "Invasive" words were present
in the biopsy outcomes of DBTs and MRIs. Tab. 1 summarizes the distribution
between benign and malignant sets.

3.2 Implementation details

The CNN architecture exploited in the study follows the training procedure
similar to Terrassin et al [23] except that we use full FFDMs instead of patches
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Table 1. IW and BW data distribution between benign and malignant classes for
each dataset. BCStest and BCSval denote BCS-DBT Validation and Test subsets while
EADBT and EAMRI refer to the two sets, excluding or including MRI biopsy outcomes.

BCSval BCStest EADBT EAMRI

Image-wise
Benign 1126 1661 1425 1803

Malignant 37 60 4 17

Breast-wise
Benign 565 830 679 861

Malignant 20 30 2 8

and train on the image-wise binary classi�cation task. The neural network was
optimized to be trained on the NVIDIA GeForce RTX 2080 Ti GPU, �tting
11GB RAM, and is capable of inferring on CPU.

We standardized DBT slices before the inference as follows. First, erasing
noisy background pixels, using the triangle threshold method [27]. Then, we
removed skin borders [1] and cropped slices aiming to suppress irrelevant pix-
els [25]. DBT slices were resized to 2048 × 1280 pixels to align with the input
expected by the CNN used, and at last, we truncated the histogram from extreme
values and normalized pixel intensity in the range [0, 1] as in [23].

We aimed to evaluate several parameters of our method by creating an exper-
imental plan with di�erent slab thicknesses T = [1, 6, 8, 10, 12, 15, 20, N ]. When
T = 1, it consists of processing all DBT slices and T = N a single in-plane,
similar to S2D. We evaluated O = 0.5 and O = 0 corresponding to 50% and no
overlap between slabs, respectively. We also evaluated θ = 0 and θ = T × 0.5,
i.e., keeping noisy slices or removing them.

4 Results

We computed the following classi�cation metrics: Area Under the ROC Curve
(AUCROC), the Area under Precision-Recall curve (AUCPR), and Spec@90%.
AUCs allow us to measure the classi�er's ability to distinguish between the be-
nign and malignant classes, while sensitivities and speci�cities assess the true
positive and true negative rates. Aiming to improve the detection rate in clinical
practice, we also evaluated the speci�city (Spec@90%) of the method when set-
ting the sensitivity to above 90% (i.e., higher than an average of human reading
of 87.4% [10]). We report IW and BW metrics with 95% con�dence intervals
(CIs), using the bootstrap approach presented by Buda et al. [1].

Based on our experiments, we found that T = N was the worst slab thick-
ness, with drastically lower AUCs and Spec@90%. It can be explained by the
maximum intensity projection method used for slabbing, which generates impor-
tant noisy artifacts on thick slabs and prevents them from bene�tting from the
3D nature of DBT. No clear trend is observed in performances with and with-
out overlap between slabs (O = 0 and O = 0.5) as very comparable AUCPR ,
AUCPR and Spec@90% are achieved. However, excluding overlapping allows to
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Table 2. Metrics table with the ROC AUC (AUCROC), Precision-Recall AUC
(AUCPR), and Spec@90%. IW and BW metrics are reported on the three datasets
BCSval ,BCStest, and EADBT following the ablation on several slab thicknesses: T ∈
[6, 8, 10, 15, 20] mm.

Image-Wise (IW) Breast-Wise (BW)
Dataset T AUCROC AUCPR Spec@90% AUCROC AUCPR Spec@90%

BCSval

6 0.86 (0.78-0.93) 0.25 (0.14-0.39) 0.55 (0.52-0.58) 0.90 (0.79-0.97) 0.28 (0.14-0.51) 0.87 (0.84-0.90)
8 0.87 (0.79-0.94) 0.26 (0.15-0.42) 0.66 (0.64-0.69) 0.90 (0.79-0.97) 0.31 (0.16-0.54) 0.84 (0.81-0.87)
10 0.88 (0.81-0.93) 0.29 (0.16-0.44) 0.65 (0.63-0.68) 0.90 (0.80-0.97) 0.36 (0.17-0.59) 0.80 (0.77-0.83)
15 0.86 (0.78-0.92) 0.25 (0.13-0.39) 0.50 (0.48-0.53) 0.88 (0.78-0.95) 0.29 (0.12-0.50) 0.79 (0.76-0.83)
20 0.86 (0.78-0.92) 0.23 (0.13-0.38) 0.61 (0.58-0.64) 0.89 (0.78-0.96) 0.25 (0.12-0.48) 0.81 (0.77-0.84)

BCStest

6 0.86 (0.81-0.91) 0.25 (0.16-0.37) 0.58 (0.56-0.60) 0.88 (0.82-0.94) 0.25 (0.14-0.42) 0.73 (0.69-0.76)
8 0.86 (0.81-0.91) 0.29 (0.18-0.42) 0.49 (0.46-0.51) 0.90 (0.84-0.95) 0.32 (0.17-0.51) 0.79 (0.76-0.81)
10 0.86 (0.82-0.91) 0.27 (0.17-0.40) 0.54 (0.52-0.57) 0.89 (0.82-0.94) 0.28 (0.16-0.45) 0.74 (0.71-0.76)
15 0.85 (0.80-0.90) 0.25 (0.16-0.38) 0.53 (0.51-0.56) 0.85 (0.76-0.92) 0.25 (0.13-0.43) 0.46 (0.43-0.50)
20 0.82 (0.77-0.88) 0.32 (0.20-0.45) 0.51 (0.48-0.53) 0.85 (0.77-0.91) 0.33 (0.16-0.51) 0.49 (0.46-0.53)

EADBT

6 0.84 (0.48-0.98) 0.02 (0.00-0.07) 0.47 (0.45-0.50) 0.97 (0.95-0.98) 0.04 (0.02-0.12) 0.97 (0.95-0.98)
8 0.85 (0.48-0.99) 0.03 (0.00-0.08) 0.48 (0.45-0.50) 0.97 (0.95-0.98) 0.04 (0.02-0.12) 0.96 (0.95-0.98)
10 0.86 (0.54-0.98) 0.02 (0.00-0.07) 0.53 (0.51-0.56) 0.96 (0.94-0.97) 0.03 (0.01-0.09) 0.96 (0.94-0.97)
15 0.80 (0.34-0.98) 0.02 (0.00-0.06) 0.33 (0.31-0.36) 0.92 (0.84-0.98) 0.02 (0.00-0.08) 0.86 (0.83-0.88)
20 0.84 (0.58-0.99) 0.02 (0.00-0.08) 0.57 (0.55-0.60) 0.86 (0.72-0.99) 0.02 (0.00-0.09) 0.74 (0.71-0.77)

reduce the inference time as fewer slabs are processed. We observed identical
metrics varying θ values , meaning the CNN is not in�uenced by the noise in the
volume boundaries. The slab thicknesses ablation is reported in Tab. 2.

Clinically meaningful BW AUCROC scores are obtained on the BCSval and
BCStest sets reaching 0.90 in both cases. Those performances are remarkable
as they are achieved using a classi�er trained only on FFDMs. Interestingly, it
mimics the radiologists' performances on slabbed volumes observed in [16]. The
highest IW and BW AUCROC are generally obtained with 8 and 10-mm slabs on
the three datasets. Best AUCPR scores are also achieved with these thicknesses
on the BCSval subset, with only the 20-mm slab outperforming on BCStest.

Regarding EADBT , we achieved an AUCROC of 0.97 and a Spec@90% of
0.97, yet noting a very small malignant population (4 malignant DBTs, 2 breasts)
as shown by the low AUCPR average to ≈ 0.03. When we consider EAMRI,
i.e., including clinical outcomes from MRI, we observe a remarkable drop in
performance with the best AUCROC scores of 0.67 and 0.76 IW, BW respec-
tively. Still, we note the sensitivity of the method to be higher than that of the
radiologists when compared to DBT BI-RADS assessments.

We explored the ways to maximize predictions from di�erent thicknesses by
aggregating predictions from slabs of di�erent thicknesses, but no improvements
have been observed with similar averaged BW AUCROC of 0.90, 0.88, and 0.97
for BCSval ,BCStest, and EADBT respectively.

To compare with other state-of-the-art methods, we computed the same met-
rics using the predictions published from the DBTex phase 2 challenge [8] as
shown in Tab. 3. We can see that NYU BTeam [8] and Zedus [8] teams outper-
formed our method on all but AUCPR metrics. Nevertheless, the performances
remain comparable, given the reported CIs. Noteworthy, we achieved these re-
sults by learning from FFDMs only, while all top-performing challenges included
DBT data in training.



8 P. Terrassin et al.

Table 3. State-of-the-art comparison table between our method using a 8-mm slab and
methods proposed from the DBTex phase 2 challenge [8]. We report binary classi�cation
metrics using the same methodology as mentioned above.

BCSval BCStest

Methods AUCROC AUCPR Spec@90% AUCROC AUCPR Spec@90%
NYU BTeam 0.95 (0.93-0.97) 0.39 (0.20-0.64) 0.89 (0.86-0.93) 0.93 (0.91-0.95) 0.27 (0.15-0.41) 0.86 (0.78-0.90)

Vicorob 0.93 (0.89-0.96) 0.33 (0.15-0.55) 0.85 (0.74-0.90) 0.93 (0.90-0.96) 0.33 (0.19-0.52) 0.78 (0.68-0.95)
Zedus 0.96 (0.93-0.98) 0.35 (0.19-0.58) 0.90 (0.85-0.94) 0.92 (0.88-0.95) 0.25 (0.14-0.40) 0.86 (0.59-0.90)

Ours (8mm slab) 0.90 (0.79-0.97) 0.31 (0.16-0.54) 0.84 (0.81-0.87) 0.90 (0.84-0.95) 0.32 (0.17-0.51) 0.79 (0.76-0.81)

The processing time decreases when reducing the number of slabs M . We
timed the inferences of 2787 volumes (BCSval and BCStest) on 2 CPUs (AMD
EPYC9474@3.6GHz 48 cores). The obtained average times per volume are: 74s
(T = 6), 55s (T = 8), 45s (T = 10), and 37s (T = 12), resulting in an average
≈ 3.72s per image. Hence, processing slices separately gives a volume-wise in-
ference time of ≈ 372s for DBT with 100 slices, which may not be acceptable
in practice. Moreover, no performance gain was observed in none of the dataset
when processing slices independently compared to 6− 10mm thicknesses.

5 Conclusion

In this study, we evaluate a DBT classi�cation method in the context of breast
cancer screening. To align with the lack and heterogeneity of DBT training
data, we used a 2D CNN architecture trained solely on FFDMs. To preserve
the resolution and reduce computation times and costs, we propose to use a
slabbing approach to summarize an entire DBT volume into several 2D slabs.
This strategy leverages the anisotropic property of DBT, copes with the scarcity
of isolated slices, and mimics the running clinical practices.

We propose a comprehensive benchmark evaluating di�erent sets of param-
eters to generate slabs. We place the proposed method in the realistic screening
scenario (i.e., strongly imbalanced towards benign and normal cases), evaluating
on two public screening datasets: BCS-DBT and EA1141. We share the splits
used for EA1141 in a GitHub repository to facilitate future works.

Our method achieves high performances with breast-wise AUCROC of 0.90
on BCS-DBT validation and test subsets and 0.97 on EADBT. To evaluate the
clinical viability, we show speci�city at 90% of sensitivity on the three datasets
obtaining 0.87, 0.79, and 0.97 for BCSval, BCStest, and EADBT respectively.
Future works will focus on the integration of DBTs in training data, and the
design of a method that fuses both 2D and 3D features to exploit inter-slices
information to improve both classi�cation and detection performance.
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