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Abstract

We present an experimental study on the evaporation of drops on fibers. More specifically, we
focus on the droplet lifetime both in quiescent air and in an air flow of constant velocity. We propose
a model to describe the evaporation rate and lifetime in a purely diffusive regime, which includes
the liquid cooling associated with evaporation and the thermal conductivity of the atmosphere and
the fiber. Our model effectively captures the primary physical behaviors, demonstrating a semi-
quantiative agreement with our measurements across various liquids and fiber materials. Finally, the
model is generalized to a convective air flow, which also rationalizes our experimental data.

I. INTRODUCTION

The simplest consideration for drop evaporation
is likely the suspended spherical drop, which has
been solved by Langmuir for quiescent air [1] and
extended by Frossling for the case of an air flow
[2]. Evaporation is associated with a cooling effect
due to the enthalpy of vaporization. The role of
the cooling effect on the droplet lifetime has been
studied, for example, by Andrea to understand the
evolution of sea spray [3]. It can also be used
for measuring the relative humidity of air with a
psychrometer [4]. A comprehensive model regard-
ing spherical drop evaporation has been developed
by Sobac et al. [5]. Recently, these questions re-
gained interest in the context of the transport of
airborne contaminants [6, 7]. Besides evaporation
of spherical drops, evaporation of drops deposited
on a flat substrate is also an important topic in
several applications [8], including inkjet printing,
micro/nano-fabrication, spray cooling and bio-
chemical analysis. However, understanding it in-
depth can be challenging due to the complex inter-
play of several physical phenomena, such as sub-
strate wetting, mass and heat exchanges between
the liquid and its environment, and flows within
the liquid. Evaporation of sessile drops has been
the subjects of several reviews [8, 9, 10, 11, 12, 13].
As demonstrated by numerous studies, the wetting
properties of the substrate have a non-negligible ef-
fect on the lifetime of a sessile drop by constraining
the geometry of the liquid and its temporal evolu-

tion [14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. In the
case of a drop deposited on a flat substrate, the
cooling of the liquid also has an effect on the evap-
oration rate. However, the magnitude of the cool-
ing depends on the heat flux exchanged between
the drop and the solid, and therefore on the ther-
mal properties of the substrate and the geometry
of the system [24, 25, 26, 27, 10, 28]. Experimen-
tal studies have demonstrated that the liquid cool-
ing significantly slows down liquid evaporation for
poorly conducting substrates and/or liquids that
evaporate quickly [24, 25, 26, 27]. For conduc-
tive substrates and low to medium-volatility liq-
uids, drop evaporation can typically be considered
quasi-adiabatic [24, 25, 26, 27]. These experimen-
tal results were rationalised by Sefiane and Ben-
nacer [26], who employed thermal resistances to
model the system.

The presence of the substrate causes the temper-
ature along the interface to be non-uniform [29],
resulting in surface tension gradients that can
create Marangoni flows [30, 31, 10, 32]. These
flows might affect the rate of evaporation of the
droplet [33, 34, 35].

Although the evaporation of spherical drops and
sessile drops on flat substrates have been exten-
sively studied over the past fifty years, research on
evaporation in other geometries is scarce. Never-
theless, droplets on fibrous materials also present
a relevant situation for many applications, such
as drying filters, textiles, and insulation materi-
als [36, 37, 38]. The morphology and the evapo-
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ration of liquids in fibrous materials are also sub-
ject to the influence of the fibres present. For a
drop on a single fiber, the liquid can adopt two dif-
ferent morphologies depending on its volume and
contact angle. It can take either the clamshell
shape, where a small droplet wets only a portion
of the fiber’s circumference, or the barrel shape,
where the droplet fully wets the fiber, resembling
a pearl on a string [39, 40, 41]. For the latter,
the fiber’s curvature creates an inflection point at
the liquid/air interface, leading to a droplet as-
pect ratio close to unity, even for a perfectly wet-
ting liquid, in contrast to what is observed for ses-
sile drops [39, 42]. In a previous study, we have
shown that an axisymmetric drop on a fiber has
an evaporation rate that is nearly independent of
the contact angle, in contrast to sessile drops [43].
In addition, on an assembly of fibers, the evapora-
tion rate of the liquid depends on the fiber orienta-
tion, which mainly changes the liquid morphology
[44, 45].

The lifespan of a droplet, whether located at
the tip or the center of a single fiber or at
the junction of two perpendicular crossed fibers,
also depends on the heat exchange between the
fiber(s) and the droplet. This has been veri-
fied through numerical simulations, which con-
sider the droplet to be spherical and evaporat-
ing in most cases at high pressure and tempera-
ture [46, 47, 48, 49, 50, 51, 52]. To our knowledge,
only one study has been conducted to confirm
this experimentally in ambient conditions. Rad-
hakrishnan et al. [53] studied the evaporation of
ethanol and water drops suspended from the end
of a glass or steel fiber at ambient temperature
and pressure. They showed that drops evaporate
faster on a conductive substrate than on an insu-
lating one. The above-mentioned studies have also
shown that the presence of a fiber can increase the
evaporation rate of a drop for a sufficiently large
fiber radius. This is due to the conductive heat
flux provided by the fiber to the drop, even for in-
sulating fibers [46, 47, 48, 50, 51, 52]. However,
this effect decreases with increasing temperature
and Reynolds number [49, 50, 51]. By reducing
the cylinder diameter while keeping the drop ra-
dius constant, the increase in evaporation flux can
be limited or even suppressed. In this case, the
evaporation rate can be accurately estimated using
that of a spherical drop [46, 47, 51], eliminating the
differences between insulating and conductive sub-
strates. These results are consistent with the an-
alytical model developed by Fuchs for a spherical

drop suspended at the end of a fiber, evaporating
non-adiabatically in diffusive regime [54]. In the
case of forced-convective evaporation, a laminar
air flow perpendicular to a horizontal fiber leads
to drop propulsion along the fiber because of sym-
metry breaking in the wake behind the drop [55].
For droplets deposited on an assembly of fibers, air
flow can induce aerodynamic interactions between
droplets that lead to complex behaviors such as
alignment, repulsion, or coalescence [56]. Despite
the importance of understanding the evaporation
of drops in fibers, there have been few experimen-
tal studies or attempts to rationalize the results.

Here, we aim to study experimentally and the-
oretically the evaporation of a single axisymmet-
ric drop on a fiber both in quiescent air and un-
der an air flow. We will highlight the role of the
fiber thermal properties on the drop lifetime. In
Section 2, we present the experimental setup and
the measurements of the droplet lifetime on fibers.
In Section 3, we propose an analytical model of
the drop evaporation including the evaporation-
induced cooling effect in a diffusion-limited regime
that we compare to the experimental results in
absence of air flow. In Section 4, we extend the
model to include the air flow to rationalize our en-
tire dataset. Then, we conclude in Section 5.

II. EXPERIMENTS

A Drops on fibers

To measure experimentally the lifetime τexp of
a drop on a fiber, we used fibers of diameter
2a = 250 µm which are either glass fibers sup-
plied by Saint-Gobain, glass capillaries (inner di-
ameter 150 µm, VitroCom #CV1525), or copper
fibers (Goodfellow CU005270). The surface rough-
ness of the fibers has not been measured but is
below 1 µm as can be deduced from optical imag-
ing of the fibers. A drop of volume 0.8 µL is
deposited on the fiber with a pipette (Eppendorf
0.1 – 2.5 µL). Before the deposition, the surface
of the fiber is activated with a plasma generator
(Electro-Technics Product). The studied liquids
are distilled water (resistivity: 18.2 MΩ·cm), cy-
clohexane (Sigma, purity > 99.5 %) and octane
(Sigma, purity > 99.5 %). For the chosen volume
and fiber diameter the droplet can adopt either the
clamshell or the barrel conformation (metastable
region of the morphology diagram [40]). Lifetimes
of droplets are measured only for drop adopting an
axisymmetric morphology (barrel shape, see Fig-
ure 1(a) and Figure A.2 of the Supplementary Ma-
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Figure 1: (a) Time-lapse of the evaporation of
a water drop of initial volume Ω0 ≈ 0.8 µL de-
posited on a glass fiber of radius a = 125 µm ob-
served in side view. The measured relative hu-
midity is Rexp

H = 45.9 % and the temperature is
Texp = 21.5 ◦C. (b) Measured lifetime of water, cy-
clohexane and octane droplets on copper and glass
fibers (Ω0 = 0.8 µL, a = 125 µm.) as a function
of the air velocity Uair.

terials) on the fiber [39, 40, 41]. In the range of
volume and contact angle where the barrel mor-
phology is stable, the macroscopic shape of the
drop is relatively independent of wetting condi-
tions, as illustrated in Figure A.2 of the Supple-
mentary Materials.

B Wind tunnel

Experiments are performed in a homemade wind
tunnel either in diffusive regime (still air) or in
forced convective regime. A photograph and a
schematic representation of the setup are provided
in Figure A.1 of the Supplementary Materials.
The presence of the box limits the sensitivity of the
system to air movements in the room. For forced-
convective experiments, the air is set in motion by
a fan (Soler & Palau, TD 6000/400, 5310 m3/h
230 V) and is aspirated into a squared-section box
of dimensions 110 × 40 × 40 cm3, opened at the
entrance. The fiber is placed horizontally in the
center of the box perpendicularly to the air flow.
The air flow velocity is measured with a hot wire
anemometer (Radiospare AM-4204 RS PRO) al-
lowing to measure velocities ranging from 0.2 to
20 m/s with a resolution of 0.1 m/s. The fan is
connected to a variable transformer allowing to

impose a voltage between 0 and 260 V (CONA-
TEX Variable transformer 0 to 260V/3A AC) cor-
responding to air velocities Uair between 0.1 and
10 m/s. Denoting νair ≈ 1.5 × 10−5 m2/s as the
kinematic viscosity of air, the associated Reynolds
numbers, defined as Re = 2RUair/νair, are hence
between 10 and 1000 for a typical drop size of
2R = 1 mm.

C Observations and lifetime
measurements

The observation is done in lateral view with a
homemade microscope equipped with a 2× long
working distance objective (Mitutoyo) connected
to a monochrome camera (Basler acA5472-17um,
resolution: 20 Mpx). Images are acquired at 1
fps. Temperature and relative humidity can vary
in the room where the experiments are performed
and are measured with a commercial hygrometer
for each experiment. These two parameters are de-
noted Texp and Rexp

H , respectively. A time lapse of
a water drop evaporating on a glass fiber is shown
in Figure 1(a). Lifetimes τexp are measured by
recording the time between the first image where
we see the drop and the first image where we see
no liquid on the fiber. Figure B.1 of the Supple-
mentary Materials depicts the lifetimes of droplets,
measured in the diffusive regime, as a function of
relative humidity and temperature. The typical
measurement error is approximately ten seconds
per point, and the error bars are smaller than the
markers. In terms of measurement repeatability,
for a specific liquid-solid system at a fixed tem-
perature and humidity, the deviation of the life-
time measurements on multiple drops is approx-
imately 10 %. These discrepancies are primarily
attributable to the stages involved in the pipetting
of the drop and its deposition on the fiber, both of
which influence the initial volume of liquid. Con-
sequently, we endeavor to replicate measurements
under identical experimental conditions whenever
feasible.

For forced convective experiments, the deposi-
tion of the drop on the fiber is done at Uair = 0,
and then once the focusing on the drop is done,
the wind tunnel is turned on. Thus, we estimate
that the uncertainty of the lifetime measurement
is about 30 s. As a result, the relative uncer-
tainties on the high speed lifetime measurements
(τexp ≈ 100 – 200 s) are relatively large.

Figure 1(b) depicts the measured lifetimes as a
function of air velocity Uair for the various tested
liquids and fibers. The measurements appear scat-
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tered, and Figure 1(b) shows that the lifetimes de-
crease with air velocity. To understand these re-
sults we first rationalize the observations for the
diffusion limited evaporation regime at Uair = 0.
Then, we will consider the effect of air velocity on
the lifetime of the drop.

III. EVAPORATIVE COOLING IN THE
DIFFUSION-LIMITED REGIME

A Models

1 Spherical drop

In a previous study [43] we showed that the evap-
oration rate of a barrel-shaped drop on a fiber is
virtually independent of contact angle and can be
approximated by the one of a spherical drop evapo-
rating in the same conditions. Therefore, we con-
sider a spherical airborne droplet evaporating in
purely diffusive regime, Uair = 0.

For a spherical drop of radius R(t) evaporating
in still air at temperature T∞ and relative humid-
ity RH, the diffusion-limited evaporation is in good
approximation quasi-stationary and the evapora-
tion rate writes [54, 5]

Φev = 4πDR (csat(Ti)− c∞) . (1)

The quasi-steady assumption is valid if the droplet
radius is significantly larger than the mean-free
path of the vapor molecules, meaning R larger
than few micrometers [54] and if the evaporation
time of the drop is much larger than the mass diffu-
sion characteristic time in the gas phase R2/D [5].
In practice, we check that this is the case. The
enthalpy of vaporization ∆vapH being a positive
quantity, the liquid cools down while evaporating
and the interface reaches a temperature Ti ≤ T∞.

In equation (1), D is the diffusion coefficient of
water vapor in air at the temperature of the in-
terface. In a previous study, we have shown that
the value of the diffusion coefficient can be esti-
mated at the temperature of the air far from the
drop T∞ [57]. At the interface the air is saturated
with vapor, c(r = R) = csat(Ti) where csat(Ti) is
the saturated vapor concentration at the temper-
ature of the interface. Far from the interface, the
vapor concentration is the ambient concentration
noted c∞, which – in the hypothesis that the va-
por is an ideal gas – can be related to the relative
humidity by RH = c∞/csat(T∞) where csat(T∞) is
the saturated vapor concentration at the tempera-
ture of the ambient air. Integrating the mass con-
servation Φev = −4/3πρdR3/dt associated with

equation (1), the lifetime of a spherical drop evap-
orating in diffusive regime is obtained and reads

τS =
ρR2

0

2D (csat(Ti)− c∞)
, (2)

where R0 is the initial radius of the drop and ρ
the density of the liquid. To calculate the lifetime
τS, the temperature of the liquid Ti must then be
determined.

Due to the cooling of the liquid the drop ex-
changes heat with its environment. By analogy
with mass transfer, the total heat flux Qh received
by the spherical drop from the air in purely diffu-
sive and quasi-stationary regime is

Qh = −4πλairR∆T ⋆, (3)

with λair the thermal conductivity of the air at
T∞ and RH = 0 [57]. We note ∆T ⋆ = T∞ −
Ti, to get more compact equations. The steady-
state assumption implies that the heat diffusion
in the air and in the liquid are fast compared to
the lifetime of the drop. This is validated if the
timescales over which the heat diffuses through the
air R2

0/αair and through the liquid R2
0/αℓ with αair

and αℓ the thermal diffusivities of the air and the
liquid, are short compared to the evaporative time.
This also implies that the temperature in the drop
is uniform and has reached its equilibrium value
Ti [54, 5]. In practice, these conditions are valid
for the tested liquids evaporating under ambient
conditions [58, 3, 5, 6, 7].

In the steady state regime, the energy absorbed
by the evaporation Qev = ∆vapH Φev balances the
thermal flux such as

Qev = −Qh, (4)

T∞ − Ti = χ

(
csat(Ti)

csat(T∞)
−RH

)
. (5)

To get an analytical prediction of ∆T ⋆, the evo-
lution of the saturating vapor concentration with
temperature is approximated by [57]:

csat(T )

csat(T∞)
= 1 + α1∆T + α2∆T 2, (6)

where ∆T = T∞ − T and α1 and α2 are two fit-
ting parameters depending only on T∞. The values
of α1 and α2 are given in Table 4 of the Supple-
mentary Materials for T∞ ∈ [10, 30] ◦C for all the
studied liquids. Inserting equation (6) into equa-
tion (4) (see [57] or Supplementary Materials C.1
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for detailed resolution), we obtain the liquid tem-
perature:

∆T ⋆ =
1− χα1 −

√
(1− χα1)

2 − 4χ2α2 (1−RH)

2χα2
,

(7)
where χ = ∆vapHDcsat(T∞)/λair depends only on
T∞. The physical parameters csat, D and λair are
evaluated at T∞ by using the phenomenological
equations introduced in [57] and recalled in the
Supplementary Materials B. The liquid density ρ
and enthalpy of vaporization ∆vapH are consid-
ered constant and their values are given for all the
studied liquids in the Table 1 of Supplementary
Materials.

Finally, combining equations (6) and (7), and
inserting the result in equation (2) gives the life-
time of the spherical drop.

2 Axisymmetric drop on a fiber

Due to the different surface tensions of the three
liquids, their wettability on the wires vary. How-
ever, these variations only cause minor changes of
the droplet shapes, as expected from the litera-
ture [39, 40, 41] and as shown in the time series
presented in the supplementary information (Fig-
ure A.2). Furthermore, a previous study demon-
strated that the contact angle has a weak effect on
the evaporation rate and that axisymetric drops
on a fiber evaporate, in a good approximation, as
spherical droplets [43]. To model the diffusion-
limited evaporation of an axisymmetric drop on
a fiber, we thus adapt the model developed by
Fuchs [54] for a spherical drop suspended at the
end of a fiber and we consider the system shown in
Figure 2(b) of a spherical drop of radius R pierced
by a fiber of radius a. The drop evaporates in still
air which is at temperature T∞ and relative hu-
midity RH. The drop exchanges mass and heat
with its environment and the goal here is to calcu-
late the heat flux Q′

h exchanged between the fiber
and the liquid on each side of the drop (see Fig-
ure 2(b)). The calculation of Q′

h takes into ac-
count heat conduction through the fiber and the
heat flux exchanged between the fiber and the at-
mosphere. The length over which the temperature
gradient in the fiber is established is denoted ℓ. In
the steady state regime, the energy absorbed by
the evaporation balances the thermal flux such as

Qev = −(Qh + 2Q′
h). (8)

Figure 2: (a) Image captured with an infrared
camera (Teledyne FLIR X6981 with a 50 mm
macro objective) of a 0.8 µL drop on a glass fiber.
The gray scale encodes the temperature. The im-
age highlights the temperature gradient along the
fiber on both sides of the drop. (b) Schematic rep-
resentation of the heat fluxes exchanged between
the drop on a fiber and its environment with the
notations used for the modeling.

To perform the calculations, we make additional
hypothesis. First, we consider systems where grav-
ity is negligible meaning that Wo = ρgΩ/(γa) ≪ 1
with Wo the Worthington number [59] where Ω is
the volume of the drop and γ the surface tension.
We also assume that the exchanges between the
drop and the atmosphere are not perturbed by the
presence of the fiber and are those of a spherical
droplet (see Figure 2(b)). The energy absorbed
by the evaporation is thus Qev = ∆vapH Φev with
Φev defined in equation (1) and the heat flux ex-
changed between the atmosphere and the drop is
Qh defined in equation (3). Finally, the temper-
ature of the drop is assumed to be uniform both
in the volume and on the surface, the latter be-
ing supported by the infrared image shown in Fig-
ure 2(a), such that the temperature of the drop is
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the temperature of the interface Ti. The tempera-
ture inside the fiber is also supposed to be constant
in the cross section of the fiber T (z). This assump-
tion requires that a ≪ ℓ, which is also supported
by the Figure 2(a).

To calculate the temperature profile T (z) in the
fiber, we consider only one of the two sides of
the fiber and adopt a cylindrical coordinate sys-
tem centered on the liquid/solid interface (see Fig-
ure D.1(b) of the Supplementary Materials). The
heat flux Q′

h is defined as

Q′
h = −πa2λs

dT

dz

∣∣∣∣
z=0

, (9)

where λs is the thermal conductivity of the fiber.
In addition, the local energy balance writes:

−2πaλair
dT

dr

∣∣∣∣
r=a

= πa2λs
d2T

dz2
. (10)

The resolution of this differential equation is de-
tailed in the Supplementary Materials D and leads
to the estimation of the total heat flux exchanged
between the fiber and the drop:

Q′
h ≈ −πa∆T ⋆

√
πλairλs

10
. (11)

Substituting equation (11) in equation (8), we get
an implicit equation for the liquid temperature Ti:

T∞ − Ti

(
1 + Q̃fiber

)
= χ

(
csat(Ti)

csat(T∞)
−RH

)
,

(12)

where

Q̃fiber =
a

R

√
πλs

40λair
(13)

is the dimensionless number computing the ratio
between the heat fluxes exchanged between the
air and the liquid and between the solid and the
liquid. Using the quadratic description of equa-
tion (6) together with the method proposed in
Ref. [57], we obtain the temperature of the drop
from equation (12):

∆T ⋆ =
1 + Q̃fiber − χα1

2χα2
−√[

1 + Q̃fiber − χα1

]2
− 4χ2α2 (1−RH)

2χα2
,

(14)

which depends on the drop radius R, contrarily to
the case of a isolated spherical drop, via Q̃fiber.
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(b)
Water on glass fiber

Water on copper fiber

Cyclohexane on glass fiber

Cyclohexane on copper fiber

Octane on glass fiber

Octane on copper fiber

10−3 10−2 10−1 100 101 102 103
λs (W ·m−1 · K−1)

Water

Cyclohexane

Octane

Airborne spherical drop

Glass fiber

Copper fiber

Figure 3: Prediction of the temperature difference
∆T ⋆ for a spherical drop on a fiber (Eq. (14)) for
RH = 0 et T∞ = 20 ◦C. (a) Effect of the thermal
properties of the fiber λs on liquid temperature for
a = 125 µm and R = R0 ≈ 0.6 mm. The curves in
gray shades are for the three different liquids and
the vertical lines indicates three different materi-
als. In purple we show a line for Q̃fiber → 0, which
corresponds to the limit case of a isolated air-
borne sphere (see Eqs. (5) and (12)). The dashed-
dotted lines represent the limit of equation (14) for
Q̃fiber ≪ 1− χα1 ∼ 1 which corresond to the case
of an airborne sphere (see Eq. 31 of the Supple-
mentary Materials). The dashed lines represents
the limit of equation (14) for Q̃fiber ≫ 1−χα1 ∼ 1
for each liquid (see equation (32) of the Supple-
mentary Materials). (b) Effect of the aspect ratio
of the drop R/a for the three liquids and two fiber
materials. The markers are visual guides to dis-
tinguish between the different curves.

B Results and Discussion

The dimensionless number Q̃fiber (Eq. (13)) indi-
cates the importance of the fiber contribution to
the heat exchange by taking into account the ge-
ometry of the system via a/R and the difference
in thermal conductivity between the air and the
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fiber.
If Q̃fiber ≪ 1, then equations (12) and (5) show

that the effect of the fiber on the heat exchange
is negligible. Therefore, the temperature of the
liquid depends only on its physical properties, as
if it were evaporating as an isolated sphere. This
scenario is observed for highly insulating materials
and/or a small fiber relative to drop size.

For Q̃fiber ≫ 1, the heat flux brought by the
fiber to the drop is large compared to the one
brought by the atmosphere: the fiber thermal-
izes the drop at each moment, the temperature
of the liquid tends towards the ambient temper-
ature meaning that the evaporation of the liquid
is done in a quasi-adiabatic way. This situation
is observed for conductive fibers. The case where
a ≫ R is also possible, but it leads to an equilib-
rium morphology of clamshell [39, 40, 41], which
is not addressed in this work.

To analyze the effect of liquid physicochemical
properties, fiber thermal conductivity, and system
geometry on liquid temperature, the temperature
difference between liquid and ambient air is plot-
ted as a function of the fiber thermal conductiv-
ity (Figure 3(a)) or the drop radius (Figure 3(b)).
The curves are obtained from equation (14) at
T∞ = 20 ◦C and RH = 0.

Figure 3(a) illustrates the variation of the liquid
temperature with respect to the thermal conduc-
tivity of the fiber, λs or Q̃fiber, for a dimension-
less drop radius R0/a ≈ 5, which corresponds to
the initial dimensions of the experimental system.
The thermal conductivity of the solid, λs, varies
from 1× 10−3 W ·m−1 ·K−1 (one-tenth of the air
conductivity) to 1000 W ·m−1 ·K−1, which would
correspond to a fiber made of diamond. For in-
stance, the thermal conductivity of glass is about
1 W ·m−1 ·K−1. and copper is 400 W ·m−1 ·K−1.
Thus, the prefactor

√
πλs/40λair in equation (13)

is 1.6 and 32 for glass and copper, respectively.
The different liquids under study are depicted in
shades of gray. The violet curve illustrates the
case of an airborne spherical drop, Q̃fiber → 0,
and its intersection with the curves representing
the various liquids provides the value of tempera-
ture, Ti, obtained from equation (14). Figure 3(a)
shows that the effect of evaporation cooling is less
pronounced for octane than for cyclohexane and
water.

Conversely, Figures 3 and C.1(a) in the Supple-
mentary Materials reveal that on a glass fiber, the
cooling of water and cyclohexane drops cannot be
disregarded. Furthermore, it can be observed in

0 500 1000 1500
τSF (s)

0

500
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1500

τ e
xp

(s
)

102

102

Water on copper fiber

Water on glass fiber

Cyclohexane on copper fiber

Cyclohexane on glass fiber

Octane on copper fiber

Octane on glass fiber

Figure 4: Data presented in Figure 1 for Uair =
0 where the measured lifetime is plotted against
the numerical solution of equation 15. The black
dashed line represents the equality between axes.

Figure 3(a) that the temperature within a drop
on a glass fiber is higher than that of an airborne
spherical drop. Despite glass being a good insu-
lator, the presence of the fiber cannot be ignored
in the thermal exchanges between the drop and its
surroundings. The value of Q̃fiber at the initial in-
stant, i.e., for R0/a ≈ 5, Q̃fiber ≈ 0.4 ∼ 1 , aligns
well with this observation. Figure 3(b) indicates
that even as R/a decreases over time, the drop’s
cooling must be considered. It is only in the fi-
nal moments of evaporation that the temperature
of a drop placed on an insulating fiber equals the
ambient temperature. These observations are ex-
perimentally confirmed, as shown in Figure C.1(b)
of Supplementary Materials, which illustrates the
lifetime of different tested liquids placed on a glass
fiber as a function of the lifetime of an airborne
droplet cooling down while evaporating (Eq. (2)
combined with Eq. (7)). It shows that there is a
systematic discrepancy between the experimental
results for cyclohexane and water and the airborne
sphere model. In a broader context, Figure 3(a)
shows that for most insulating materials, the pres-
ence of the fiber significantly affects thermal ex-
changes between the drop and its environment and
shortens its lifetime.

Finally, to predict the lifetime of the drop we
substitute equation (14) in equation (1), which
gives the evaporation rate of the drop. From the
mass conservation of the system, we obtain the fol-
lowing differential equation for the temporal evo-
lution of the drop radius:

− ρRṘ

Dcsat(T∞)
= α2∆T ⋆2 + α1∆T ⋆ + 1−RH,

(15)

7



where ∆T ⋆ is given by equation (14). We integrate
numerically the previous equation between R =
R0 and R = 0 using odeint from scipy [60] to get
the lifetime of the drop on a fiber predicted by the
model τSF.

We plot in Figure 4 the measured lifetimes as a
function of the theoretical lifetimes τSF predicted
by the model. For each point the theoretical life-
time is calculated for the temperature T exp

∞ and
humidity Rexp

H as explained in Supplementary Ma-
terials B. The error bars on each point are smaller
than the marker. The repeatability error is given
by the height of the cloud of points with a con-
stant τSF. The model overestimates (with a dif-
ference of the order of 10 – 20 %) the measured
lifetimes. This discrepancy might arise from er-
rors in determining the initial volume, which has
a substantial influence as the lifetime depends on
R2

0. Additionally, the non-spherical geometry of
the drop, the deformation of the drop by gravity
or the impact of natural convection and air move-
ments in the room, which accelerate drying, might
contribute to the observed deviations between the
model and the experiments.

Now that the case of diffusion-limited evapora-
tion has been explained, let us examine the impact
of air velocity on the droplet’s drying rate.

IV. ROLE OF THE AIR VELOCITY

A Models

1 Spherical drop

We consider first the evaporation of a spherical air-
borne drop of radius R placed in a laminar external
air flow of velocity Uair. In 1938, Frössling [2], us-
ing boundary layers theory, showed that the evap-
oration rate of a spherical drop placed in a laminar
air flow writes:

Φconv
ev = Φev

(
1 + βevRe1/2Sc1/3

)
, (16)

where Φev is the evaporation rate of the drop in
purely diffusive regime (Eq. (1)), Re = 2RUair/νair
is the Reynolds number, Sc = νair/D the Schmidt
number and βev ≈ 0.3 is a constant.

Analogously, the convective heat flux received
by the drop from the atmosphere can be written
as follows [61, 62]:

Qconv
h = Qh

(
1 + βhRe1/2Pr1/3

)
, (17)

where Pr = νair/αair is the Prandtl number and
βh ≈ 0.3. The air thermal diffusivity is αair =

λair/(ρairC
air
p ) where ρair is the air density, Cair

p

its specific heat capacity at constant pressure, and
λair its thermal conductivity.

In gases, kinetic theory models show that the
microscopic mechanism of momentum, mass and
thermal diffusion are of the same origin meaning
that Sc ≈ Pr ≈ 1. Writing the energy balance in
quasi-steady state, ∆vapH Φconv

ev = −Qconv
h , we get

the temperature of the liquid that is virtually inde-
pendent on air velocity or drop radius and equal
to the temperature in purely diffusive regime of
equation (7) (see Supplementary Materials C.2).

We denote x = βevRe1/20 Sc1/3 and Re0 =
2R0Uair/νair the initial Reynolds number. Com-
bining equations (6), (7), and (16) to write mass
conservation and integrating the differential equa-
tion obtained (see Supplementary Materials C.2
for detailed resolution) the lifetime of the spheri-
cal droplet writes{

τ convS = τS if x = 0,

τ convS = τSF(x) if x > 0,
(18)

with τS the diffusive lifetime of the drop (Eq. (2))
and

F(x) =
4

3x
− 2

x2
+

4

x3
− 4 ln (1 + x)

x4
. (19)

For Re0 ≫ 1, a Taylor expansion of equa-
tion (18) gives τ convS ≈ 4τS/(3βevRe1/20 Sc1/3)
meaning τ convS ∝ U

−1/2
air .

2 Axisymmetric drop on a fiber

Equation (18) is only valid when the liquid temper-
ature is constant with respect to Uair and equal to
the temperature reached in diffusive regime. While
spherical droplets temperature are minimally af-
fected by air flow, the temperature gradient within
the fiber, and consequently the heat flux Q′

h trans-
ferred by the solid to an axisymmetric drop on a
fiber, depend on the air velocity. As air velocity
increases, Q′

h diminishes, causing a decrease in liq-
uid temperature, and it eventually becomes negli-
gible in comparison to the heat exchange occurring
between the droplet and the air at high Reynolds
number [49, 50, 51]. Nonetheless, the variation of
Q′

h with Uair acts as a multiplicative factor which
enables to write the lifetime of an axisymmetric
drop on a fiber as:{

τ convSF = τSF if x = 0,

τ convSF ∝ τSFF(x) if x > 0.
(20)
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Figure 5: Lifetime ratio τSF/τexp as a function of
U

1/2
air where all the data presented in Figure 1 are

reported. The black dashed line represents equa-
tion (20) with a proportionality constant equal to
1.

where τSF is obtained by numerically solving equa-
tion (15). The proportionality coefficient is ex-
pected to be close to unity.

B Results and Discussion

All the experimental results were obtained for
droplets initially in “barrel” morphology. However,
for Uair > 5 m/s, the droplet transitions into a
“blown” droplet shape, as described by Bintein et
al. [63, 55]. The study in [63] shows that the flow
induces a rotational motion of the droplet around
the fiber, while the droplet itself undergoes mini-
mal deformation due to the air flux. These mea-
surements notably indicate that the droplets main-
tain a consistent apparent surface area facing the
wind, enabling a comparison of measurements con-
ducted at both high and low velocities and the use
of the spherical drop model. Moreover in the ex-
periments the drops are not self-propelled along
the fiber even though is it expected for the con-
sidered Reynolds numbers [55]. This absence of
self-propulsion might indicate that the flow is not
perfectly laminar.

Figure 5 shows the inverse of the experimental
lifetimes normalized by the diffusive lifetime of a
drop on a fiber τSF as a function of U1/2

air . As pre-
viously discussed, the experimental lifetimes are
inversely proportional to the square root of the air
velocity at high velocity. Moreover, the experi-
mental data points align, with a difference of the
order of 10 % between the model and the exper-
imental results, with the dashed black line repre-
senting equation (20) (with a proportionality con-

stant equals to 1). This agreement is observed
without the introduction of any adjustable param-
eters.

V. CONCLUSION

A model is developed to predict the lifetime of a
barrel-shaped drop on a fiber evaporating in both
diffusive and convective regimes. The system is
modeled as a sphere pierced by a fiber which cools
down while evaporating and exchanges heat with
its environment. In the diffusive regime, the heat
fluxes exchanged between the liquid and the atmo-
sphere on one hand, and the liquid and the fiber
on the other hand were calculated to obtain the
temperature of the drop, its evaporation rate, and
its lifetime.

This analysis identifies a dimensionless number,
Q̃fiber that compares the heat flux transferred to
the drop by the fiber to the heat flux exchanged
between the liquid and the air. This number quan-
tifies the role of the fiber in the heat exchange.
When Q̃fiber ≫ 1, the liquid is thermalized by the
fiber and the cooling of the drop is negligible, so
the system can be accurately described by a model
of an adiabatically evaporating sphere. This is ob-
served with metallic fibers, which are good thermal
conductors. For Q̃fiber ≪ 1, the heat flux brought
by the fiber to the drop is negligible. Therefore,
the drop evaporates as an airborne sphere. The
amount of cooling depends solely on the physical
properties of the liquid. Here, we have shown that
for macroscopic drops (R > a) placed on insulat-
ing fibers, we have Q̃fiber ∼ 1. This means that the
heat flux brought by the fiber to the drop cannot
be neglected and the drop cannot be considered as
an isolated sphere in the air, even for good thermal
insulating materials such as glass. Additionally,
the model offers a consistent representation that
agrees reasonably well with the measured lifetimes
in the diffusive regime for all experimentally tested
liquid/solid couples.

Using the pioneering works of Frössling [2] and
Fuchs [54] associated with the model developed
in the diffusive regime, we have shown that we
are able to propose a semi-quantitative model of
the lifetime of drops placed on fibers evaporat-
ing under an external air flow. In particular, the
drop lifetime in forced-convective regime in pro-
portional to its lifetime in diffusive regime and in-
versely proportional to the square-root of the air
velocity.

We believe that this study, by understanding
the role of the fiber on the heat transfer, can also
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provide new insights into the drying of droplets
containing particles [64, 10, 65, 13]. The present
study opens up new possibilities for understand-
ing particle deposits in more complex geometries
during the evaporation of a drop. For instance,
as demonstrated in [66], when a axisymmetric wa-
ter droplet dries on a fiber, the resulting deposit
is more uniform compared to when it dries on a
flat surface. Finally, one of the most important
hypothesis in our models is the symmetry of the
droplet on the fiber that is not verified experimen-
tally due to gravity. Future theoretical and nu-
merical works will be useful to decipher the role of
gravity on the evaporation dynamics [67].
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Appendix A: Materials and methods

1 Experimental setup

The experimental setup described in the main article, the homemade wind tunnel, is shown in more
detail in Figure A.1. Figure A.1(a) shows a side view of the outside of the homemade wind tunnel and
Figure A.1(b) provides a schematic view of the setup as well as a zoomed view of the drop placed on
a fiber.

Figure A.1: (a) Photograph and (b) schematic representation of the homemade wind tunnel.

2 Morphologies of the drops on the fibers

All the lifetime measurements were obtained for drops adopting initially an axisymetric configuration,
known as the barrell shape [39, 40, 41], on the fiber. The timelapses of a water drop on a glass
(Fig. A.2(a)) and a copper fiber (Fig. A.2(b)) and a cyclohexane drop on a glass (Fig. A.2(c)) and
a copper fiber (Fig. A.2(d)) evaporating in diffusive regime (Uair = 0) are shown in Figure A.2.
Figure A.2 shows that all the liquids adopt a barrel configuratin on the tested fiber and the different
wetting conditions have a small impact on the geometry of the liquid as expected for drop place on a
fiber [39, 40, 41].

All lifetime measurements were obtained for drops that initially adopt an axisymmetric configura-
tion on the fiber, known as the barrel shape [39, 40, 41]. The time lapses of a water drop on glass
(Fig. A.2(a)) and copper fiber (Fig. A.2(b)) and a cyclohexane drop on glass (Fig. A.2(c)) and copper
fiber (Fig. A.2(d)) evaporating in the diffusive regime (Uair = 0) are shown in Figure A.2. Figure A.2
shows that all liquids adopt a barrel configuration, kept throughout the evaporation, on the tested fiber
and that the different wetting conditions have little effect on the geometry of the liquid, as expected
for drops placed on a fiber [39, 40, 41].
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Figure A.2: Time-lapse of the evaporation of a drop of initial volume Ω0 ≈ 0.8 µL deposited on a fiber
of radius a = 125 µm observed in side view. (a) Water on glass fiber (same photos as in Figure 1(a)
of the main text.), (b) water on copper fiber, (c) cyclohexane on glass fiber and (d) cyclohexane on
copper fiber

Appendix B: Physicochemical properties of the studied liquids

In our experiments, temperature and relative humidity are variable. In Figure B.1, the lifetimes
measured in the diffusive regime are plotted as a function of the relative humidity Rexp

H . For water
droplets, relative humidity is measured using a commercial hygrometer. Since there is no cyclohexane
or octane vapor in the atmosphere, Rexp

H = 0 for the alkanes. The color of the markers provides
information about the air temperature away from the drop, Texp, during the measurement of the
lifetime of each individual drop.

The air temperature varies between 15 ◦C and 25 ◦C, which has a significant effect on the evaporation
rate of the liquid and precludes direct comparison of results obtained for a given liquid/solid system
at a constant relative humidity. This can be observed, for example, in B.1, where the data points
representing the results obtained for a drop of water on a copper fiber (circles) at relative humidity
RH ≈ 35 % are not superimposed because the temperature varies between 19 and 22 ◦C.

We thus need to calculate the theoretical lifetimes, predicted by our model, in the experimental
conditions. To do so we need to prescribe the variation of several physical constant with the temperature
as described in details in [57]. Here we summarize the phenomenological equations used to calculate the
relevant parameters as well as some data extracted from the literature. We will consider the example
of an isolated spherical droplet whose lifetime is determined by the combination of equations (2) and
(6) of the main article. To calculate the lifetime for a given T∞, we need the values of ρ, χ(T∞) =
∆vapHD(T∞)csat(T∞)/λair(T∞), α1(T∞) and α2(T∞). We limit this study to ambient temperatures
range, T∞ ∈ [0, 30] ◦C. In the following we review the temperature variations of all the submentioned
parameters.

1 Density and enthalpy of vaporization

In the selected temperature range, the values of ρ and ∆vapH remain almost constant. Therefore, we
have chosen to use their values at 20 and 25 ◦C, respectively, as these are the values commonly found
in handbooks of physics. These data are gathered in the Table 1 for all the liquids studied.
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Figure B.1: Evolution of the measured lifetimes in diffusive regime (Uair = 0) as a function of the
ambient humidity and temperature conditions.

Water Cyclohexane Octane Ref.
M (kg/mol) 18× 10−3 84× 10−3 114× 10−3 [68]
∆vapH (J/kg) 2.44× 106 3.93× 105 3.64× 105 [68]
ρ (kg/m3) 998.2 779 702.5 [68]

V (cm3/mol) 13.1 104.8 168.7 [69]

Table 1: Physical constants of the liquids under consideration, M is the molar mass and V the molecular
volume as described in [69]. The mass density ρ is given for the liquid at 20 ◦C, while the enthalpy of
vaporization ∆vapH is specified at 25 ◦C.

2 Diffusion coefficient D
The value of the diffusion coefficient of vapor in air at T∞ is estimated by the Fuller, Schettler, and
Giddings’ method [70, 69] which writes for a molecule A diffusing in B

D(A,B) =
T 1.75

√
1

MA
+ 1

MB

Patm

(
V

1/3
A + V

1/3
B

)2 · 10−6. (21)

The diffusion coefficient D is expressed in m2/s, the molar mass of compound i is in g/mol and Vi

is the diffusion volume of the molecule i where Vi =
∑

j njVj with j a given atom composing the
molecule [69]. The diffusion volume and molar masses of the molecules are given in Table 1 for the
considered liquids.

3 Saturating vapor concentration csat at T∞

To obtain the value of csat(T∞), vapor is treated as an ideal gas, so the saturated vapor concentration
csat(T ) is given by:

csat(T ) =
psat(T )M

RT
, (22)

where psat represents the saturated vapor pressure, M is the molar mass of the vapor, R is the ideal
gas constant, and T is the temperature in Kelvin. The temperature dependence of psat is approximated
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by Antoine’s equation.
psat(T ) = P ◦ 10A− B

C+T , (23)

where P ◦ = 103 Pa and T is in Kelvin.
The constants, A, B, and C, are determined by fitting the data extracted from literature for the

considered liquids which are presented in Table B.3, with the Antoine’s equation (Eq. (23)). Table 2
gathers the coefficients obtained for water, cyclohexane, and octane within the temperature range of
T ∈ [0, 30] ◦C.

A B C

Water 7.34 1808 -33.9
Cyclohexane 6.17 1304 -40.4

Octane 11.2 4791 139

Table 2: Antoine’s coefficients. The coefficients A, B, and C have been obtained by fitting the data
extracted from the literature with the Antoine equation (Eq. (23)). Coefficients B and C are in Kelvin.
The data are available in Table B.3. The coefficients given here are valid for temperatures in the range
of T ∈ [0, 30]◦C.

4 Values of α1 and α2

To perform analytically the calculation of droplet evaporation we choose to use an approximation to
describe csat(T ). To model the temperature-dependent behavior of the saturation concentration, we
employ a quadratic approximation (Eq. (5) of the main text), a method previously used in Ref. [57].
The coefficients α1 and α2 are determined for a given air temperature T∞, by fitting the csat values
obtained from the literature (Table B.3 combined with Eq. (22)). The resulting values are compiled in
Table 4 for temperatures between 10 and 30 ◦C.

5 Temperature variation of air thermal conductivity λair

To calculate the value of λair at T∞ we use Andreas [3] phenomenological equation for dry air,

λair = −3.47 · 10−8 T 2 + 9.88 · 10−5 T − 2.75 · 10−4, (24)

which described with a good accuracy, the evolution of the air thermal conductivity with temperature
as shown in [57]. The temperature is in Kelvin and the air thermal conductivity in W ·m−1 ·K−1.
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Water Cyclohexane Octane
T (°C) psat (Pa) Ref T (°C) psat (Pa) Ref T (°C) psat (Pa) Ref T (°C) psat (Pa) Ref T (°C) psat (Pa) Ref

0 6.11× 102 [68] 5.25 4.93× 103 [71] 20.21 1.04× 104 [71] 0 3.60× 102 [72] 25.7 2.00× 103 [73]
1 6.57× 102 [68] 5.26 4.95× 103 [71] 20.36 1.05× 104 [71] 0 3.87× 102 [72] 26.35 2.00× 103 [73]
2 7.06× 102 [68] 6.56 5.33× 103 [71] 21.53 1.11× 104 [71] 0 4.33× 102 [74] 26.75 2.04× 103 [75]
3 7.58× 102 [68] 7.27 5.49× 103 [71] 21.64 1.11× 104 [71] 0 5.33× 102 [74] 27.4 2.13× 103 [76]
4 8.14× 102 [68] 7.46 5.54× 103 [71] 22.608 1.17× 104 [77] 0 3.93× 102 [74] 29.6 2.41× 103 [76]
5 8.73× 102 [68] 7.62 5.47× 103 [71] 23.363 1.21× 104 [77] 1.2 4.20× 102 [75] 29.65 2.41× 103 [75]
6 9.35× 102 [68] 8.188 5.78× 103 [77] 24.5 1.27× 104 [71] 3.7 4.87× 102 [74] 30 2.47× 103 [78]
7 1.00× 103 [68] 8.23 5.78× 103 [71] 24.99 1.30× 104 [71] 4.4 5.27× 102 [75]
8 1.07× 103 [68] 8.59 5.88× 103 [71] 25 1.30× 104 [68] 5.26 5.32× 102 [79]
9 1.15× 103 [68] 9.08 6.06× 103 [71] 25 1.30× 104 [80] 8.2 6.53× 102 [75]
10 1.23× 103 [68] 9.698 6.24× 103 [77] 25 1.30× 104 [81] 9.25 7.13× 102 [75]
11 1.31× 103 [68] 11.06 6.68× 103 [71] 25 1.30× 104 [82] 9.55 7.33× 102 [75]
12 1.40× 103 [68] 11.13 6.70× 103 [71] 25 1.30× 104 [83] 11.2 8.20× 102 [75]
13 1.50× 103 [68] 11.25 6.74× 103 [71] 26.48 1.39× 104 [71] 12.55 8.87× 102 [75]
14 1.60× 103 [68] 11.356 6.79× 103 [77] 27.42 1.45× 104 [71] 14.35 9.93× 102 [75]
15 1.71× 103 [68] 11.52 6.84× 103 [71] 28.08 1.49× 104 [71] 14.4 1.00× 103 [68]
16 1.82× 103 [68] 12.17 7.07× 103 [71] 28.346 1.51× 104 [77] 16.41 1.05× 103 [79]
17 1.94× 103 [68] 12.88 7.32× 103 [71] 28.49 1.52× 104 [71] 17.05 1.15× 103 [75]
18 2.06× 103 [68] 14 7.73× 103 [71] 28.97 1.55× 104 [71] 18.1 1.25× 103 [76]
19 2.20× 103 [68] 14.39 7.88× 103 [71] 30 1.62× 104 [84] 19.7 1.37× 103 [75]
20 2.34× 103 [68] 14.59 7.98× 103 [71] 20.05 1.47× 103 [73]
21 2.49× 103 [68] 14.97 8.12× 103 [71] 20.4 1.47× 103 [73]
22 2.64× 103 [68] 15.07 8.15× 103 [71] 20.7 1.45× 103 [76]
23 2.81× 103 [68] 15.215 8.23× 103 [77] 20.9 1.47× 103 [73]
24 2.99× 103 [68] 17.163 9.04× 103 [77] 23.15 1.65× 103 [75]
25 3.17× 103 [68] 17.21 9.04× 103 [71] 23.96 1.57× 103 [79]
26 3.36× 103 [68] 18.18 9.48× 103 [71] 24.6 1.82× 103 [76]
27 3.57× 103 [68] 18.75 9.74× 103 [71] 25 1.86× 103 [68]
28 3.78× 103 [68] 19.3 1.00× 104 [68] 25 1.86× 103 [80]
29 4.01× 103 [68] 19.878 1.03× 104 [77] 25 1.85× 103 [72]
30 4.25× 103 [68] 20.11 1.04× 104 [71] 25 1.87× 103 [78]

Table 3: Saturated vapor pressures psat as a function of temperature T for water, cyclohexane, and
octane.

Water Cyclohexane Octane
T∞ (◦C) α1 α2 α1 α2 α1 α2

10 −6.24× 10−2 1.41× 10−3 −4.91× 10−2 1.20× 10−3 −7.40× 10−2 3.14× 10−3

11 −6.17× 10−2 1.36× 10−3 −4.78× 10−2 9.64× 10−4 −7.04× 10−2 2.60× 10−3

12 −6.11× 10−2 1.32× 10−3 −4.70× 10−2 8.55× 10−4 −6.72× 10−2 2.19× 10−3

13 −6.04× 10−2 1.27× 10−3 −4.62× 10−2 7.88× 10−4 −6.45× 10−2 1.89× 10−3

14 −5.97× 10−2 1.23× 10−3 −4.56× 10−2 7.48× 10−4 −6.24× 10−2 1.66× 10−3

15 −5.91× 10−2 1.19× 10−3 −4.51× 10−2 7.20× 10−4 −6.05× 10−2 1.49× 10−3

16 −5.84× 10−2 1.15× 10−3 −4.46× 10−2 6.95× 10−4 −5.89× 10−2 1.35× 10−3

17 −5.77× 10−2 1.11× 10−3 −4.42× 10−2 6.76× 10−4 −5.79× 10−2 1.26× 10−3

18 −5.71× 10−2 1.07× 10−3 −4.37× 10−2 6.57× 10−4 −5.73× 10−2 1.20× 10−3

19 −5.64× 10−2 1.04× 10−3 −4.33× 10−2 6.40× 10−4 −5.64× 10−2 1.14× 10−3

20 −5.58× 10−2 1.01× 10−3 −4.28× 10−2 6.23× 10−4 −5.56× 10−2 1.08× 10−3

21 −5.52× 10−2 9.75× 10−4 −4.24× 10−2 6.06× 10−4 −5.44× 10−2 1.01× 10−3

22 −5.45× 10−2 9.45× 10−4 −4.20× 10−2 5.92× 10−4 −5.34× 10−2 9.56× 10−4

23 −5.39× 10−2 9.16× 10−4 −4.16× 10−2 5.79× 10−4 −5.26× 10−2 9.10× 10−4

24 −5.33× 10−2 8.88× 10−4 −4.12× 10−2 5.66× 10−4 −5.19× 10−2 8.74× 10−4

25 −5.27× 10−2 8.62× 10−4 −4.09× 10−2 5.52× 10−4 −5.15× 10−2 8.52× 10−4

26 −5.21× 10−2 8.36× 10−4 −4.05× 10−2 5.39× 10−4 −5.10× 10−2 8.28× 10−4

27 −5.15× 10−2 8.12× 10−4 −4.01× 10−2 5.27× 10−4 −5.05× 10−2 8.04× 10−4

28 −5.09× 10−2 7.88× 10−4 −3.98× 10−2 5.16× 10−4 −5.01× 10−2 7.82× 10−4

29 −5.04× 10−2 7.66× 10−4 −3.94× 10−2 5.05× 10−4 −4.96× 10−2 7.62× 10−4

30 −4.98× 10−2 7.44× 10−4 −3.91× 10−2 4.94× 10−4 −4.92× 10−2 7.42× 10−4

Table 4: Values of α1 and α2 for various temperatures T∞ for water, cyclohexane, and octane.
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Appendix C: Evaporation of a spherical drop

In this appendix we detail the calculations of evaporation of a spherical drop first in purely diffusive
regime then under forced convection.

1 Diffusion-limited evaporation

Model We consider the mass transfer of the water vapor in the atmosphere surrounding a spherical
drop of radius R(t) and we assume that this process is limited by diffusion, which is valid in a quiescent
atmosphere. This is true for droplet radius significantly larger than the mean-free path of the vapor
molecules, i.e. R larger than few micrometers [54]. Over a timescale R2

0/D, where R0 is the initial
radius, the transfer can be considered to occur in a stationary regime. In practice, we can check
that this timescale is short compared to the total evaporating time, such that the contribution of the
starting non-stationary regime is negligible.

Thus, the concentration field c is the solution of the Laplace equation △c = 0, which writes in
spherical coordinates

1

r2
d

dr

(
r2

dc

dr

)
= 0. (25)

This equation is supplemented by two boundary conditions on the concentration, respectively at the
liquid-vapor interface and far from the interface,

c(r = R) = csat(Ti), (26)
c(r → ∞) = c∞, (27)

where Ti is the temperature of the interface. The relative humidity is defined as RH = p∞/Psat(T∞) ≈
c∞/csat(T∞) in the ideal gas approximation, where T∞ is the air temperature far from the droplet.

By integrating equation (25), the local evaporative flux given by Fick’s law, j = −D dc
dr

∣∣
r=R

, writes

j = D csat(Ti)− c∞
R

. (28)

The integration of the local flux over the evaporating surface gives Φev =
∫
j dS =

4πRD(Ti)(csat(Ti)− c∞), which can be rewritten

Φev = 4πRDcsat(T∞)

(
csat(Ti)

csat(T∞)
−RH

)
. (29)

where D is in good approximation the vapor diffusion coefficient at T = T∞ [57].
To compute the evaporation rate Φev the temperature of the liquid must be determined. To do so,

we write in the next paragraph the heat transfer between the atmosphere and the drop.
As for the mass transfer, we consider a diffusion limited process in a stationary regime, for which,

the air temperature field is a solution of the Laplace equation △T = 0 with the boundary conditions
T (r = R) = Ti and T (r → ∞) = T∞. The steady-state assumption also implies that the temperature
in the drop has reached its equilibrium value Ti and is uniform in the liquid. This is validated if the
timescale over which the heat diffuses through the liquid R2

0/κℓ with κℓ the thermal conductivity of
the liquid, is short compared to the evaporative time [5]. In practice, this is valid for the tested liquids
evaporating under ambient conditions [58, 3, 5, 6, 7].

The integration of the Laplace equation leads to a total heat flux

Qh = −4πRλair∆T ⋆, (30)

where ∆T ⋆ = T∞ − Ti.
The heat and mass fluxes are coupled through the enthalpy of vaporization ∆vapH, ∆vapH Φev =

−Qh, which gives

∆T ⋆ = χ

(
csat(Ti)

csat(T∞)
−RH

)
, (31)
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with χ =
∆vapHDcsat(T∞)

λair
where ∆vapH is independent of the temperature (see Table 1), and the values

of D, csat(T∞) and λair are evaluated at T = T∞ by using the semi-empirical equations (21), (23) and
(24) respectively.

To solve equation (31) we introduce a quadratic approximation of csat(T ), defined as

csat(T ) = csat(T∞)
(
1 + α1(T∞ − T ) + α2(T∞ − T )2

)
, (32)

where α1 and α2 are obtained by fitting the data from the literature (see Table 4). As discussed in [57],
equation (32) is an excellent approximation of Antoine’s equation (23).

Combining equations (31) and (32), we get

χα2∆T ⋆2 + (χα1 − 1)∆T ⋆ + χ (1−RH) = 0. (33)

Among the two roots admitted by equation (33), we keep the one for which T∞ − Ti decreases as RH

increases, i.e.

∆T ⋆ =
1− χα1 −

√
(1− χα1)

2 − 4χ2α2 (1−RH)

2χα2
. (34)

Inserting the above expression into equation (29) we obtain the evaporation rate of the drop:

Φev = 4πRDcsat(T∞)
[
α2∆T ⋆2 + α1∆T ⋆ + 1−RH

]
, (35)

with ∆T ⋆ given by equation (34).
The droplet lifetime is obtained from the conservation of the drop volume Ω = 4

3πR
3,

Φev = −ρ
dΩ

dt
, (36)

where ρ is the liquid density. After integration from R(0) = R0 to R(τS) = 0, we have the dynamics
of the droplet radius R(t) = R0

√
1− t/τS, where the droplet lifetime is

τS =
ρR2

0

2Dcsat(T∞) (α2∆T ⋆2 + α1∆T ⋆ + 1−RH)
, (37)

with ∆T ⋆ given by equation (34). In the following we compare lifetimes of a spherical drop and a drop
on a fiber in purely diffusive regime.

Comparison with experiments Figure C.1 shows a comparison between the measured lifetime
of an axisymmetric drop on a fiber and the lifetime of a spherical drop evaporating under the same
experimental conditions.

Figure C.1(a) shows the experimental lifetimes plotted against the lifetime of a spherical drop evap-
orating adiabatically (Ti = T∞) under the same experimental conditions (liquid, initial volume, tem-
perature, relative humidity). The dashed black curve in figure C.1(a) represents equality between the
axes. As explained in the main text, the adiabatic model describes very well the experimental results
obtained for all the liquids tested placed on a copper wire, as well as the results obtained for octane
placed on a glass fiber. On the other hand, there is a systematic discrepancy between the ideal case
of a spherical drop evaporating adiabatically and what is measured for a drop of water or cyclohexane
placed on a glass fiber.

Figure C.1(b) displays the lifetime of different liquids evaporating on a glass fiber as a function of the
lifetime of an airborne sphere composed of the same liquid, and cooling while evaporating under the
same experimental conditions. The dotted curve represents axis equality. As mentioned in the main
text, the presence of the fiber, even if it is made of an excellent thermal insulator, cannot be ignored in
heat exchanges which explains that there is a systematic discrepancy between the experimental results
obtained and the sphere model.
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Figure C.1: Comparison between lifetime of an axisymmetric drop on a fiber and a spherical airborne
drop evaporating in diffusive regime. (a) Measured lifetime of a drop on a fiber as a function of the
lifetime of a spherical droplet (Eq. (37)) evaporating adiabatically (Ti = T∞) in the same conditions.
(b) Measured lifetime of a drop on a glass fiber as a function of the lifetime of a spherical droplet
(Eq. (37)) evaporating and exchanging heat with air in the same conditions. The temperature of the
liquid is given by equation (34).

2 Forced-convective evaporation

We now turn to evaporation of a spherical drop under forced convection. As mentioned in the main
text, Frössling [2] showed that the evaporation rate of a spherical drop placed in a laminar flow can be
written as :

Φconv
ev = Φevfev, (38)

where Φev is the purely diffusive evaporation rate (Eq. (29)) and fev the Sherwood number or the
ventilation coefficient:

fev = 1 + βevRe1/2Sc1/3 (39)

Analogously, the convective heat flux received by the drop from the atmosphere can be written as
follows [61, 62]:

Qconv
h = Qhfh (40)

with fh the Nusselt number or ventilation coefficient

fh = 1 + βhRe1/2Pr1/3, (41)
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In the previous equations, Re = 2RUair/νair is the Reynolds number characteristic of the flow, Sc =
νair/D is the Schmidt number, Pr = νair/αair is the Prandtl number and βev ≈ βh ≈ 0.3 is a constant.
In gases, Pr ≈ Sc ≈ 1 so fev ≈ fh.

Writing the energy balance ∆vapHΦconv
ev = −Qconv

h we obtain the liquid temperature:

∆T ⋆ = χ
fev
fh

(
csat(Ti)

csat(T∞)
−RH

)
, (42)

which is virtually independent of air velocity and radius of the drop and approximately equal to the
drop of temperature obtained in the purely diffusive regime (Eq. (31)) whose solution is given by
equation (34). Integrating the mass conservation, Φconv

ev = −ρdΩ/dt we obtain the lifetime of the drop
evaporating in forced convection:

τ convS =
ρ

Dcsat(T∞) (α2∆T ⋆2 + α1∆T ⋆ + 1−RH)

∫ R0

0

rdr

1 +Br1/2
, (43)

where B = βevSc
1/3

√
2Uair/νair and ∆T ⋆ is given by equation (34). The integration of the previous

equation leads to the expression of the lifetime of the spherical drop of equation (17) of the main text.

Appendix D: Temperature of axisymmetric drop on a fiber

To predict the temperature of an axisymmetric drop on a fiber we study the model system of a spherical
drop pierced by a fiber show in figure D.1. We adopt the hypotheses listed in the main text of the
articles, and here we detail the resolution of equation (9) of the main text:

−2πaλair
dT

dr

∣∣∣∣
r=a

= πa2λs
d2T

dz2
. (44)

The coordinate system is represented schematically in figure D.1(b). To solve this differential equa-
tion we must estimate the temperature gradient in air (left-hand side of equation (44)).

Figure D.1: (a) Schematic representation of the heat fluxes exchanged between the drop on a fiber and
its environment. (b) Coordinate system used to calculate the temperature in the fiber.

In a previous work [43] we obtained analytically the surfacique evaporative flux of a liquid cylinder
which is a problem analogous to the one that is considered here. We consider a cylinder of length
ℓ ≫ a, shown in figure D.1(b), which receives a purely diffusive heat flux from the atmosphere with
the following boundary conditions (i) the temperature at the surface of the dry fiber is equal to T (z)
and (ii) the temperature of the air far from the fiber is equal to T∞. By analogy between mass and
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heat transport, we can obtain the temperature gradient in air, evaluated at the surface of the fiber, in
r = a, from equation (4) of [43]:

dT

dr

∣∣∣∣
r=a

= −π(T∞ − T (z))

2a f(ℓ̃/2)
, (45)

where ℓ̃ = ℓ/a and f(x) = 2 − 2γe + ln 2 + π
2 ln (x) ≈ 10, for ℓ ≫ a. As shown in [43], the previous

equation describes very well the results obtained numerically for the evaporation of a sleeve of finite
length and large aspect ratio (slender cylinder). Equation (45) is therefore expected to be a good ap-
proximation of the temperature gradient in air in the situation considered here. Inserting equation (45)
into equation (44) and defining Θ(z) = T∞ − T (z), we obtain the following differential equation:

d2Θ

dz2
=

Θ

L2
, (46)

whose solution is written
T∞ − T (z) = (T∞ − Ti) exp

(
− z

L
)
. (47)

where the length L is given by:

L ≈ a

√
10λs

πλair
. (48)

Inserting equation (47) into Q′
h = −πa2λs

−→∇T
∣∣∣
z=0

, (Eq (8) of the main text), we get the heat flux
exchanged between the fiber and the drop on one side:

Q′
h ≈ −πa∆T ⋆

√
πλairλs

10
. (49)

This calculation gives similar results to what was done by Fuchs [54] for a spherical drop suspended
at the tip of a fiber. To solve equation (44), he considers an infinite cylinder and solves the Laplace’s
equation for the temperature in air by introducing a cut-off length which must be large compare to all
the other lengths of the problem. The obtained heat flux exchanged between the fiber and the drop is
similar to the result of equation (49) for a cut-off length equals to 500 times the radius of the fiber.

Inserting equation 49 into the globale energie balance of the system, ∆vapH, ∆vapH Φev = −(Qh +
2Q′

h) gives the temperature of a drop on a fiber:

∆T ⋆ =
1 + Q̃fiber − χα1

2χα2
−

√[
1 + Q̃fiber − χα1

]2
− 4χ2α2 (1−RH)

2χα2
, (50)

From equation 50, asymptotic values for the temperature drop in the liquid can be obtained by
comparing Q̃fiber with 1− κα1.

For Q̃fiber ≪ 1− χα1 we fine the case of an airborne sphere:

T∞ − Ti ≈
1− χα1 −

√
(1− χα1)

2 − 4χ2α2 (1−RH)

2χα2
. (51)

For Q̃fiber ≫ 1− χα1 we obtain :

T∞ − Ti ≈
κ

Q̃fiber

(1−RH), (52)

The two above equations are plotted, respectively in dash-dotted and dashed lines, in Figure 3(a) of
the main text.
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