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Realisation of linear algebraic groups as automorphism groups

Mathieu Florence

Abstract.

Let G be a linear algebraic group, over a field F . We show that G is isomorphic
to the automorphism group scheme of a smooth projective F -variety, defined as
the blow-up of a projective space, along a suitable smooth subvariety.
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1. Introduction.

Let X be a projective variety over a field F . The automorphism group functor
Aut(X) is represented by a group scheme, locally of finite type over F . This is
due to Grothendieck (see also [11], Theorem 3.7). Note that the sub-group scheme
Aut0(X) ⊂ Aut(X), defined as the connected component of the identity, is then
a group scheme of finite type over F - that is to say, an algebraic group over F .
Conversely, it is natural to ask:

Question 1.1. Let G be an algebraic group over a field F .
Does there exists a smooth projective F -variety X, such that G ' Aut(X)?

When G = A is an abelian variety, the answer was found independently by several
authors: it is positive, if and only if Autgp(A) is finite. See [9], [1] and [7].
In the recent paper [4] (to which we refer for an overview of the rich history of
Question 1.1), Brion and Schröer prove that any connected G is isomorphic to
Aut0(X), for some projective, geometrically integral F -variety X.
This paper treats the case of a linear algebraic F -group G, possibly non-reduced.
The answer is then positive in full generality- see Theorem 2.1. In the recent paper
[3], Bragg proves that every finite étale F -group scheme is isomorphic to Aut(C),
for C a proper, smooth, geometrically integral F -curve. In our work, it is unclear
whether assuming G/F finite étale, could lead to a simpler proof of Theorem 2.1.
This paper is organised as follows. The main Theorem is stated in section 2.
Its proof occupies Section 9. Tools and intermediate results (most of which are
unusual in positive characteristic) are developped in Sections 3 to 8. Some of them
are of independent interest. Here are two examples.

(1) Let X be the blow-up of a smooth F -variety Y , along a smooth closed
subvariety Z. Proposition 5.1 states that the infinitesimal automorphisms
of X are “as expected” the infinitesimal automorphisms of Y stabilising Z.

(2) Let G be a linear algebraic group over F . Proposition 8.3 states that
there exists a finite-dimensional F -vector space W , an integer n ≥ 1, and
a linear subspace L ⊂ ΓnF (W ), such that G ' Stab(L) ⊂ PGL(W ). In
[10], a related result is proved: G is isomorphic to the stabiliser of a single
tensor of type (2, 1) (aka a non-associative finite-dimensional F -algebra).
Can one use this, instead of Proposition 8.3, to prove Theorem 2.1?

The proof of Theorem 2.1 is considerably simpler when char(F ) = 0, for two
reasons. First, divided powers may be replaced by symmetric powers, and most
algebraic results (e.g. Lemma 8.1) become easy exercises. Second, whenever
checking that a homomorphism φ : G −→ H of linear algebraic F -groups is trivial
(resp. injective, surjective), it suffices to prove that φ(F ) : G(F ) −→ H(F )
has the same property, as a morphism of abstract groups. Thus, differential
calculus may be dismissed entirely. Sections 4 and 5 are not needed, the length
of the proof of Proposition 8.3 is halved, and that of Lemma 8.1 is reduced tenfold.

2. Statement of the Theorem.

Theorem 2.1. Let G be a linear algebraic group over a field F .
There exists a smooth projective F -variety X, such that G is isomorphic to
Aut(X), as a group scheme over F . More precisely, X can be picked as the
blow-up of a projective space, along a suitable smooth F -subvariety.
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3. Conventions, notation.

Rings and algebras over them, are commutative with unit.
Denote by F a field, with algebraic closure F . Unless specified otherwise, by
“F -vector space” one means “finite-dimensional F -vector space”. Denote by F [ε],
ε2 = 0, the F -algebra of dual numbers. A variety over F is a separated F -scheme
of finite type. A linear algebraic group over F is an affine F -variety, equipped with
the structure of a group scheme over F . Equivalently, a linear algebraic group over
F is a closed F -sub-group scheme of GLn, for some n ≥ 1.
Let X be a variety over F . For an F -algebra A, denote by XA := X ×F A the
A-scheme obtained from X by extending scalars. Set X := X ×F F .
The tangent sheaf TX −→ X is defined point-wise, for every F -algebra A, by

TX(A) = X(A[ε]).

If X is smooth over F , it is (the total space of) a vector bundle, dual to Ω1(X/F ).
A global section of the tangent sheaf is called a vector field on X.

3.1. Automorphism groups. For an F -variety X, denote by Aut(X) the au-
tomorphism group functor of X. For every F -algebra A, Aut(X)(A) is defined
as the group of automorphisms of the A-scheme XA. If X/F is projective, this
functor is represented by a group scheme, locally of finite type over F .
For X/F arbitrary, by Lemma 3.1 of [2], there is a canonical isomorphism

H0(X,TX)
∼−→ Lie(Aut(X)).

Let G/F be a group scheme, locally of finite type. If G acts on the F -variety X,
and for a closed subscheme Z ⊂ X, we use the notation StabG(Z) ⊂ G for the
closed F -subgroup scheme defined by

StabG(Z)(A) = {g ∈ G(A), g(ZA) = ZA},

for all F -algebras A. That it is representable follows from [6], II 1.3.6.

3.2. Grassmannians. Let V be an F -vector space. Pick an integer d, 0 ≤ d ≤
dim(V ). Denote by Gr(d, V ) the Grassmannian of d-dimensional subspaces of V .
Set P(V ) = Gr(1, V ). For v ∈ V −{0}, denote by (v) ∈ P(V )(F ) (or abusively v if
no confusion arises) the line directed by v. Recall that, for E ∈ Gr(d, V )(F ), the
tangent space TE(Gr(d, V )) is naturally isomorphic to HomF (E, V/E).

3.3. Weil restriction. Recall the following important tool.

Definition 3.1. Let A be a finite F -algebra. Let Y be a quasi-projective scheme
over A. Denote by RA/F (Y ) the Weil restriction of Y . It is a quasi-projective
variety over F , characterised by the formula, for every F -algebra B:

RA/F (Y )(B) = Y (B ⊗F A).

3.4. Symmetric and divided powers. Let V be a vector space over F . Define

V ∨ := HomF (V, F ).

For each n ≥ 1, define
Symn(V ) := H0(Sn, V

⊗n)

and
Γn(V ) := H0(Sn, V

⊗n),
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where coinvariants and invariants are taken w.r.t. the natural permutation action
of the symmetric group Sn on V ⊗n. These are, respectively, the n-th symmetric
power and the n-th divided power of V . For v ∈ V , set

[v]n := v ⊗ v ⊗ . . .⊗ v ∈ Γn(V ).

These are called pure symbols. If |F | ≥ n, they span Γn(V ).
There is a canonical non-degenerate pairing of F -vector spaces

Γn(V ∨)× Symn(V ) −→ F,

([φ]n, x1x2 . . . xn) 7→ φ(x1) . . . φ(xn).

It is perfect- whence an isomorphism

Γn(V ∨)
∼−→ Symn(V )∨.

Denote by Sym(V ) =
⊕

n∈N Symn(V ) and Γ(V ) =
⊕

n∈N Γn(V ) the symmetric
and divided powers algebras of V , respectively. Relations in Γ(V ), arise from the
motto “ [v]n = vn

n! ”. These are:

(1) [v]0 = 1,
(2) [v + v′]n =

∑n
0 [v]i[v

′]n−i,
(3) [λv]n = λn[v]n,
(4) [v]n[v]m =

(
n+m
n

)
[v]n+m.

For details, see [12].
Let (e1, . . . , ed) be an F -basis of V . Then, Γn(V ) inherits a (canonical) basis,
consisting of symbols [e1]a1 . . . [ed]ad , where ai ≥ 0 and a1 + . . .+ ad = n. Dually,
Symn(V ) inherits its usual monomial basis, consisting of tensors ea11 . . . eadd .
There are two natural arrows

Symn(V ) −→ Γn(V ),

v1v2 . . . vn 7→ [v1]1[v2]1 . . . [vn]1,

and
Γn(V ) −→ Symn(V ),

[v]n 7→ vn.

Their composites equal n!Id. Hence, if char(F ) = 0 or p > n, they are isomor-
phisms.

4. Jet spaces via infinitesimal Weil restriction.

“One-dimensional” jet spaces (i.e. with values in F [X]/Xn, for some n ≥ 1) are a
famous tool in many branches of geometry. However, they would not suffice here.
In this section, we offer a self-contained exposition of what we shall actually need.

Definition 4.1. Denote by A a finite local F -algebra with residue field F , by
M⊂ A its maximal ideal, and by ρ : A −→ A/M = F its residue homomorphism,
which is a retraction of the inclusion F ↪→ A.

Definition 4.2. (Jet spaces.)
let q : A −→ A′ be a homomorphism of finite local F -algebras with residue field F .
For any F -variety X, q induces a morphism of F -varieties

q∗ : RA/F (X) −→ RA′/F (X).

Formula: for an F -algebra B and for

x ∈ X(B ⊗F A),
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q∗(x) is defined as
(q ◦ x) ∈ X(B ⊗F A′).

Let G be a contravariant group functor, on affine F -varieties.
Define a group functor J(G, ρ) by

J(G, ρ)(B) := Ker(G(A⊗F B)
ρ∗−→ G(B)),

for every F -algebra B. For an F -variety X, set

J(X, ρ) := J(Aut(X), ρ).

Example 4.3. If A = F [ε], then ρ∗ is the tangent sheaf TX −→ X, and J(X, ρ) =
H0(X,TX) = Lie(Aut(X)).

Lemma 4.4. Keep notation and assumptions above. Assume moreover, that X is
a smooth F -variety. Consider a diagram

A1
q //

ρ1

��

A2

ρ2

��
F F,

of epimorphisms of finite local F -algebras with residue field F .
Denote byMi the maximal ideal of Ai, and set I := Ker(q).
Assume that IM1 = 0. Then, the morphism of F -varieties

q∗ : RA1/F (X) −→ RA2/F (X)

is a torsor under the (pull-back via ρ∗2 of the) vector bundle TX ⊗F I.
Thus, the morphism ρ∗ is a composite of torsors under the vector bundle TX.
As such, it is affine and smooth.

Proof.

The assertion is local on the smooth F -variety X, so that one may assume X =
Spec(R) affine. Then RAi/F (X) (i = 1, 2) is affine as well. Let B be an F -algebra.
By the infinitesimal lifting criterion for smooth morphisms ([13], tag 37.11.7), one
sees that the map

q∗(B) : X(A1 ⊗F B) −→ X(A2 ⊗F B)

is onto. Let x1, y1 ∈ X(A1 ⊗F B) be such that q∗(B)(x1) = q∗(B)(x2). Set

x0 := (ρ1)∗(B)(x1) = (ρ2)∗(B)(x2) ∈ X(B).

Consider x1, y1 (resp. x0) as homomorphisms of F -algebras R −→ A1⊗F B (resp.
R −→ B), and form the difference

δ := (y1 − x1) : R −→ A1 ⊗F B.

This is a priori just an F -linear map. Since q∗(B)(x1) = q∗(B)(x2), it takes values
in I ⊗F B ⊂ A1 ⊗F B. Consider I ⊗F B as an R-module via x0, treating I just
as an F -vector space. One then checks that

δ : R −→ I ⊗F B

is an F -derivation. Conversely, assume given a homomorphism of F -algebras

x1 : R −→ A1 ⊗F B.
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Denote its reduction modM by x0 : R −→ B. Pick a derivation

δ : R −→ I ⊗F B,
where the target is considered as an R-module as above. Then

y1 := (x1 + δ) : R −→ A1 ⊗F B
is a homomorphism of F -algebras, such that q∗(B)(x1) = q∗(B)(x2).
This completes the description of the torsor structure.
For the last assertion, one may assumeM 6= 0. Then, the minimal non-zero ideals
of A are one-dimensional, and killed byM. Thus, ρ can be written as a composite
of epimorphisms of finite local F -algebras,

A = An −→ An−1 −→ . . . −→ A2 −→ A1 = F,

where dimF (Ai) = i. Induction on dimF (A) then applies. �

Remark 4.5. Let V be an F -vector space. Consider its affine space

X = AF (V ) := Spec(Sym∗(V ∨)).

Treating ρ as a linear form on the F -vector space A, ρ∗ is simply

AF (V ⊗F A) −→ AF (V ),

w 7→ (IdV ⊗ ρ)(w).

Thus, it is a trivial fibration in affine spaces.

Remark 4.6. If X is affine, using the preceding Lemma, and vanishing of coherent
cohomology over an affine base, one sees that ρ∗ is a trivial AN -fibration, as well.

Proposition 4.7. Let X be an F -variety. There is a functorial isomorphism
between J(X, ρ), and the functor of sections of the morphism of F -schemes
RA/F (XA)

ρ∗−→ X.

Proof. Let us describe, for every F -algebra B, a functorial bijection

J(X, ρ)(B)
∼−→ {s : XB −→ RA⊗FB/B(XA⊗FB), ρ∗ ◦ s = Id}.

For simplicity, we assume B = F ; the construction actually works in general.
Giving a section s : X −→ RA/F (XA) amounts to giving a morphism of A-schemes
f : X ×F A −→ X ×F A. Assuming that ρ∗(f) : X −→ X is the identity, one
then just needs to show that f is an iso. SinceM is nilpotent, one sees that, as a
homeomorphism of the topological space X ×F A, f is the identity. Let (Ui) be a
covering of X by open affines. From what was just said, f restricts to morphisms
of A-schemes fi : Ui ×F A −→ Ui ×F A. By a straightforward glueing argument,
one thus reduces to the case X affine. One may then use Lemma 4.10 below,
applied to the homomorphism of A-algebras

Φ : OX(X)⊗F A −→ OX(X)⊗F A,
which is such that f = Spec(Φ). Note that Φ is regarded here as a morphism
between free A-modules. Since φ = Id is an iso, one concludes that Φ is an iso.
Hence f is an iso of A-schemes, as desired. �

Corollary 4.8. Assume that X is a smooth projective F -variety. Denote by
Aut(X)0 ⊂ Aut(X) the connected component of the identity. It is a group
scheme, of finite type over F . Then J(X, ρ) = J(Aut(X)0, ρ) is a smooth, con-
nected and unipotent linear algebraic F -group. Moreover, it is F -split. In other
words, it has a composition series with quotients Ga.
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Proof. This follows from Lemma 4.4 and Proposition 4.7. �

Lemma 4.9. Let ι : Z ↪→ Y be a closed immersion of smooth affine F -varieties.
Denote by J(ι, ρ) ⊂ J(Y, ρ) (resp. J0(ι, ρ) ⊂ J(Y, ρ)) the sub-group functor formed
by infinitesimal automorphisms f , such that f|Z factors through ι (resp. f|Z = ι).
There is an exact sequence (of group functors)

1 −→ J0(ι, ρ) −→ J(ι, ρ)
f 7→f|Z−−−−→ J(Z, ρ) −→ 1.

Proof. Let us show that

1 −→ J0(ι, ρ)(F ) −→ J(ι, ρ)(F )
f 7→f|Z−−−−→ J(Z, ρ)(F ) −→ 1

is exact, as a sequence of abstract groups. The same proof works to show
exactness for points in an arbitrary F -algebra R. The only non-trivial part
is surjectivity, which we check by induction on dimF (A), using Lemma 4.4, of
which we adopt notation, and the description of J(X, ρ) provided in Proposi-
tion 4.7. Let f1 : Z −→ RA1/F (Z). By induction, f2 := q∗ ◦ f1 extends, to
f̃2 : Y −→ RA2/F (Y ). Since Y is affine, H1(Y, TY ⊗F I) = 0, so that f̃2 lifts via
q∗, to g1 : Y −→ RA1/F (Y ). Consider (g1)|Z : Z −→ RA1/F (Y ). Via q∗, it is sent
to f2. Thus, there exists a unique ε ∈ H0(Z, TY ⊗F I), such that (g1)|Z + ε = f1.

Again, since Y is affine, ε extends, to ε̃ ∈ H0(Y, TY ⊗F I). Then, f̃1 := g1 + ε̃ is
the sought-for extension of f1.

�

The following result is standard. Lacking a reference, a proof is included.

Lemma 4.10. (Improved Nakayama’s, for Artinian rings.)
Let M,N be A-modules, and let Φ : M −→ N be an A-linear map. Denote by
φ : M ⊗A F −→ N ⊗A F the induced F -linear map. The following holds.

(1) If φ is surjective, so is Φ.
(2) Assume that N is a free A-module, possibly of infinite rank.

Then if φ is injective, so is Φ.

Proof. To prove (1), proceed by induction on the smallest k ≥ 1, such that
MkM =MkN = 0. Case k = 1 is clear. Assume thatMk+1M =Mk+1N = 0,
and that φ is onto. By induction, (φ/Mk) : M/MkM −→ N/MkN and φ|MkM :

MkM −→MkN are onto. By dévissage, one then sees that Φ is onto.
Let’s prove (2) by induction on the length of A. It suffices to show the following.
Let a 6= 0 ∈M be such that aM = 0. Assume that the (A/aA)-linear map

Φa := (Φ/a) : M/aM −→ N/aN

is injective (in addition to injectivity of φ). Then Φ is injective.
To prove this assertion, pick x ∈ Ker(Φ). Since Φa is injective, one gets x ∈ aM .
Write x = am. Since aΦ(m) = Φ(x) = 0 ∈ N , since N is a free A-module, and
since A −M = A×, it must be the case that Φ(m) ∈ MN . Hence φ(m) = 0.
Injectivity of φ then implies m ∈MM . Thus, x ∈ aMM = 0. �
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5. Infinitesimal automorphisms of blow-ups.

The following improves on [7], Lemma 4.2.

Proposition 5.1. Let ι : Z ↪→ Y be a closed immersion of smooth F -varieties.
Denote by

β : X := BlZ(Y ) −→ Y

the blow-up of Y along Z, and by

i : E ↪→ X

the exceptional divisor. Let A be an F -algebra. There is a natural monomorphism

φ : StabAut(Y )(Z)(A) −→ Aut(X)(A).

Assume that each irreducible component of Z has codimension ≥ 2 in Y .
Let A be a finite local F -algebra, with residue homomorphism ρ : A −→ F .
Then φ induces an iso

Φ : J(StabAut(Y )(Z), ρ)
∼−→ J(X, ρ).

Proof. Recall that formation of blow-ups is functorial and commutes to base-
change. Precisely, let f : Y ×F A −→ Y ×F A be an automorphism of A-scheme,
preserving the subscheme Z ×F A. By functoriality of the blow-up, f induces
an A-automorphism of X ×F A. This provides the definition of φ. Assume that
f ∈ StabAut(Y )(Z)(A) is such that φ(f) = Id. Consider the commutative diagram

XA
βA //

Id

��

YA

f

��
XA

βA // YA.

Since βA is surjective, one sees that f , as a continuous map, is the identity. Check-
ing that f = Id becomes local on Y , so that one may assume Y = Spec(B) is affine
and connected. Then B is integral, because Y is smooth over F . Denote by I ⊂ B
the ideal defining Z. Then X := Proj(R), where R :=

⊕∞
n=0 I

n. It is covered by
the open affines Spec(R[ 1

f ]0), for 0 6= f ∈ I. Since B is integral, the natural arrow
B ⊗F A −→ R[ 1

f ]0 ⊗F A is injective. The claim follows.
For the second assertion, note that elements of the source and target of Φ are
topologically the identity. Thus, the question is local on Y , so that one may as-
sume Y (and hence Z) affine. We use (and adopt notation of) Proposition 4.7.
Note that J(StabAut(Y )(Z), ρ) ⊂ J(Y, ρ) is the sub-functor J(ι, ρ) of Lemma 4.9.
By [7], Lemma 4.2 (or more accurately, its proof), one knows that

H0(X,TX) = Ker(H0(Y, TY ) −→ H0(Z,NZ/Y )).

Equivalently, a vector field onX is the same thing as a vector field on Y , restricting
to a vector field on Z. Via this identification, the torsor structures on both sides
are automatically compatible with Φ. One can then proceed by induction on
dimF (A) again, using Lemma 4.4, which provides an exact sequence

0 −→ H0(Y, TY ⊗F I)⊗F R −→ J(Y, ρ1)(R) −→ J(Y, ρ2)(R) −→ 1,
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functorial in the F -algebra R. For simplicity, let us work with F -points- the case
of R-points being the same. Consider the natural diagram (of abstract groups)

0 // Ker(H0(Y, TY ) −→ H0(Z,NZ/Y ))⊗F I //

'
��

J(ι, ρ1)(F ) //

��

J(ι, ρ2)(F ) //

'
��

1

0 // H0(X,TX)⊗F I // J(X, ρ1)(F ) // J(X, ρ2)(F ) // 1.

[Note that the vertical arrows are given by functoriality of the blow-up. In the
bottom line, we usedH0(X,TX⊗F I) = H0(X,TX)⊗F I, and a similar fact in the
upper line, which hold because dimF (I) < ∞.] In this diagram, lines are clearly
exact, except possibly on their right. To conclude, it remains to prove surjectivity
of J(ι, ρ1)(F ) −→ J(ι, ρ2)(F ). Using the exact sequence of Lemma 4.9, a diagram
chase reduces this to checking surjectivity of J0(ι, ρ1)(F ) −→ J0(ι, ρ2)(F ). Pick
f2 ∈ J0(ι, ρ2)(F ) ⊂ J(Y, ρ2)(F ). Extend it (via q∗) to g1 ∈ J(Y, ρ1)(F ). Then
q∗((g1)|Z) = ι, so that (g1)|Z = ι+ ε, for ε ∈ H0(Z, TY ⊗F I). Since Y is affine, ε
extends, to ε̃ ∈ H0(Y, TY ⊗F I). Then, f1 := g1 − ε̃ is the sought-for lift of f2.

�

6. Automorphisms of blow-ups of projective space, via Chow rings.

We begin with gathering, from [8], material on blow-ups and their Chow rings.

Proposition 6.1. Let ι : Y ↪→ Z be a closed immersion between smooth geomet-
rically integral F -varieties, of codimension c ≥ 2. Denote by

β : X := BlY (Z) −→ Z

the blow-up of Z along Y , and by e : E ↪→ X the exceptional divisor.

(1) The restriction β|X−E : (X−E) −→ (Z−Y ) is an isomorphism, providing
a natural arrow

φ : Pic(X) −→ Pic(Z − Y ) = Pic(Z).

L 7→ L|X−E .

(2) The morphism
π := β|E : E −→ Y

is the projective bundle of the normal bundle NY/Z .
Denote by OE(1) its twisting sheaf, and set ζ := c1(OE(1)) ∈ CH1(E).
The normal bundle NE/X is canonically isomorphic to OE(−1).
For all i ≥ 1,

[E]i = (−1)i−1e∗(ζ
i−1) ∈ CHi(X).

(3) (Projective bundle formula for π). The arrow
i⊕

j=i+1−c
CHj(Y ) −→ CHi(E),

(xj) 7→
∑

π∗(xj).ζ
i−j

is an iso, for every i ≥ 1.
In particular, for i = 1, the natural arrow

Pic(Y )
⊕

Z −→ Pic(E),
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(L, a) 7→ π∗(L) +O(a)

is an iso. Denote the projection on the second factor by

Pic(E) −→ Z,

L 7→ d(L).

(4) The natural arrow

Pic(Z)
⊕

Z −→ Pic(X),

(L, a) 7→ β∗(L) +OX(aE)

is an iso. Its inverse is given by

Pic(X) −→ Pic(Z)
⊕

Z,

L 7→ (φ(L),−d(e∗(L)).

(5) More generally, for i ≥ 1 there is a natural exact sequence

0 −→ CHi−c(Y ) −→ CHi(Z)
⊕

CHi−1(E)
σ−→ CHi(X) −→ 0,

with injection given by

w 7→ (−ι∗(w), π∗(w).ζc−1),

and surjection given by

(u, v) 7→ β∗(u) + e∗(v).

If i < c, this boils down to an isomorphism

CHi(Z)
⊕

CHi−1(E)
∼−→ CHi(X).

(6) Let i ≥ 1, and u ∈ CHi(Z). Via item (5), the product

β∗(u).[E] ∈ CHi+1(X)

equals σ(0, π∗(ι∗(u))).

Proof.

Items (1), and the first two assertions of (2), are standard features of blow-ups.
The self-intersection formula for [E] ([8], Section 6.3), and the projection formula
([8], Example 8.1.1), then prove the last formula of (2) by induction on i:

[E]i+1 = [E].[E]i = (−1)i−1[E].e∗(ζ
i) = (−1)i−1e∗(e

∗([E]).ζi) = (−1)ie∗(ζ
i+1).

[The starting case i = 1 holds by definition.]
Item (3) is [8], Theorem 3.3.b. Item (5) is Proposition 6.7.e of [8] (note the explicit
formulas in its proof). Item (4) is a particular case of (5), for i = 1.
Observe that β ◦ e = ι ◦ π. Item (6) follows, using the projection formula:

β∗(u).[E] = β∗(u).e∗(1E) = e∗(e
∗(β∗(u))) = e∗(π

∗(ι∗(u))).

�

The content of the following two Propositions is that, under suitable assumptions,
the automorphism group of a blow-up in projective space, is “as naively expected.”



11

Proposition 6.2. For N ≥ 6, let Y1, Y2 ⊂ PN be disjoint smooth closed F -
subvarieties, geometrically integral and of dimensions in [1, N − 3].
Denote by

β : X := BlY (PN ) −→ PN

the blow-up of PN along Y := Y1

∐
Y2, and by ei : Ei ↪→ X the exceptional

divisor lying above Yi, i = 1, 2. By functoriality of the blow-up, there is a natural
homomorphism of abstract groups

Φ : StabAut(PN )(Y1)(F ) ∩ StabAut(PN )(Y2)(F ) −→ Aut(X)(F ).

If the F -varieties E1 and E2 are not isomorphic, then Φ is an isomorphism.

Proof. That Φ is injective is straightforward. Let us check surjectivity. Let
f : X −→ X be an F -automorphism. Observe that β is the composite

X
β2−→ X1

β1−→ PN ,
where β1 (resp. β2) is the blow-up of PN along Y1 (resp. of X1 along β−1

1 (Y2)). By
item (4) of Proposition 6.1, applied two times, one gets that CH1(X) is a free Z-
module of rank 3, with basis (β∗([H]), [E1],[E2]), where H ⊂ PN is a hyperplane.
Since c ≥ 3, item (5) (applied two times, to β1 and β2) provides a natural iso

CH2(X) ' Z.[β∗(H)]2
⊕

CH1(E1)
⊕

CH1(E2).

Assume that f(Ei) 6= Ej , for all {i, j} ⊂ {1, 2}. Since f(Ei) ⊂ X is an effec-
tive divisor not contained in E1

∐
E2, the last formula of item (4) then yields a

decomposition, for i = 1, 2,

[f(Ei)] = ai[β
∗(H)]− bi[E1]− ci[E2] ∈ CH1(X),

with ai ≥ 1, and bi, ci ≥ 0. Using item (6) two times (exchanging the roles of E1

and E2), one gets, for i = 1, 2,

[E1].[E2] ∈ CH1(Ei) ⊂ CH2(X),

w.r.t. the direct sum decomposition above. Thus [E1].[E2] = 0. One also computes

[f(E1)].[f(E2)] = (a1[β∗(H)]− b1[E1]− c1[E2]).(a2[β∗(H)]− b2[E1]− c2[E2])

= (a1a2[β∗(H)]2, ∗, ∗),
where it is needless to know the expression of the second and third components.
It suffices to observe that [f(E1)].[f(E2)] 6= 0, whereas [E1].[E2] = 0. This is
impossible, since f induces a ring automorphism of CH∗(X). Consequently, it
must be the case that f(Ei) = Ej for some {i, j} ⊂ {1, 2}. Then i = j, by the
assumption made on E1 and E2. Say i = j = 2, so that f(E2) = E2. Assume that
f(E1) 6= E1. Then, as above, one may write

[f(E1)] = a1[β∗(H)]− b1[E1]− c1[E2] ∈ CH1(X),

with a1 ≥ 1, and b1, c1 ≥ 0. Compute:

[f(E1)].[f(E2)] = (a1[β∗(H)]− b1[E1]− c1[E2]).[E2]

= a1[β∗(H)].[E2]− c1[E2].[E2] ∈ Pic(E2) ⊂ CH2(X),

w.r.t. the direct sum decomposition above. Via the projection formula for the
projective bundle π2 : E2 −→ Y2 (items (2) and (3) of Proposition 6.1), one gets

a1[β∗(H)].[E2]− c1[E2].[E2] = (ι∗2(a1[H]), c1) ∈ (Pic(Y2)
⊕

Z) ' Pic(E2),

where ι2 : Y2 ↪→ PN is the closed immersion, and using item (6) with u :=
[H]. Since a1 ≥ 1, the divisor class ι∗2(a1[H]) ∈ Pic(Y2) is ample, on the
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positive-dimensional projective variety Y2, hence is non-zero. It follows that
[f(E1)].[f(E2)] 6= 0, contradiction. Thus, f(E1) = E1 and f(E2) = E2. Then, f
restricts to an automorphism g of X −E1−E2, which by item (1) is an open sub-
variety of PN , with complement Y of codimension ≥ 2. By Lemma 6.4, g indeed
extends to an automorphism of PN , which necessarily fixes Y1 and Y2 separately.

�

Remark 6.3. Under the same assumptions, Proposition 6.2 can be generalised to
a blow-up of any number of disjoint smooth subvarieties.

Lemma 6.4. Let Y ⊂ PN be a closed F -subvariety, of codimension ≥ 2. Set
U := PN − Y . Every F -automorphism of U extends to an automorphism of PN .

Proof. Recall that, on a normal F -variety, regular functions are invariant
upon removing a closed subvariety of codimension ≥ 2. The same prop-
erty then holds for global sections of line bundles, and one also infers that
Pic(U) = Pic(PN ) = Z.[O(1)]. One can then reproduce the classical proof that
Aut(PN )(F ) = PGLN+1(F ), with U in place of PN . Here are details. Let g be
an F -automorphism of U . Then g∗([O(1)]) is ample and generates Pic(U); hence
g∗(O(1)) ' O(1). Fix such an iso of line bundles, and consider the effect of g∗ on

H0(U,O(1)) =< X0, . . . , XN >= FN+1.

This gives a well-defined g̃ ∈ PGLN+1(F )- the sought-for extension of g. �
The following instructive exercise concludes this section. The proof given is by
counting points over finite fields, which is more elementary than by Chow groups.

Lemma 6.5. For i = 1, 2, let ai,mi ≥ 2 be integers, and let Vi be a vector bundle
of rank mi over Pai−1

F . Denote by P(Vi) −→ Pai−1
F the corresponding projective

bundles. Assume that a1 6= a2, and that P(V1) and P(V2) are isomorphic as F -
varieties. Then m1 = a2 and m2 = a1.

Proof. By a classical “spreading out” argument, one may assume that F = Fq is
a finite field. Indeed, there exists a sub-ring R ⊂ F , which is a Z-algebra of finite
type, such that all data in the Lemma are defined over R. More precisely, for
i = 1, 2 there is a vector bundle Vi of rank mi over Pai−1

R , such that the projective
bundles P(V1) and P(V2) are isomorphic as R-schemes. Specialising at a closed
point of Spec(R), one gets a similar data over a finite field, as claimed. Consider
the morphism of Fq-varieties P(Vi) −→ Pai−1

Fq
. It induces a surjection of finite sets

P(Vi)(Fq) −→ Pai−1
Fq

(Fq),

with fibers (non-canonically isomorphic to) Pmi−1
Fq

. Counting points, one gets

P(Vi)(Fq) =
(qai − 1)(qmi − 1)

(q − 1)2
.

Since the Fq-varieties P(V1) and P(V2) are isomorphic, one has
(qa1 − 1)(qm1 − 1)

(q − 1)2
=

(qa2 − 1)(qm2 − 1)

(q − 1)2
.

For n ≥ 1, extend scalars to Fqn to get the same formula, with qn in place of q.
Thus,

(Xa1 − 1)(Xm1 − 1)

(X − 1)2
=

(Xa2 − 1)(Xm2 − 1)

(X − 1)2
∈ Q(X),

and the conclusion follows. �
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7. Divided powers to the rescue of projective geometry.

One can think of the results this section, as a characteristic-free version of polarity.
If char(F ) = 0, many of these boil down to facts found in [5], chapter 1.

7.1. Veronese embedding. Here is a convenient coordinate-free definition of the
Veronese embedding. Up to the choice of a basis, it agrees with the usual one.

Definition 7.1. Let V be an F -vector space. Let n ≥ 1 be an integer. The arrow
of F -varieties

Vern : P(V ) −→ P(Γn(V )),

v 7→ [v]n.

is a closed embedding, called the n-th Veronese embedding.

Proposition 7.2. Let V be a finite dimensional F -vector space. Let n ≥ 1 be an
integer. Consider the n-th Veronese embedding

P(V )
Vern−−−→ P(Γn(V )).

The natural arrow

Aut(P(V )) = PGL(V ) −→ PGL(Γn(V )) = Aut(P(Γn(V )))

induces an isomorphism of linear algebraic F -groups

φ : PGL(V ) −→ StabPGL(Γn(V ))(P(V ) ⊂ P(Γn(V ))).

Proof. Can assume dim(V ) ≥ 2, and F infinite. Let A be an F -algebra. Pick

f ∈ StabAut(P(Γn(V )))(P(V ))(A).

Then f restricts to an automorphism of the A-scheme P(V ) ×F A; that is, to an
element ψ(f) ∈ PGL(V )(A). By Yoneda’s Lemma, this defines an F -morphism

ψ : StabAut(P(Γn(V )))(P(V )) −→ PGL(V ),

which is a retraction of φ. Hence, φ is an embedding. Since its source is smooth,
it suffices to show that every element

f ∈ Ker(ψ)(F [ε])

lies in the image of φ(F [ε]). Since F [ε] is local, Grothendieck-Hilbert’s Theorem
90 yields H1(F [ε],Gm) = 0, so that f lifts to

f ′ ∈ GL(Γn(V ))(F [ε]).

Since ψ(f) = Id, there exists a morphism of F -schemes

λ : (A(V )− {0}) −→ RF [ε]/F (Gm) ' Gm ×F A1,

v 7→ λ1(v) + λ2(v)ε,

such that
f ′([v]n) = λ(v)[v]n,

identically on points. Let us check that λ is constant. Since dim(V ) ≥ 2, and the
source of λ is normal, it extends to a morphism of F -varieties

Λ : A(V ) −→ Gm ×F A1 ⊂ A2.

Denote by δ the degree of Λ, as a polynomial map. From the equality

f ′([v]n) = λ(v)[v]n,
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also valid on functors of points, we get n = δ+n, whence δ = 0 and Λ is constant.
Rescaling f ′, we can thus assume Λ = 1. Since F is infinite, pure symbols [v]n
span the F -vector space Γn(V ), so that f ′ = Id. Hence, f = Id, as desired. �

7.2. Characteristic-free polarity.

Definition 7.3. Let W be an F -vector space, let X ⊂ P(W ) be a closed F -
subscheme, defined by a sheaf of ideals

0 −→ IX −→ OP(W ) −→ OX −→ 0.

Define

EX,m := H0(P(W ), IX(m)) ⊂ H0(P(W ),O(m)) = Symm(W∨).

For all sufficiently large m, it generates IX(m).
For brevity, denote EX,m by EX . Dualizing the exact sequence F -vector spaces

0 −→ EX −→ Symm(W∨) −→ ∗ −→ 0,

one gets an exact sequence

0 −→ LX −→ Γm(W ) −→ E∨X −→ 0.

Lemma 7.4. Keep notation of Definition 7.3. For m large enough, there is a
natural isomorphism of F -schemes

PX : X −→ P(LX)
⋂

Verm(P(W ))

z 7→ [z]m,

where
⋂

denotes scheme-theoretic intersection in P(Γm(W )).

Proof. Let R be an F -algebra. Since m >> 0, the set X(R) ⊂ P(W )(R) consists
of those lines, on which all m-linear forms in EX vanish. Using duality between
Symm(W∨) and Γm(W ), this translates as

X(R) = {(w) ∈ P(W )(R), φ([w]m) = 0, ∀φ ∈ EW }.
Via the closed immersion Verm, the right side of the equality coincides with
P(LX)(R)

⋂
Verm(P(W ))(R). This holds for any R, whence the desired iso PX .

�

7.3. Morphisms of varieties induced by multiplication of Γ(V ). The fol-
lowing notion is especially important if char(F ) = p.

Definition 7.5. (F -disjointness).
Let a1, a2, . . . ad be positive integers.
Say that a1, a2, . . . , ad are F -disjoint if the following holds.

(1) For i = 1, . . . , d− 1, one has ai + ai−1 + . . .+ a1 < ai+1.
(2) If char(F ) = p, for i = 1, . . . , d−1 one has ai+ai−1 + . . .+a1 < pvp(ai+1).

Example 7.6. Assume char(F ) = p, and ai = pri , with 0 ≤ r1 < r2 < . . . < rd.
Then, a1, a2, . . . , ad are F -disjoint.

Remark 7.7. If char(F ) = p, then (2) implies (1) in Definition above. Thinking in
base p, (2) is equivalent to the following. The position of the least non-zero digit of
ai+1, is stricly bigger than that of the greatest non-zero digit of ai+ai−1 + . . .+a1.

Recall a well-known fact.
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Lemma 7.8. Let a1, . . . , ad be nonnegative integers.
The p-adic valuation of the multinomial coefficient

(
a1+...+ad
a1,...,ad

)
is the number of

carryovers, when computing the sum a1 + . . .+ ad in base p.
Hence, if char(F ) = p and a1, a2, . . . , ad are F -disjoint,

(
a1+...+ad
a1,...,ad

)
is prime-to-p.

Proof. One can apply induction on r ≥ 2, using the formula(
a1 + . . .+ ad
a1, . . . , ad

)
=

(
a1 + . . .+ ad

a1 + a2, a3, . . . , ad

)(
a1 + a2

a1, a2

)
.

The claim to prove when r = 2 is a classical fact, which is also a nice elementary
exercise left to the reader. The second assertion readily follows. �

Lemma 7.9. Let V be an F -vector space. The following is true.

(1) Let a, b be F -disjoint integers, and let y ∈ V − {0}. The multiplication

My : Γa(V ) −→ Γa+b(V )

x 7→ x[y]b

is an F -linear injection.
(2) The formula

µ : P(Γa(V ))×F P(V ) −→ P(Γa+b(V ))

(x, y) 7→ x[y]b

defines a morphism of F -varieties, injective on F -points.
(3) Let a1, a2, . . . ad be F -disjoint integers. Then, the formula

τ : P(V )×F . . .×F P(V ) −→ P(Γa1+...+ad(V ))

(x1, x2, . . . , xd) 7→ [x1]a1 [x2]a2 . . . [xd]ad
defines a morphism of F -varieties, injective on F -points.

Proof. Can assume F = F . Let us prove item (1). Pick a basis (e1, . . . , en) of
V , with en = y. Work in the standard basis [e1]a1 . . . [en]an of Γa(V ), indexed by
partitions a = a1 + . . .+ an. Similarly, work in the standard basis [e1]c1 . . . [en]cn
of Γa+b(V ), indexed by partitions a+ b = c1 + . . .+ cn. Let us compute:

([e1]a1 . . . [en]an)[y]b =

(
an + b

b

)
[e1]a1 . . . [en−1]an−1

[en]an+b.

If char(F ) = 0, it readily follows that My is injective. Assume char(F ) = p.
Since an ≤ a < pvp(b), computing an + b in base p occurs without carryovers.
Thanks to Lemma 7.8,

(
an+b
b

)
∈ F is non-zero. Consequently, My is still injective.

Let us prove that (2) implies (3). If d ≥ 3, τ factors as the composite of

P(V )×F . . .×F P(V )×F P(V ) −→ P(Γa1+...+ad−1(V ))×F P(V )

(x1, . . . , xd) 7→ ([x1]a1 . . . [xd−1]ad−1
, xd)

and
P(Γa1+...+ad−1(V ))×F P(V )

µ−→ P(Γa1+...+ad(V ))

(x, y) 7→ x[y]ad .

By induction, item (3) thus indeed follows from (2).
It remains to prove (2). That µ is well-defined, follows from (1) (injectivity of My,
for y 6= 0). Let us check injectivity of µ on F -points. Let y, y′ ∈ V − {0} and
x, x′ ∈ Γa(V )− {0}, be such that µ(x, y) = µ(x′, y′). Rescaling, one can assume

x[y]b = x′[y′]b ∈ Γa+b(V ).



16

Suppose that (y) 6= (y′) ∈ P(V )(F ). Pick a basis (e1 = y, e2 = y′, e3, . . . , en) of V .
Working in the monomial basis ([e1]a1 . . . [en]an) of Γa(V ), and using a < b, one
sees that Im(My)

⋂
Im(My′) = {0}, contradicting My(x) = My′(x

′) 6= 0. Hence y
and y′ are collinear. Rescaling them, one can assume y = y′. Using item (1), one
concludes that x = x′, which finishes the proof.

�

Remark 7.10. In general, morphisms in items (2) and (3) above, are not injective
on tangent spaces: they are not closed immersions.

Remark 7.11. If char(F ) = 0, one can then replace Γa(V ) by Syma(V ), and
accordingly replace symbols [x]a by xa

a! . Using that the polynomial F -algebra
Sym(V ) is a UFD, the proof of Lemma 7.9 is then easier.

8. Concrete Tannakian construction.

8.1. Explicit action of PGLd with trivial stabilisers.

Lemma 8.1. Let d ≥ 3, and let V be a d-dimensional F -vector space.
Let 1, a1, a2, . . . , ad+1 be F -disjoint integers. Set r := a1 + . . .+ ad+1.
Choose a basis (e1, . . . , ed) of V , and define

r := a1 + . . .+ ad+1,

ed+1 := e1 + e2 + . . .+ ed,

x := [e1]a1 [e2]a2 . . . [ed]ad [ed+1]ad+1
∈ Γr(V ).

Then x 6= 0, and
StabPGL(V )((x)) = {1},

for the natural action of PGL(V ) on P(Γr(V )).

Proof.

That x 6= 0 follows from item (3) of Lemma 7.9. There is an extension of F -groups

1 −→ µr −→ StabGL(V )(x) −→ StabPGL(V )((x)) −→ 1.

Note that its kernel is not étale if char(F ) = p. Let us show the triviality of
StabPGL(V )((x)). To do so, one may assume F = F .
Pick f ∈ GL(V )(F ). Assume that f(x) = x. Using the injectivity statement
of Lemma 7.9 (3), one sees that f fixes each ei up to scalars, implying that
f is homothetic. In other words, the group StabPGL(V )((x))(F ) is trivial. If
char(F ) = 0, this finishes the proof. If char(F ) = p, it remains to prove triviality
of Lie(StabPGL(V )(x)).
In computations that will follow, one typically uses the formula

[x]a[x]b =

(
a+ b

a

)
[x]a+b,

for various a, b ∈ N, and one checks whether or not
(
a+b
a

)
is divisible by p.

Observe that p divides a1, . . . , ad+1, because 1, a1, a2, . . . , ad+1 are F -disjoint.
Pick u ∈ End(V ), with matrix (ui,j)1≤i,j≤d in the basis (e1, . . . , ed).
Set ui := u(ei). If i ≤ d, then ui =

∑d
j=1 uj,iej , and ud+1 = u1 + . . .+ ud. Set

f := (Id + εu) ∈ GL(V )(F [ε]).

Assume there exists c ∈ F , such that

f(x) = (1 + cε)x.
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To conclude the proof, one needs to show u ∈ F Id.
Note that f(x) reads as

x = [e1 + εu1]a1 [e2 + εu2]a2 . . . [ed+1 + εud+1]ad+1
.

Expanding divided powers, and comparing coefficients of ε, one gets

(E) : c[e1]a1 . . . [ed+1]ad+1
=

d+1∑
i=1

[ui]1[e1]a1 [e2]a2 . . . [ei]ai−1 . . . [ed+1]ad+1
.

In the monomial basis of Γr(V ) furnished by e1, . . . , ed, consider the coefficient of

M := [e1]a1−1[e2]a2+1[e3]a3+ad+1
[e4]a4 [e5]a5 . . . [ed]ad ,

of both sides of this equality. It vanishes on the left side. In the sum on the right
side, only i = 1 can contribute. Let us expand the corresponding term, reading as

[u1,1e1 + . . .+ ud,1ed]1[e1]a1−1[e2]a2 [e3]a3 . . . [ed]ad [e1 + e2 + e3 + . . .+ ed]ad+1
.

In the decomposition

[e1 + e2 + e3 + . . .+ ed]ad+1
=

∑
b1+...+bd=ad+1

[e1]b1 [e2]b2 [e3]b3 . . . [ed]bd ,

the only two partitions that may contribute to a non-zero multiple of M , are

(b1, b2, b3, b4, . . . , bd) = (0, 0, ad+1, 0, . . . 0)

and
(b1, b2, b3, b4, . . . , bd) = (0, 1, ad+1 − 1, 0, . . . 0).

These terms are given, respectively, by

u2,1[e2]1[e1]a1−1[e2]a2 [e3]a3 . . . [ed]ad [e3]ad+1
=

(
a3 + ad+1

a3

)
(a2 + 1)u2,1M,

and

u3,1[e3]1[e1]a1−1[e2]a2 [e3]a3 . . . [ed]ad [e2]1[e3]ad+1−1 =

(
a3 + ad+1

1, a3, ad+1 − 1

)
(a2+1)u3,1M.

Gathering the information above, one gets

0 =

(
a3 + ad+1

a3

)
(a2 + 1)u2,1 +

(
a3 + ad+1

1, a3, ad+1 − 1

)
(a2 + 1)u3,1.

Since 1, a1, a2, . . . , ad+1 are F -disjoint, Lemma 7.8 asserts that p does not divide(
a3+ad+1

a3

)
(a2 +1), but divides

(
a3+ad+1

1,a3,ad+1−1

)
(for the latter fact, observe that adding

1 and (ad+1 − 1) in base p, occurs with carryovers). Thus u2,1 = 0. One can
reproduce this argument, with any triple of distinct indices ∈ {1, . . . , d}, in place
of (1, 2, 3). One thus gets ui,j = 0 for all i 6= j. Thus, ui = αiei, i = 1, . . . , d. In
(E), put the term of index i = d+ 1 on the other side of the equation. This gives

(E′) : c[e1]a1 . . . [ed+1]ad+1
− [α1e1 + . . . αded]1[e1]a1 . . . [ed]ad [ed+1]ad+1−1

=

d∑
i=1

aiαi[e1]a1 [e1]a2 . . . [ei]ai . . . [ed+1]ad+1
= 0.

To finish, let us work in the following basis of V :

(f1 := −e2, f2 := −e3, . . . , fd−1 := −ed, fd := ed+1),

and in the induced monomial basis of Γr(V ). Note that

e1 = f1 + . . .+ fd.
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Equality (E′) gives

c[e1]a1 [f1]a2 . . . [fd]ad+1
= [α1e1 + . . . αded]1[e1]a1 [f1]a2 . . . [fd−1]ad [fd]ad+1−1.

Express both sides in the monomial basis, and consider the coefficient of

[f1]a2+1[f2]a3 . . . [fd]ad+1
.

On the left side, it is c(a2 + 1) = c. Since

[fd]1[fd]ad+1−1 = ad+1[fd]ad+1
= 0,

it is 0 on the right side, so that c = 0. Thus,

(E′′) : [α1e1 + . . . αded]1[e1]a1 [f1]a2 . . . [fd−1]ad [fd]ad+1−1 = 0.

Let βi ∈ F be such that

α1e1 + . . . αded = β1f1 + . . .+ βdfd.

Computing the coefficient of [f1]1+a1+a2 [f2]a3 [f3]a4 . . . [fd−1]ad [fd]ad+1−1 in (E′′),
one gets

β1

(
1 + a1 + a2

1, a1, a2

)
= 0 ∈ F,

where the multinomial coefficient is prime-to-p by Lemma 7.8. Thus β1 = 0.
In the same fashion, β2 = . . . = βd−1 = 0. In other words: all αi are equal to βd,
so that u = βdId, as was to be shown.

�

8.2. Linear algebraic groups as stabilisers of symbols.

Proposition 8.2. Let G be a linear algebraic group over F . There exists a rep-
resentation G ↪→ GL(W ), such that the composite G ↪→ GL(W ) −→ PGL(W ) is
faithful, together with the following data.

(1) A closed subscheme Z ⊂ P(W ), such that G = StabPGL(W )(Z).
(2) A G-fixed rational point (w0) ∈ P(W )(F )− Z(F ).

Proof. Pick n ≥ 2 and a faithful representation G ↪→ GLn−1. Note that the
natural composite

G ↪→ GLn−1 ⊂ GLn −→ PGLn

is still an embedding. This way, one gets a faithful representation G ↪→ PGLn,
such that the action of G on Pn−1 has (en) as an F -rational fixed point. Define

d := 2n, V1 = V2 := Fn, V := V1

⊕
V2.

Pick n large enough, so that d− 1 > dim(G). Consider the diagonal composite

G ↪→ GL(V1)
x7→(x,x)
↪→ GL(V ),

inducing

G ↪→ PGL(V1)
x7→(x,x)
↪→ PGL(V ).

Consider the canonical basis (e1, . . . , en, en+1, . . . , e2n) of V , obtained by putting
together two copies of the canonical basis of V1. Let (a1, a2, . . . , ad+1), r = a1 +
. . .+ad+1 and x ∈ Γr(V ) be as in the premises of Lemma 8.1. SettingW := Γr(V ),
this Lemma states that StabPGL(V )((x) ∈ P(W )(F )) is trivial.



19

Since PGL(V ) is a smooth F -group, acting on the smooth F -variety P(W ), it is
known that the PGL(V )-orbit

O(PGL(V ), x) := PGL(V ).x

is a locally closed subscheme of P(W ). Indeed, its closure

O(PGL(V ), x) ⊂ P(W )

equipped with its reduced induced scheme structure, is a PGL(V )-stable closed
subscheme, and the orbit O(PGL(V ), x) ⊂ O(PGL(V ), x) is open in its closure.
Denote by Z ⊂ O(PGL(V ), x) its complement, considered with its reduced induced
structure. Set U := P(W )− Z. One has G-equivariant embeddings

G
closed
↪→ PGL(V )

g−→g.x−−−−−→∼ O(PGL(V ), x)
closed
↪→ U

open
↪→ P(W )

Thus, the G-orbit map
α : G

g−→g.x−−−−−→ P(W )

is a locally closed immersion (even though G may not be smooth). Consider its

scheme-theoretic image X
closed
↪→ P(W ). Let us check that X is G-stable. Let R

be an F -algebra. Since formation of scheme-theoretic image of a quasi-compact
morphism commutes to flat base-change ([13], 100.38.5), the R-scheme XR :=
X ×Spec(F ) Spec(R) is the scheme-theoretic image of the GR-orbit map αR. Pick
γ ∈ G(R). Then γ.XR is the scheme-theoretic image of the R-morphism

(γ.αR) : GR
g−→(γg).x−−−−−−−→ P(W )R.

This morphism factors as

GR
g−→γg−−−−→ GR

αR−−→ P(W )R.

Since g 7→ γg is an isomorphism, we conclude that (γ.αR) and αR share the same
scheme-theoretic image. Equivalently, γ.XR = XR, proving that X is G-invariant.
Let us check that inclusion of linear algebraic F -groups

G ⊂ StabPGL(V )(X)

is an equality. Set
Y := X −O(G, x) ⊂ P(W ).

It is a closed subset ofX. Consider it as a closed subscheme ofX, using the reduced
induced structure (as such, it may not be G-invariant). Let R be a finite local
F -algebra, and let φ ∈ StabPGL(V )(X)(R). Arguing by contradiction, suppose
that φ.x /∈ O(G, x)(R). Denote by φ0 ∈ StabPGL(V )(X)(F ) the special fiber of φ.
Since R is local and O(G, x) ⊂ X is open, one has φ0.x /∈ O(G, x)(F ).
The monomorphism of F -schemes

β : G −→ X

g 7→ (gφ0).x

would then, set-theoretically, take values in Y . Indeed, suppose that there ex-
ists g ∈ G(F ), such that (gφ0).x ∈ O(G, x)(F ). Because O(G, x) is a principal
homogeneous space of G, there exists γ ∈ G(F ), such that (gφ0).x = γ.x. Then

γ−1gφ0 ∈ StabPGL(V )(x)(F ) = {1},

implying φ0 ∈ G(F ), hence φ0.x ∈ O(G, x)(F ), contradicting φ0.x /∈ O(G, x)(F ).
Thus, set-theoretically, the monomorphism β takes values in Y . This is impossible
because dim(G) > dim(Y ), as Noetherian topological spaces. One concludes that
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φ.x ∈ O(x)(R), implying φ ∈ G(R). This proves G = StabPGL(V )(X).
It remains to prove that X does not intersect Verr(P(V ) ⊂ P(W ). Recall that
V = V1

⊕
V2, V1 = V2, and that the G-action on P(V ) occurs via the composite

G ↪→ PGL(V1)
diag−−−→ PGL(V ).

By choice of the basis (e1, . . . , ed), the orbit O(PGL(V1), x) is thus contained in
the image of the composite F -morphism

π : P(V1)n×F P(V2)n×F P(V ) ↪→ P(V )n×F P(V )n×F P(V )
τ−→ P(Γa1+...+ad+1(V ))

(x1, x2, . . . , xd+1) 7→ [x1]a1 [x2]a2 . . . [xd+1]ad+1
.

Here the first arrow is obtained by taking products of the natural closed immersions
P(Vi) ↪→ P(V ), i = 1, 2. The arrow τ is that of item (3) of Lemma 7.9.
Observe that Verr is the composite F -morphism

P(V )
diag−−−→ P(V )d+1 τ−→ P(Γa1+...+ad+1(V )),

x 7→ [x]a1 [x]a2 . . . [x]ad+1
.

By item (3) of Lemma 7.9, τ is injective on F -points. Since P(V1) and P(V2)
intersect trivially as linear subspaces of P(V ), it follows that

Im(π)(F )
⋂

Verr(P(V ))(F ) = ∅.

Since the source of π is proper, one gets

O(PGL(V1), x)(F ) ⊂ Im(π)(F ),

so that
O(PGL(V1), x)

⋂
Verr(P(V )) = ∅,

and a fortiori
X
⋂

Verr(P(V )) = ∅.

Next, consider the closed subscheme

Z := X
∐

Verr(P(V )) ⊂ P(W ),

which is indeed a disjoint union. Let us check that the natural embedding

G ↪→ StabPGL(W )(Z)

is an iso. To do so, let R be a finite local F -algebra, and let

φ ∈ StabPGL(W )(Z)(R).

Then φ(Verr(P(V ))R) ⊂ ZR is an irreducible smooth clopen R-subscheme, of
dimension d − 1 > dim(G) = dim(X). It thus intersects XR ⊂ ZR trivially. In
other words: φ(Verr(P(V ))R) = Verr(P(V ))R, and consequently φ(XR) = XR.
By Proposition 7.2, φ belongs to PGL(V )(R). Since G = StabPGL(V )(X), one
then gets φ ∈ G(R), as was to be shown. Item (1) is proved.
For (2), recalling that en ∈ H0(G,V1) and e2n ∈ H0(G,V2), one may take

(w0) := [en]a1 [e2n]r−a1 = τ(en, e2n, e2n, . . . , e2n) ∈ H0(G,P(W )(F )).

The injectivity of τ (already used above to prove X
⋂

Verr(P(V )) = ∅) then
guarantees that (w0) /∈ Verr(P(V ))(F ) and (w0) /∈ Im(π)(F ). Hence (w0) /∈ Z(F ).

�
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Proposition 8.3. Let G be a linear algebraic group over F . There exists an
F -vector space W , integers n, l ≥ 1, and a linear subspace

L ∈ Gr(l,Γn(W ))(F ),

such that
G
∼−→ StabPGL(W )(L),

as group schemes over F .
Moreover, one can take L such that the closed subvarieties P(L)

lin
↪→ P(Γn(W )) and

P(W )
Vern
↪→ P(Γn(W )) do not intersect.

Proof. Pick a G-representation W , a closed subvariety Z ⊂ P(W ) and (w0) ∈
P(W )(F ) as in Proposition 8.2. For m ∈ N, consider the F -subspaces EZ ∈
Gr(l,Symm(W∨))(F ) and LZ ∈ Gr(l,Γm(W ))(F ), introduced in Definition 7.3.
These are G-stable. Fix m large enough, so that m 6= −1 ∈ F , and

G = StabPGL(W )(EZ)

(see Lemma 7.4). Considering the exact sequences of Definition 7.3, one sees that

StabPGL(W )(EZ) = StabPGL(W )(E
∨
Z) = StabPGL(W )(LZ),

so that
G = StabPGL(W )(LZ).

If char(F ) = 0 (resp. char(F ) = p), set q := m+1 (resp. q := ps > m, the smallest
p-th power greater than m). Set n := m+ q. Consider the F -linear map

Mw0 : Γm(W ) −→ Γn(W )

x 7→ x[w0]q.

It is injective by Lemma 7.9. Set

L := Mw0
(LZ) ⊂ Γn(W ).

Since (w0) ∈ H0(G,P(W )), there is a natural inclusion of F -groups

StabPGL(W )(LZ) = G ⊂ StabPGL(W )(L).

Let us show it is an equality. To do so, one may assume F = F . Let A be
a finite local F -algebra with maximal ideal M, and let g ∈ StabPGL(W )(L)(A).
We need to show that g ∈ StabPGL(W )(LZ)(A). Let us first show that g fixes
(w0) ∈ P(W )(F ) ⊂ P(W )(A). Assume that A = F . If w0 and g(w0) are not
F -collinear, complete them into an F -basis (w0, w1 = g(w0), w2, . . . , wd) of W .
By assumption, the two subspaces

g(L) = [w1]q.g(LZ) ⊂ Γn(W )

and
L = [w0]q.LZ ⊂ Γn(W )

are equal. Work in the natural basis of Γn(W ) induced by (w0, w1, w2, . . . , wd).
Then, elements of L are linear combinations of symbols of the shape

(A) : [w0]a0 . . . [wd]ad ,

with a0 ≥ q and a0 + . . . + ad = n < 2q. Similarly, elements of g(L) are linear
combinations of symbols of the shape

(B) : [w0]b0 [w1]b1 . . . [wd]bd ,

with b1 ≥ q and b0 + . . . + bd = n < 2q. But no symbol is of both shapes (A)
and (B)- a contradiction. Hence g fixes (w0). If char(F ) = 0, this is enough to
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conclude. It remains to treat the case char(F ) = p, q = ps > m and A arbitrary.
Denote by g ∈ StabPGL(W )(L)(F ) the residue of g. Pick z 6= 0 ∈ W , such that
(z) ∈ Z(F ), so that [z]m ∈ LZ and (z) 6= (w0). Define

w1 := g(z) ∈W.
By the case A = F dealt with before,

(g(w0)) = (w0) ∈ P(W )(F ),

so that (w0) 6= (w1). Complete w0, w1 into an F -basis (w0, w1, w2, . . . , wd) of W .
Rescaling g by an element of A×, one can assume

g(w0) = w0 + ε1w1 + . . .+ εdwd,

where εi ∈M. Assume first, that εiM = 0 for i = 1, . . . , d.
There exists η ∈ Γm(W )⊗F M such that

[g(z)]m = [w1]m + η ∈ Γm(W )⊗F A,
and a little computation gives

[g(w0)]q = [w0]q + ε1[w0]q−1[w1]1 + . . .+ εd[w0]q−1[wd]1 ∈ Γq(W )⊗F A.
Developping the product, rearranging terms, one gets

[g(w0)]q[g(z)]m = (m+ 1)ε1[w0]q−1[w1]m+1 +

d∑
i=2

εi[w0]q−1[w1]m[wi]1 + [w0]qE,

for some E ∈ Γm(W ) ⊗F A. Recall that all elements of L are linear combina-
tions of symbols of shape (A) above. Observe that symbols [w0]q−1[w1]m+1 and
[w0]q−1[w1]m[wi]1 are not of shape (A). Since L = g(L), it must be the case that
εi = 0 for i = 2, . . . , d . Since m 6= −1 ∈ F , one also has ε1 = 0.
It remains to remove the assumption εiM = 0. This is a straightforward induc-
tion on k ≥ 1, such that Mk = 0. If k = 1 there is nothing to do. Assume that
Mk+1 = 0. By induction applied to A/Mk, one gets εi ∈ Mk, so that εiM = 0
and the above applies, yielding εi = 0.
We have proved g((w0)) = (w0) ∈ P(W )(A).
By item (1) of Lemma 7.9, the A-linear map

Mw0 : Γm(W )⊗F A −→ Γm+q(W )⊗F A
x 7→ x[w0]q

is injective. Since

Mw0
(LZ) = Mg(w0)(g(LZ)) = Mw0

(g(LZ)),

it is then straightforward to see that g(LZ) = LZ . We have proved

G = StabPGL(W )(LZ) = StabPGL(W )(L).

To conclude, it remains to prove that P(L) and Vern(P(W )) intersect trivially.
By item (2) of Lemma 7.9, the morphism

µ : P(Γm(V ))×F P(V ) −→ P(Γn(V )),

(x, y) 7→ x[y]q

is injective on F -points. Introduce the graph of Verm,

∆ : P(V ) −→ P(Γm(V ))×F P(V ),

v 7→ ([v]m, v).

Observe that
P(L) = µ(P(LZ)× {w0})
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and
Vern(P(W )) = µ(∆(P(V ))).

Because (w0) /∈ Z(F ), one has [w0]m /∈ LZ , so that

(P(LZ)× {w0})
⋂

∆(P(V )) = ∅.

Thus, P(L)
⋂

Vern(P(W )) = ∅, as desired.

�

Question 8.4. In Proposition 8.3, can one take l = 1 ?

Remark 8.5. We suspect that the answer to Question 8.4 is yes, and sketch an
optimistic strategy to investigate it.
Let W, l, n and L be furnished by Proposition 8.3. By inspection of its proof, one
may assume that n is odd. Then, there is a well-defined F -linear map

Ψ : Λl(Γn(W )) −→ Γn(Λl(W )),

[w1]n ∧ . . . ∧ [wl]n 7→ [w1 ∧ . . . ∧ wl]n.
Assume that l < dim(W ) (which does not at all follow from the proof above).
Then Ψ is injective. Set W ′ := Λl(W ) and consider the composition of closed
embeddings

Gr(l,Γn(W ))
Pl
↪→ P(Λl(Γn(W )))

Ψ
↪→ P(Γn(W ′)),

where Pl is the Plücker embedding. Denote by L′ ∈ P(Γn(W ′)) the image of L
under this composite. One may then hope that, for a suitable choice of the data,
the composite arrow

G
∼−→ StabPGL(W )(L) −→ StabPGL(W ′)(L

′)

is an iso.

Remark 8.6.
A positive answer to Question 8.4 would not simplify the proof of Theorem 2.1.
It may, however, be useful in other contexts.

9. Proof of Theorem 2.1.

Let W , n, L and l > dim(W ) be as in Proposition 8.3. Put w := dim(W ). Define

V := Γn(W )

Denote by
Z ⊂ P(V )

the disjoint union of the closed subvarieties P(L) ' Pl−1 and Vern(P(W )) ' Pw−1.
In the proof of Proposition 8.3, W is fixed from the beginning, where w can be
picked arbitrarily large. The construction then works for all n sufficiently
large. It is straightforward to check that, when n goes to infinity, so do l and
dim(V ) − l (whereas w stays fixed). In particular, one may assume that w 6= l
and w 6= (dim(V )− l).

Proposition 9.1. The natural inclusion

G ↪→ StabPGL(V )(Z ⊂ P(V ))

is an isomorphism of algebraic F -groups.
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Proof. We first show that

StabPGL(V )(Z) = StabPGL(V )(Vern(P(W ))) ∩ StabPGL(V )(P(L)).

Inclusion ⊃ is clear. To get equality, as both sides are linear algebraic groups
over F , it suffices to prove equality of their points, with values in a finite local
F -algebra A, which reads as

StabPGL(V )(Z)(A) = StabPGL(V )(Vern(P(W )))(A) ∩ StabPGL(V )(P(L))(A).

Pick f ∈ StabPGL(V )(Z)(A). It induces an automorphism of the A-scheme
ZA := Z ×F A, which is the disjoint union of its irreducible clopen subschemes
Ver(P(W ))A and P(L)A. These are projective spaces of distinct dimensions, hence
non-isomorphic. Thus f preserves them both (which is a purely topological fact),
proving the claim. To conclude, apply Proposition 7.2 combined to equality
G = StabPGL(W )(P(L)), provided by Proposition 8.3. �

Define
X := BlZ(P(V )).

The action of G on P(V ) stabilizes Z; hence an embedding of F -group schemes

Φ : G −→ Aut(X)

Proposition 9.2. The arrow Φ is an isomorphism.

Proof. We may assume F = F .
By Proposition 9.1, we know that G ∼−→ StabAut(P(V ))(Z ⊂ P(V )). Using Propo-
sition 5.1, we thus know that Φ induces an iso

J(G, ρ) −→ J(Aut(X), ρ),

for every finite F -algebra A, with residue homomorphism ρ : A −→ F .
To conclude, it remains to prove that

Φ(F ) : G(F ) −→ Aut(X)(F )

is onto, as a homomorphism of abstract groups. Denote by E1 ⊂ X (resp. E2 ⊂ X)
the exceptional divisor lying over Pw−1 (resp. Pl−1). Since w 6= l and w 6=
(dim(V )− l), Lemma 6.5 implies that E1 and E2 are non-isomorphic F -varieties.
Proposition 6.2 then applies, concluding the proof. �
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