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Abstract : 

 

 

The nonlinear behavior of a simply supported granular column loaded by an axial force is 

studied in this paper. The granular column is composed of rigid grains (disks) elastically 

connected by some shear and rotational springs. The in-plane buckling and post-buckling 

analysis in a geometrically exact framework is numerically investigated from a nonlinear 

difference eigenvalue problem. The granular column asymptotically behaves as an Engesser-

Timoshenko column for a sufficiently large number of grains. An exact analytical solution of 

the buckling load of this discrete shear granular system is obtained from the linearization of 

the granular elastica problem. An asymptotic expansion is applied to the difference 

eigenvalue problem, to efficiently approximate the equation of the primary post-bifurcation 

branch of the discrete problem. Exact analytical solutions of the post-buckling branches are 

also available for the granular problem with few numbers of grains. Bifurcation diagrams of 

the granular elastica problem composed of few grains are numerically obtained with the 

simplex algorithm (for an exhaustive capture of all post-bifurcation branches). It is shown that 

the post-buckling of this granular column reveals complex behavior similarly to the post-

buckling of a generalized shear Hencky column (also called discrete Engesser elastica). 

Complex higher-order branches are exhibited, a phenomenon very similar to the discrete 

elastica problem. These branches reveal the specific nature of the discrete granular problem, 

as opposed to its continuum limit valid for an infinite number of grains. 

 

 

Keywords: Elastica – Post-buckling – Granular model – Geometrical nonlinearity – Discrete 

model – Granular elastica – Simplex algorithm – Bifurcation diagram – Asymptotic 

expansion 
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1. Introduction 

 

 

In this paper, the buckling and post-buckling behaviour of an axially loaded granular 

column is studied from analytical and numerical perspectives. The instability of such granular 

structure is studied in view of a better understanding of shear band formation in geomaterials, 

including granular media. It has been experimentally and numerically observed that curved 

columns of particles or grains are formed during the shear band with a key role of rotation of 

particles, and chain of forces. These phenomena are essential in the localization process of 

granular materials (Satake, 1998; Hutter and Wilmanski, 1999; Cambou et al, 2009; Andreotti 

et al, 2013; or Vardoulakis, 2019). The present granular discrete model explored in its full 

geometrically nonlinear range may contribute to a better understanding of granular 

instabilities in geomaterials. The granular system is composed of a finite number of uniform 

rigid grains with independent translational and rotational degrees-of-freedom. Shear and 

rotational interactions are taken into account at the interface of each grain. This nonlinear 

problem will be investigated in a geometrically exact framework. The nonlinear behaviour of 

such discrete structural systems is ruled by some nonlinear difference equations, as opposed 

to nonlinear differential or partial differential equations valid for continuous systems.  

 

The idea to compute the macroscopic behaviour of granular systems by modelling 

each grain separately, thus leading to a large scale discrete system is quite old. This idea is 

also related to the possibility to investigate continuum elasticity problems based on molecular 

elastic interactions, as suggested by Boscovich (1763) and the French mechanicians at the 

beginning of the XIXth century (Navier, 1823; Cauchy, 1828 and Poisson, 1829). This 

question was of fundamental interest during all the XIXth century (see for instance the paper 

of Capecchi et al, 2010 on the history of molecular elasticity). Investigating the macroscopic 

behaviour of continuous media from their fundamental discrete interactions is still a 

stimulating research nowadays, with the development of more complex interaction laws or 

more sophisticated computational possibilities (Dell’Isola et al, 2020; Wang et al, 2020). 

Even if the basic ideas behind discrete granular media based on elementary interaction laws 

were probably mature before the end of the XXth century, the possibility to compute 

effectively the nonlinear behaviour of such discrete systems only dates from the last 70’s, 

with the so-called Distinct Element Method, due to the availability of computational 



 
 

 
4

capabilities. The Distinct Element Method (DEM) has been initiated by Cundall (1971), 

Serrano and Rodriguez-Ortiz (1973) and Cundall and Strack (1979). This method assumes 

that the grains are rigid and interact with translational and rotational elastic and inelastic 

connections. This method has been widely and successfully applied to a large variety of 

engineering cases. The response of the granular particles is computed using numerical codes 

initially developed in the 70's (program ESTIB of Serrano and Rodriguez-Ortiz, 1973; 

program BALL of Cundall and Strack, 1979, which gives birth to PFC - Particle Flow Code). 

The research in this field is still active, especially for bridging discrete granular systems with 

continuous media (see the monographs of Hutter and Wilmanski, 1999; Cambou et al, 2009; 

Andreotti et al, 2013; or Vardoulakis, 2019). There are still some debates about the dissipative 

nature of the interaction law at the elementary level (see the discussion in McNamara et al, 

2008; or more recently Nicot et al, 2017 or Turco et al, 2019). 

 

In the present paper, we will formulate the geometrically exact nonlinear difference 

equations of a granular structural system composed of rigid circular grains with elastic 

granular interactions. This system can be also viewed as the analytical formulation of a 

Distinct Element Method applied to granular matter (where the normal interaction is 

neglected in the present study). The equations of motion will be deduced from an energy 

formulation for this nonlinear conservative elastic system. The granular column is assumed to 

be loaded by some axial loads, which may cause the granular system lose stability. A similar 

system has been considered by Satake (1998) who also studied the buckling of a granular 

column with constrained shear/bending interaction laws. Satake (1998) introduced this 

granular chain as a paradigmatic structural model which may play a key role in the shear band 

formation. Satake (1998) only presented some linearized equations for the calculation of the 

buckling load. The geometrically nonlinear exact formulation of this granular column is given 

by Hunt et al (2010) or Tordesillas et al (2011) based on energy arguments. Hunt et al (2010) 

numerically solved the buckling and post-buckling behaviour of the granular column on 

Winkler elastic foundation by using a path-following continuation code. Tordesillas et al 

(2011) numerically investigated the effect of boundary conditions on the linearized buckling 

behaviour of the granular column. The paper of Tordesillas and Muthuswamy (2009) should 

be also mentioned regarding the elastic and inelastic instabilities of granular systems, 

including longitudinal and cyclic granular chains. Challamel et al (2014) obtained some 

closed-form solution of the buckling load of a granular system by solving a linear difference 

eigenvalue problem. Challamel et al (2014) also highlighted the link between this discrete 
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stability problem and its asymptotic continuous analogue, i.e. the Engesser-Timoshenko 

column (Engesser, 1891; Timoshenko and Gere, 1961). As shown by Pasternak and Mühlhaus 

(2005), Challamel et al (2014), Challamel et al (2020) or Massoumi et al (2021), the discrete 

granular column may behave as a discrete Bresse-Timoshenko beam element, both in statics 

and in dynamics. Challamel et al (2020) more recently reconsidered the buckling of a granular 

column under discrete Winkler and Pasternak elastic foundations. Challamel et al (2020) also 

developed a higher-order gradient-type continuous beam theory for capturing the length scale 

effects of the granular chain. Alternative discrete Bresse-Timoshenko systems have been 

recently proposed by Kocsis (2016), Kocsis et al (2017), Kocsis and Challamel (2018), 

Battista et al (2018) or Turco et al (2020) also in a geometrically nonlinear framework. It 

appears that there is a strong mathematical connection between one-dimensional granular 

systems and discrete beam mechanics, both in the linear and in the nonlinear ranges. 

 

The buckling and post-buckling behaviours of the granular column are investigated in 

this paper, based on a geometrically exact framework. Such nonlinear problem has been 

numerically computed by Hunt et al (2010) or Tordesillas et al (2011) who started from an 

energy expression of the structural interactions. The model presented in this paper leads to 

exactly the same total potential energy function as used in the model of Hunt et al (2010) or 

Tordesillas et al (2011) without lateral supporting springs and stiff normal springs, which may 

be labelled as a granular elastica (or equivalently, a geometrically exact DEM granular 

column). The nonlinear difference eigenvalue problem is presented both from an energy 

approach and from a direct approach. We numerically solve the nonlinear difference boundary 

value problem with the simplex algorithm (for an exhaustive capture of all post-bifurcation 

branches). It is shown that the post-buckling of this granular column reveals complex 

behavior similarly to the post-buckling of a generalized shear Hencky column (also called 

discrete elastica or discrete Engesser elastica in presence of shear). An exact analytical 

solution of the buckling load of this discrete shear granular system is obtained from the 

linearization of the granular elastica problem. An asymptotic expansion method is also 

applied to the nonlinear difference eigenvalue problem of the granular elastica to approximate 

analytically the primary bifurcation branches of the discrete granular problem. A similar 

method has been successively applied to a nonlinear elastic discrete repetitive system, i.e. the 

Hencky discrete beam problem formulated in a geometrically exact framework, by Challamel 

et al (2015-a). Hencky beam is composed of rigid elements connected by rotational springs 

(Hencky, 1920), which asymptotically converges towards Euler beam at the continuum limit. 
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Even if Hencky introduced his model one century ago as a numerical method based on 

physical arguments to approximate the buckling loads of elastic Euler columns, the treatment 

of the geometrically exact Hencky problem is more recent and dates from the 80’s (with 

contributions of El Naschie et al, 1988; Gáspár and Domokos, 1989 or Domokos, 1993). El 

Naschie et al, 1988 numerically computed the curvature of the primary bifurcated branches of 

the geometrically exact Hencky system, from an asymptotic procedure. Gáspár and Domokos, 

1989 or Domokos, 1993 highlighted the very rich structure of the bifurcation diagram of 

Hencky system with a very exhaustive portrait. Challamel et al (2015-a) decomposed the 

nonlinear eigenvalue problem of the nonlinear Hencky system into a set of difference 

equations, and analytically confirmed the curvature values computed by El Naschie et al 

(1988) for Hencky system. In the present paper, we will apply the same mathematical 

approach for a nonlinear difference eigenvalue problem which is similar (even if not 

equivalent) to the geometrically exact Hencky column. 

 

We will show that exact analytical solutions of the post-buckling branches are also 

available for the granular problem with few numbers of grains. The granular column 

asymptotically behaves as an Engesser-Timoshenko column (or continuous Cosserat beam 

model) for a sufficient large number of grains. 

 

 

2. The granular model – Geometrically exact framework 

 

 

The granular elastica model is a discrete column composed of n+1 rigid discs of radius R and 

diameter a=2R. In the initial configuration the discs are in contact and their centers lie in a 

vertical line, which is aligned with axis x of the coordinate frame. The horizontal (lateral) 

displacement of the center of disc i is denoted by wi. The rotation of disc i is denoted by iθ . 

The axis of the granular elastica (column axis) is the polygon connecting the disc centres, 

with  21+iψ  being the angle of the polygon segment between discs i and i+1 from axis x: 

 

a

ww ii

i

−
= +

+
1

21 arcsinψ      (1) 
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Figure 1 shows a schematic of the model. It is assumed that the discs cannot separate, i.e. 

neighbouring discs are always in contact, and the friction coefficient is zero. The interactions 

between the grains are maintained by bending and shear springs. The bending springs are 

linear rotational springs connecting each pair of neighbouring discs. The moment arising in 

rotational spring i is proportional to ii θθ −+1  and the constant of proportionality is CR=EI/a, 

the discrete bending stiffness. 

 

The shear springs are linear rotation springs connecting each disc to the column axis. Hence 

disc i is connected to both column axis segments above and below by separate shear springs.  

The discrete shear strain is defined as  

 

2
1

2121
+

++
+

−= ii

ii

θθψγ      (2) 

 

Note that it follows Engesser’s shear strain theory: the shear strain is the slope of the column 

axis minus the slope of the bending line, which is computed as the average rotation of the 

corresponding discs, 2/)( 1++ ii θθ . The discrete shear stiffness is GAaκ , the sum of stiffness 

of shear springs attached to a segment of the column axis. The initial configuration for the 

springs is stress free. A schematic of two neighbouring discs after deformation is shown in 

Figure 2. It is worth mentioning that there is an equivalence between the modeling of the 

granular chain using a classical DEM model based on rotational and shear slip interactions 

(with stiffness CR=EI/a and aGAk t κ= ), as considered for instance by Serrano and 

Rodriguez-Ortiz (1973), Cundall and Strack (1979) or more recently Hunt et al, (2010) if the 

normal interaction is neglected, and the present model based on rotational bending and shear 

interactions (see Figure 3). 

 

The granular elastica equations may be obtained from the following energy function in a 

geometrically nonlinear exact framework: 
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which is consistent with the energy equation considered by Hunt et al (2010) for a granular 

elastica on elastic foundation.  

 

The angle 21+iψ  can be also reformulated from the discrete displacement variables as: 

 

2

1
21 1cos 







 −
−= +

+
a

ww ii

iψ     (4) 

 

Eq. (3) is a discrete form of the continuous Engesser elastica formulation: 

 

( ) ( ) dxPGAEI
L

ψθψκθπ cos1
2

1

2

1 22

0
−−−+′= ∫    (5) 

 

From stationarity of the discrete total potential energy given by Eq. (3), 0=δπ , the coupled 

nonlinear difference equations are obtained for the granular elastica: 

 

 












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
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

 +
−
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


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+
+

+
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0sin
2

0
4

2

2

2

21
1

21

112121

2
11

i

ii

i

iiiiiiii

PGA

GA
a

EI

ψθθψκ

θθθψψ
κθθθ

  (6) 

 

which again is a discrete form of the differential equations obtained from the continuous total 

potential energy Eq. (5): 

 

( )
( )




=−−
=−+′′

0sin

0

ψθψκ
θψκθ

PGA

GAEI
     (7) 

 

For the shear continuous problem, from Eq. (7), it is possible to express θ  as a function of ψ : 

 

ψ
κ

ψθ sin
GA

P−=      (8) 
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The continuous Engesser elastica problem can be reduced to a single nonlinear differential 

equation already derived by Atanackovic (1997) or Kocsis et al (2017): 

 

0sinsin =+
″




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 − ψψ
κ

ψ P
GA

P
EI     (9) 

 

The difference equations of the granular elastica problem may be also rewritten from Eq. (6), 

as: 

 













=



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
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4

2
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2
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2
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112121

2
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iiiii

iiiiiiii

P
a

EI

GA
a

EI

ψψθθθ

θθθψψ
κθθθ

 (10) 

 

It could be convenient to introduce the difference operators: 

 

4

2 11
0

−+ ++
= iii

i

www
wδ  , 

a

ww
w ii

i 2
11

1
−+ −

=δ  and  
2

11
2

2

a

www
w iii

i

−+ +−
=δ   (11) 

 

It is also possible to express these last difference operators with respect to the shift operator E 

(see Goldberg, 1958; Elaydi, 2005):  

 

( )1
0 2

4

1 −++= EIEδ  , 
a2

1
1 =δ ( )1−− EE  and  

22

1

a
=δ ( )12 −+− EIE  (12) 

 

where I  is the identity operator. It is easy to check the remarkable property: 

 

2
10220 δδδδδ ==        (13) 

 

It is also possible to introduce the related difference operator: 

2
2121

0
−+ +

= ii

i

ww
wδ  with  == ii ww

21
00 δδ ( )2121

2

1 −+ EE iw   (14) 
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The nonlinear granular elastica problem Eq. (10) is then reformulated with these difference 

operators as: 

 

( )






=+

=−+

0sin

0

02

002

ii

iii

PEI

GAEI

ψδθδ

θδψδκθδ
     (15) 

 

which makes possible to extract iθ  from the first nonlinear difference equation Eq. (15), as : 

 

iii
GA

P ψδ
κ

ψδθδ sin000 −=     (16) 

 

It is possible to apply the difference operator 0δ  to the second equation of Eq. (15) thus 

leading to: 

 

0sin0002 =+ ii PEI ψδδθδδ     (17) 

 

The consideration of both Eq. (16) and Eq. (17) finally gives the single nonlinear difference 

equation: 

 

0sinsin 0002 =+






 − iii P
GA

P
EI ψδδψ

κ
ψδδ    (18) 

 

which can be reformulated by difference integration: 

 

0sinsin 02 =+






 − iii P
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P
EI ψδψ

κ
ψδ     (19) 

 

The granular elastica problem can then be obtained equivalently from a single nonlinear 

difference equation Eq. (19) or equivalently: 
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which is a finite difference scheme of the continuous granular elastica, in fact equivalent to 

the Engesser elastica problem governed by the nonlinear differential equation Eq. (9). 

 

The granular elastica differs from the discrete Engesser elastica explored in Kocsis et al 

(2017): 
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    (21) 

 

In fact, for the discrete Engesser elastica problem defined by Eq. (21) and investigated in 

Kocsis et al (2017), it is possible to express one variable with respect to the other: 

 

iii
GA

P ψ
κ

ψθ sin−=       (22) 

 

From the discrete Engesser elastica explored in Kocsis et al (2017), it is then possible to 

derive a single second-order nonlinear difference equation by using both Eq. (21) and Eq. 

(22): 

 

0sin
sinsin2sin2

2
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2
11 =+

+−
−

+− −+−+
i

iiiiii P
aGA

EI
P

a
EI ψψψψ

κ
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  (23) 

 

Comparing Eqs. (20) and (23) clearly shows the differences between the discrete granular 

elastica and the discrete Engesser elastica considered by Kocsis et al (2017). Both discrete 

systems converge towards the continuous Engesser elastica but from two distinguished 

discrete schemes. 
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Note that the difference equations explored for the granular elastica also differs from the shear 

difference equations of Kocsis (2016) who explored a discrete Haringx-type model. 

 

By introducing the following dimensionless parameters,  

 

EI
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2

=β  and  
2

2
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s

κ
=      (24) 

 

The dimensionless granular elastica problem can be expressed from the coupled system of 

nonlinear difference equations: 
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Eq. (25) can be equivalently reformulated with the discrete displacement field as: 
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The nonlinear boundary value problem of the granular elastica is then governed by Eq. (25) 

coupled to the symmetrical boundary conditions for the simply supported granular column: 

 

11 −= θθ , 2121 −=ψψ  , 11 +− = nn θθ  and 2121 +− = nn ψψ   (27) 

 

The granular elastica may be also investigated from the equivalent single dimensionless 

nonlinear difference equation:  
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( ) 0sinsin 02

2
2

2 =+− iii
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sa ψδβψβψδ     (28) 

 
or equivalently: 
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3. The granular model – Linear analysis 

 

 

The calculation of the buckling load of the granular elastica may be achieved by linearization 

of the nonlinear difference eigenvalue problem. The linearization of the coupled system of 

difference equations Eq. (6) is expressed by: 
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 (30) 

 

This linear system of difference equations, expressed with the shear-rotation variables may be 

easily reformulated in a rotation-displacement discrete space, using the linearized kinematic 

constraint: 

a
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Considering now the second equation of Eq. (30), equivalently leads, thanks to the remarkable 

property Eq. (13), to: 
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The linearized difference equations are then expressed with the rotation and displacement 

discrete fields, given below: 
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This coupled system of difference equations, already derived by Challamel et al (2020) from a 

linearization process in the energy equation, can be alternatively written in a matrix format, of 

difference operators: 
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    (34) 

 

Calculating the determinant of the matrix of difference operators in Eq. (34) and using the 

remarkable property Eq. (13) gives the final linear fourth-order difference equation for the 

deflection: 

 

01 02
2
2 =+


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 − ii wPw
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P
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κ
    (35) 

 

Eq. (35) is a finite difference scheme for the buckling problem of the Engesser-Timoshenko 

continuous column.  

 

Eq. (35) can be integrated (in the sense of difference method) twice: 

 

( )BiAPwPw
GA

P
EI ii +=+







 − 021 δδ
κ

    (36) 

 

where ( )BA,  are two constants of integration. This linear difference equation can be solved 

by assuming a displacement solution in a form of power function for the second-order 

difference equation without second member (Goldberg, 1958): 
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i

i ww λ0=       (37) 

 

The substitution of Eq. (37) into the difference equation Eq. (36) without second member, 

furnishes the following auxiliary equation: 
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The auxiliary equation admits two complex conjugate solutions 

 

ϕϕββ

β

ββ

β

λ sincos1

4
1

21

4
1

21

2

2

2

2

2

2

2

j

n
s

n

n
s

n ±=−


















+−
−±

+−
−=  with 

 

2

2

2

4
1

21cos

n
s

n
ββ

β

ϕ
+−

−=  and 12 −=j  (39) 

 

The general solution for the linear difference equation Eq. (36) can finally be expressed in 

polynomial and trigonometric functions: 

 

( ) ( )iDiCiBAwi ϕϕ sincos +++=     (40) 

 
Now considering the four boundary conditions Eq. (27) of the hinge-hinge granular column 

reformulated in terms of displacement 

 

00 =w , 11 −−= ww  , 0=nw  and 11 −+ −= nn ww    (41) 

 

gives: 

 

0=== CBA and  ( ) 0sin =ϕn     (42) 

 

With the constants 0== BA  vanishing, the second member of Eq. (36) is vanishing: 
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01 02 =+
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    (43) 

 

For simply supported boundary conditions, the linearized problem can be obtained from the 

second-order linear difference equation Eq. (43): 
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This model is in fact similar to the model of Kocsis (2016), in case of shear inextensible 

elements (discrete Euler-Bernoulli beam element; ∞→GAκ ): 
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This second-order linear difference equation Eq. (45) is also the one reported by Satake 

(1998) for the buckling of a granular column in the absence of shear interaction (see Eq. (7) of 

the paper of Satake, 1998)). In other words, Eq. (44) of the present paper generalizes the 

results of Satake (1998) for both rotational and shear granular interactions. 

 

For the granular column studied in this paper, considering Eq. (42) gives for the fundamental 

buckling mode of trigonometric form (as assumed by Challamel et al, 2020 in presence of 

additional discrete soil elastic interactions): 
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Furthermore, the buckling load is expressed as: 
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which has been obtained by Challamel et al (2020) in presence of additional Winkler and 

Pasternak-type foundation. 

 

Engesser formulae, valid for the buckling of columns in presence of shear effects (Engesser, 

1891 – see also Timoshenko and Gere, 1961) is asymptotically found in the continuum limit: 
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+
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∞→
  with  2πβ =E   (48) 

 

The granular column then asymptotically behaves as an Engesser-Timoshenko column, in the 

continuum limit. 

 

From Eq. (48), the pure granular system with only bending interactions s=0 has a buckling 

load equal to: 
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tan40 22 πβ     (49) 

 

which has been also obtained by Kocsis (2016) for a hinge-hinge Cosserat chain. 

 

Figure 4 shows the (fundamental) buckling load parameter as function of n for various 

stiffness parameter values s based on Eq (47). 

 

Alternative boundary conditions may be considered as well, as investigated by Satake (1998) 

(see also the calculation in Appendix A). 

 

 

4. Analytical solutions for few grains 

 

 

For the case of two grains only the trivial equilibrium state exists. It can be seen from the 

equations, but also intuitively as both grains are constrained against lateral displacement by 

the supports and the point of action of the force cannot be displaced. 
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For the granular column of a few grains some analytical solutions can be developed. For the 

derivations we will make use of the geometric constraint 

 

0sin
1

0
21 =∑

−

=
+

n

i

iψ     (50) 

 

The above equality can be obtained from the summation of the second set of equations of Eq. 

(25), assuming non-zero loading, and means that the centres of the first and the last grains lie 

on a vertical line. 

 

 

4.1 A three-grain granular column 

 

For three grains (n=2) it is possible to find all the solutions for the system of nonlinear 

equations Eq. (25) analytically.  

 

Eq (50) in this case yields: 

0sinsin 21121 =+ +ψψ      (51) 

 

Eq. (51) holds for any 21ψ  if one of the following equalities is fulfilled: 
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Here k and m are integers. Hence two families of equilibrium paths for three grains can be 

found: 
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The derivation for Eq. (53) is given in Appendix B. 
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4.2 A four-grain granular column 

 

For the granular elastica of four grains (n=3) it is possible to analytically find equilibrium 

configurations that obeys some symmetries, but not all the solutions in general.    

 

The geometric constraint Eq. (50) for four grains is: 

 

0sinsinsin 21221121 =++ ++ ψψψ      (54) 

 

A solution for Eq. (54) assumes reflection symmetry to the vertical axis:  
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Here k and m are integers. Following a similar approach as in Appendix B, we can obtain the 

analytical solutions for mirror-symmetric configurations using geometrically exact 

description:  
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Another set of solutions for Eq. (54) obeys point symmetry:  
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Here k is integer. The analytical solution with point-symmetric equilibrium configurations 

using geometrically exact description is:  
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where 
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and 5.0)sin( 21 ≤ψ . 

 

Derivation of these analytical results is given in Appendix C. 

 

 

4.3 Approximation of the first post-buckling path for arbitrary number of grains 

 

 

The analytical solution for the geometrically exact granular elastica of n grains can be 

approximated by generalizing the above solutions for mirror-symmetric configurations. The 

first post-buckling path can be estimated analytically as a possible generalization of the 

primary post-bifurcation branch in the case n=2, as: 
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This formulae has not been built from asymptotic arguments and is assumed as a possible 

approximation of the exact discrete granular problem. This formulae for the primary 

bifurcation branch is only exact for the specific case n=2. Note that the fundamental buckling 

load Eq (47) can be also obtained with the above formula. Another approximated formulae 

may be derived from asymptotic arguments, for n larger than 3, as shown in Appendix D.  
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Eq. (47) can be also obtained, as a limiting case when 21ψ  tends towards zero, from Eq. (61). 

Eq. (61) is obtained from an asymptotic expansion of both the load and the unknown discrete 

field with respect to a small parameter, such as the boundary rotation. The method consists in 

approaching the nonlinear difference eigenvalue problem by a set of linear difference 

eigenvalue problems which can be analytically solved. Such mathematical approach has been 

shown to be very efficient for evaluating the post-bifurcation response of Hencky column 

(Challamel et al, 2015-a). It is shown also in this paper that this asymptotic method is 

particularly accurate for computing the post-bifurcation branches of the granular elastica 

problem. For n=2, the exact equation is given by Eq. (60). For n=3, Eq. (60) and Eq. (61) 

coincide for the sensitivity of the primary bifurcation branch with respect to the square of 

21ψ . For n larger than 4, Eq. (61) should be more precise, at least in the vicinity of the 

bifurcation load, as it is rigorously obtained from an asymptotic expansion. 

 

 

5. Numerical solutions  

 

5.1 The solution strategy  

 

For the numerical solutions of Eq. (25) with boundary conditions Eq. (27) the governing 

differential equation systems are further manipulated to eliminate the unknowns 21+iψ . First 

21+iψ  is expressed from the first equation of Eq. (25) and boundary condition 2121 −=ψψ  is 

considered, yielding  
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The derivation of Eq. (62) is given in Appendix E.  

 

Eq. (62) can be substituted in the second equation of Eq. (25), leading to n+1 highly nonlinear 

equation system with n+1 unknown rotations ),,,( 10 nθθθ L and two parameters, s and β . If 

we fix the stiffness parameter s, then the solutions form equilibrium paths uniquely embedded 
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in an n+2 dimensional space. The space ),,,,( 10 βθθθ nL  is called the Global Representation 

Space (GRS) hereafter.  

 

In our numerical solution strategy, we first implement the simplex algorithm (Domokos and 

Gáspár, 1995, Gáspár et al, 1997). The algorithm is able to approximate all the solutions of a 

nonlinear algebraic equation system without iterations in a given bounded domain of the 

GRS. For doing so it divides the GRS into simplices and solves a linearised equation system 

over each simplex. The drawback of the algorithm, however, is that the computation 

requirement increases exponentially with the dimension of the GRS. Therefore, the numerical 

simulations are computed only for small values of n. The algorithm is coded in FORTRAN 

90.  

 

Not only the global solutions can be obtained with the algorithm, but also equilibrium paths 

can be followed. This is referred to as path following hereafter, which is not limited by the 

dimension of the GRS as heavily as the scanning.  

 

We have developed a hybrid approach for the numerical simulation. First scanning is 

implemented with a fairly coarse resolution of the GRS. The obtained results then can be 

smoothened by the Newton-Raphson method, also coded in FORTRAN 90. The equilibrium 

branches that we obtain this way are the ones which are inside the scanned, bounded domain. 

Often the paths seem to be discontinuous as they may exit the scanned domain at some point 

and may return at another point of the path, or may not return to the scanned domain. Some 

small parts of the paths can also be missing because of the coarse resolution of the symplectic 

grid.  

 

To overcome these difficulties the following algorithm is applied as final step. We choose m 

solutions from what we have already found. Then we apply the path following algorithm 

starting at these solution points in all possible 2n+1 directions. The m solutions are chosen 

randomly and all the input files for the path following (for all the chosen solution points and 

for all possible directions) are generated and run automatically, and all the obtained results are 

merged automatically. This final step is implemented in Python 3. Note that a different hybrid 

parallel approach of the simplex algorithm is described in (Domokos and Szeberényi, 2004). 
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Before choosing the domain for scanning, we investigate if certain symmetries can be 

observed in Eq. (25). Suppose we have an equilibrium state given by the stiffness parameter s, 

the load parameter β and the rotations ),,,( 10 nθθθ L , ),,,( 2/12/112/1 −+ nψψψ L . We obtain 

another equilibrium configurations if we keep the stiffness parameter s unchanged and either: 

• Change sign of all the rotations and keep the load unchanged 

• Add kπ to all the rotations and multiply the load by (-1)k 

These properties will be taken into account, i.e. we will only scan for positive load β and 

],0[0 πθ ∈ . We do not explore some non-interpenetration conditions in the bifurcation 

diagram. 

 

 

5.2 Results 

 

First, we verify the numerical solutions by comparing them to the analytical results. The 

equilibrium paths obtained numerically are projected on the subspace βψ ,2/1  and this 

projections (bifurcation diagrams) are plotted. The rotation 2/1ψ can be computed from the 

scanning result for the grain rotations as: 

2
)(2 01

01
22

21

θθθθψ +
++−= ns     (63) 

For the derivation of Eq. (63), see Appendix E. 

 

Figure 5 shows all the solutions of the nonlinear equation system found numerically for n=2 

(three grains) and s=0.1, 0.3, 0.4, 0.5, 0.6, 0.7, and 1.0. The scanning was run on the bounded 

domain ],0[0 πθ ∈ , ]2,2[, 21 ππθθ −∈  and ]30,0(∈β . The resolution of the GRS is 

150x600x600x400. For validation, the analytical solutions, given by Eq. (53), are also plotted 

with dashed black lines and by black dots. It can be seen that the solutions found by the 

numerical procedure and the analytical results are identical which validates the numerical 

implementation. As detailed in Appendix B and confirmed by the bifurcation diagram of 

Figure 5, the primary branch is intersected by a secondary branch at point 

( )2,2 021 πββπψ == . This secondary branch is a rigid rotation mechanism (the structure 

becomes kinematically indeterminate) which corresponds to the superposition of grain 2 with 

grain 0. It is worth mentioning that the interpenetration condition between rigid grains has not 
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been included in the model. If a non-interpenetration condition between grain 0 and grain 2 is 

explicitly considered, an additional kinematics constraint has to be taken into account. These 

additional constraints need to be incorporated for a fully realistic post-bifurcation granular 

analysis. 

 

Figure 6 shows all the equilibrium paths of the granular elastica of three grains in the bounded 

domain of the load parameter ]30,30[−∈β  and ]2,2[2/1 ππψ −∈  based on the analytical 

solutions given by Eq. (53). An animation is provided as electronic supplementary material 

showing the equilibrium branches with slowly changing stiffness parameter ]5.1,0(∈s .  

 

Figure 7 shows all the solutions of the nonlinear equation system found numerically for n=3 

(four grains) and s=0.4, 0.5, 0.6 and 0.7. The scanning was accomplished on the bounded 

domain ],0[0 πθ ∈ , ]2,2[,, 321 ππθθθ −∈  and ]30,0(∈β . The resolution of the GRS is 

75x300x300x225. For validation the analytical solutions, given by Eq. (56) and (58), are also 

plotted with dashed black lines. It can be seen that apart from the reflection and point 

symmetric equilibrium configurations, there are many more solutions found numerically. 

Even if n=3 is not a large number of grains, it can be observed that instability branches exist 

for such discrete structural problem, that are not present for the continuous Engesser column. 

This phenomenon was already highlighted for discrete shear columns by Kocsis et al (2017), 

or by Kocsis and Challamel (2018) for extensible discrete shear columns. These results are 

similar to the rich bifurcation diagram observed for the bifurcation diagram of discrete Euler 

column (modeled by Hencky-Chain model), as shown by Gáspár and Domokos (1989), 

Domokos (1993), Domokos and Holmes (1993) or Domokos and Holmes (2003) with the so-

called additional parasitic solutions.  

 

The computation for n=3 on ],0[0 πθ ∈ , ]2,2[,, 321 ππθθθ −∈  and ]30,0(∈β  with GRS 

resolution  75x300x300x225 took ~7 days 2 hours 44 minutes on three cores of an Intel(R) 

Core(TM) 2 Quad Q8200 processor @2.33 GHz. The load parameter domain was split in 

three parts for the three cores. The output of the scanning was refined with the Newton-

Raphson method and the path following for randomly chosen equilibrium configurations were 

accomplished, following the procedure described in Section 5.1. The last two steps did not 

need much time, less than 1 hour in total. It can be seen that scanning is far the most 

expensive part of the simulation in terms of computational resources. That is the reason why 
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we have developed a hybrid approach that tries to minimize the cost of scanning by using a 

coarse resolution of the GRS.     

 

Finally, Figure 8 shows the equilibrium paths obtained with the path following algorithm for 

n=2,3,..,9 with stiffness parameter s=0.4 for 4/2/1 πψ < . The analytical estimate of the first 

post-buckling path, as given by Eq. (60) and Eq. (61), are also shown. It can be seen that the 

approximate solution Eq. (60) is better aligned with the numerical results for smaller number 

of grains, while Eq. (61), obtained from asymptotic expansion, is a better estimate for larger 

number of grains. Figure 9 shows these paths up to πψ =2/1 . As the formula Eq. (61) 

neglects higher order terms, with larger displacements it becomes less accurate. It can be 

observed in Figure 9 that the first post-buckling path bifurcates for odd number of grains 

(even n). It may be a general behaviour as a similar phenomenon was already observed for the 

elastic linkage (Gáspár and Domokos, 1989). It is worth mentioning that the path following 

algorithm typically follows a bifurcated branch at a bifurcation point. That is why in Figure 9, 

for odd number of grains, we cannot see the continuation of the first post-buckling path after 

the bifurcation point, the algorithm followed a secondary branch.   
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6. Conclusions 

 

 

This paper investigates the buckling and post-buckling behavior of a granular column. 

The column is composed of rigid grains elastically connected by translational and rotational 

links. The mechanical problem is formulated in a geometrically exact framework, in order to 

capture exactly the various post-bifurcation branches. This discrete mechanics problem is 

ruled by some nonlinear difference equations. The post-bifurcation branches have been 

computed using a simplex algorithm, and have been compared to analytical solutions for a 

few grains (for a chain composed of three grains – case n=2, it was possible to express all 

post-bifurcation branches analytically). To the authors’ knowledge, the complete bifurcation 

diagram of the granular elastica was not available in the literature, even for few grains. It is 

hoped that the results presented in this paper could contribute to a better understanding of the 

complex instability phenomena in granular materials. Clearly, instability branches exist for 

such discrete structural problem, that are not present for the continuous Engesser column. 

This phenomenon was already highlighted for discrete shear columns by Kocsis et al (2017), 

or by Kocsis and Challamel (2018) for extensible discrete shear columns. These results are 

similar to the rich bifurcation diagram observed for the geometrically exact bifurcation 

analysis of Hencky chain under axial force (discrete Euler column), as shown by Gáspár and 

Domokos (1989), Domokos (1993), Domokos and Holmes (1993) or Domokos and Holmes 

(2003) with the so-called parasitic solutions. A granular column also belongs to the class of 

discrete Engesser columns with a bifurcation diagram different from the asymptotic 

continuous Engesser column due to its inherent discrete nature (this fundamental aspect of the 

discreteness versus continuous limit is extensively discussed by Domokos and Holmes for 

Hencky chains). 

 

The idea of investigating the granular column using the method of finite differences is 

due to Satake (1998) who considered this paradigmatic granular (discrete) column, for a better 

understanding of the instability patterns in the localization process due to shear band 

formation in granular media. Satake (1998) only considered the linearized buckling analysis 

of a particle column in the formation of shear band. The results presented in this paper also 

show the capability of this paradigmatic system in the nonlinear range. An asymptotic 

expansion method has been applied to the nonlinear difference eigenvalue problem, to get a 
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very accurate approximate solution of the primary post-bifurcation branch of the nonlinear 

granular elastica problems. It could be interesting to explore the capability of higher-order 

continuous medium to capture the scale effect of this granular column, as explored for 

Hencky-type model in the nonlinear range by Challamel et al (2015-a) or Challamel et al 

(2015-b) without shear interaction, and by Kocsis et al (2017) or Kocsis and Challamel (2018) 

in presence of shear and rotational discrete interactions. In such localized zone, some two-

dimensional features may be predominant. The present study also explores the nonlinear 

domain with an exhaustive representation of the post-bifurcation branches. The geometrically 

exact analysis of two-dimensional granular instabilities (also including the coupling with the 

normal stiffness of the granular interaction) is a much more complex problem, which could be 

investigated in the future, for a better understanding of generic instabilities in geomechanics. 
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APPENDIX 

 

 

Appendix A: Solution of the linear difference eigenvalue problem – Some other 

boundary conditions 

 

 

In this appendix, we derive the exact buckling formulae of the granular elastica for some other 

boundary conditions, for instance for clamped-clamped (difference) boundary conditions. The 

buckling solution is obtained from the resolution of a linear fourth-order difference equation 

Eq. (35): 
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The general solution for the linear difference equation Eq. (A1) can finally be expressed in 

polynomial and trigonometric functions: 
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Let us investigate the clamped-clamped case based on the following difference boundary 

conditions (alternative boundary conditions): 

 

00 =w , 11 −= ww , 0=nw  and 11 −+ = nn ww    (A3) 

 

The consideration of the four boundary conditions Eq. (A3) gives the dimensionless buckling 

load formula: 
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In this case, the buckling load is computed from: 
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The buckling load in absence of shear interaction is then equal to: 
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which has been obtained by Satake (1998) – see Eq. (15) of the paper of Satake (1998) 

expressed with the notation of this paper: 
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Appendix B: Analytical solution for n=2 (three grains) 

 

The analytical solution for the geometrically exact Engesser granular elastica for three grains 

(n=2) is given below.  

 

The second equation of Eq. (25) for i=0,1, with the boundary conditions Eq. (27) and the 

geometric constraint Eq. (50) yields: 
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The first equation of Eq. (25) for i=0,2, considering boundary conditions Eq. (27)  is: 
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Substituting Eq. (B1) in (B2), and eliminating 0θ  yield the equality:  
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This formula yields Eq. (53) if Eq. (52) is used for 211+ψ .  Eq. (B3) is also equivalently 

obtained from the application of the single nonlinear difference equation Eq. (29): 
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Using the kinematic constraint Eq. (51) reduces the nonlinear equation Eq. (B4) as: 
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which is equivalent to Eq. (B3). On expresses for the first family of the post-bifurcation 

branch, using 21211 ψψ −=+ : 
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Eq. (B6) can be equivalently reformulated using dimensional quantities (valid for n=2): 
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Eq. (B6) or Eq. (B7) clearly show that the post-bifurcation path is stable, as also highlighted 

in Fig. 5. The stability of this post-bifurcation branch can be easily checked from application 

of Lagrange-Dirichlet theorem of definite positivity of the associated stiffness matrix. The 

total potential energy of the three-grain system is equal to: 
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which is also expressed, by using 21211 ψψ −=+  for the first family of equilibrium path, as: 
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The stationarity of π gives the following nonlinear system for this four-degree-of-freedom 

system: 
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which implies that: 
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Eq. (B6) is found again from the primary post-bifurcation branch. The determinant of the 

associated 44 ×  stiffness matrix is calculated from: 
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Sylvester’s criterion can be applied for checking the stability of the primary post-bifurcation 

path.  

 

There is a bifurcation at the specific point 






 == 021 2
,

2
βπβπψ . The branch intersecting the 

primary branch is a rigid rotation mechanism (the structure becomes kinematically 

indeterminate) which corresponds to the superposition of grain 2 with grain 0. The stiffness 

matrix is degenerate for this second bifurcation branch.  

 























−

−
=















































−−−

−++−

−+−++−

−+−+

π

π

π

ψ
θ
θ
θ

2

2

0

2
2

1
1

2

1
2

1

4

1
4

4

1
40

1
4

1
4

2

1
8

4

1
4

2

1
0

4

1
4

4

1
4

21

0

0

0

22

222

22

ss

sss

ss

   (B13) 

 

 



 
 

 
38

This phenomenon is very similar to what is observed by Károlyi and Domokos (1999) for the 

geometrically exact analysis of Hencky system with two rigid links (n=2) (where the primary 

bifurcation branch is also intersected by a branch with rigid body motion). In the present 

granular case, we have for this specific branch: 
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It is worth mentioning that the interpenetration condition between rigid grains has not been 

included in the model. If a non-interpenetration condition between grain 0 and grain 2 is 

explicitly considered, an additional kinematics constraint has to be taken into account: 
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cos2coscos 212121121
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The stiffness matrix is definite positive for the stable primary bifurcation path, according to 

the positive sign of the determinant and the sub-determinants calculated from Eq. (B12). The 

primary bifurcation branch may evolve until the contact between the two extreme grains of 

the granular column, if we take this kinematics constraint into account.  

 

It is worth mentioning that the numerical approach does not incorporate a non-

interpenetration condition between the rigid grains. 



 
 

 
39

Appendix C: Analytical solution for n=3 (four grains) 

 

The analytical solution Eq. (58) for the geometrically exact Engesser granular elastica for four 

grains (n=3) is detailed below.  

 

The second equation of Eq. (25) for i=0,1,2, with the boundary conditions Eq. (27) and the 

geometric constraint Eq. (54) yields: 
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The first equation of Eq. (25) for i=0,1, considering boundary conditions Eq. (27) and Eq. 

(C1) leads to: 
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Eliminating 0θ  gives:  
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From Eq. (57), we can write 2/112/1 )sin2arcsin( +−= ψψ , but in this way we can only account 

for solutions with 2/2/ 2/11 πψπ ≤≤− + . To recover solutions beyond this, we need to write: 

where 
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Eq. (C3) and (C4) lead to Eq. (58). 
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Note that the non-interpenetration condition for the n=3-granular column would be 

formulated from the angle inequality: 
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Appendix D: Approximation of the post-bifurcation path 

 

 

An asymptotic expansion of the post-bifurcation branches of the granular elastica difference 

equation is presented in this Appendix, for n larger than 3. The second-order nonlinear 

difference eigenvalue problem is governed by Eq. (29): 
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with the boundary conditions: 

 

2121 −=ψψ  and 2121 +− = nn ψψ     (D2) 

 

We will follow a methodology generally applied to nonlinear continuous stability problems 

(governed by nonlinear differential or partial differential equations), based on asymptotic 

expansion of both the kinematic state variable and the load (see Koiter, 1963; see also Koiter, 

2009 or Thompson and Hunt, 1973; Wang, 1999). The same asymptotic procedure has been 

applied as well for nonlinear discrete stability problems governed by nonlinear difference 

equations (Challamel et al, 2015-a). Challamel et al (2015-a) obtained an asymptotic formula 

for the primary bifurcation branch of the discrete elastica, which is based on a geometrically 

exact analysis of Hencky structural system.  

 

The Taylor asymptotic expansion is assumed for both the load and the rotation: 
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where ε  is a small parameter related to the amplitude of the post-buckling behavior. The 

fundamental path of the granular elastica has no prebuckling rotation ( ) 00 =iψ . 

Furthermore, for symmetrical reasons, some terms of the asymptotic expansion vanish, 

leading to the third-order asymptotic expansion: 
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By inserting this asymptotic expansion in the nonlinear difference equation Eq. (D1) and 

considering the first and third powers of the small parameter ε , one obtains the following 

system of two linear second-order difference equations: 
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The following normalization procedure is used, as for the difference eigenvalue problem: 

 

( ) 11
0 =ψ  and ( ) 00 =iψ  for 2≥i     (D6) 

 

The first difference equation Eq. (D5) has been already solved and gives the linearized 

fundamental buckling mode: 
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The substitution of this first-order buckling mode into the second difference equation Eq. 

(D5) furnishes 
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The third order function ( )3
iψ  in the asymptotic expansion is then obtained from introduction 

of the boundary conditions Eq. (D2) and the normalization condition Eq. (D6) in the 

resolution of Eq. (D8): 
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and the corresponding second-order buckling load factor 2β  is calculated by vanishing the 

term in ( )ni /cos π  in Eq. (D8): 
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For 2≠n , the asymptotic expansion of the primary post-buckling branch writes for the first 

terms: 
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We also have from Eq. (D4): 
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( ) ( ) ...3
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which means that the asymptotic expansion can be also reformulated using the parameter 

21ψ , and for 2≠n , as: 
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Eq. (D13) is Eq. (61) of the paper. 

 

 

Appendix E: Reduction of the governing equations 

 
The derivation of Eq. (63) is given below. 

 

Let us express 21+iψ  from the first equation of Eq. (25) 
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Using boundary conditions 2121 −=ψψ  and 11 −= θθ  from Eq. (27), Eq. (E1) for i =0 yields: 
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which can be generalized as Eq. (62). 
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To verify the formula let i be i-1 in Eq. (62) : 
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Now we add the above equation to Eq. (62): 
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This is consistent with the first equation of Eq. (25).  

 

Note that in the numerics only Eq. (E1) and (E2) are used.   
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Figure 1. The mechanical model of the granular elastica 
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Figure 2. Schematic of two neighboring discs after deformation of the structure 
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Figure 3. Two equivalent DEM granular models, without lateral support spring, based on 

shear and rotational granular interactions. The model on the left is equipped with a linear 

spring of stiffness CR against relative rotations and a linear spring of stiffness kt against 

relative tangential motions (slip) (DEM model - Serrano and Rodriguez-Ortiz, 1973; Cundall 

and Strack, 1979 or more recently Hunt et al, 2010), while the model on the right is equipped 

with bending and shear rotational springs. 



 
 

 
48

 

π2/2

π2

3π2/2

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

β c
ri

t

n

s=0.01
s=0.10
s=0.20
s=0.40
s=0.70
s=1.00

 

 

Figure 4.  Buckling load parameter as function of n for various stiffness parameter values s 
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Figure 5. Equilibrium paths of three grains (n=2) wiht various values of the stiffness 

parameter s from numerical simulation (grey). Identical analytical results given by Eq. (53) 

for the same stiffness parameters as validation of the numerical solutions (black dots).  

Numerical results are based on scanning the bounded domain ],0[0 πθ ∈ , ]2,2[, 21 ππθθ −∈  

and ]30,0(∈β . 
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Figure 6. All the equilibrium paths of the granuar elastica of three grains (n=2) in the bounded 

domain of the load parameter ]30,30[−∈β  with various values of the stiffness parameter s 

based on analytical results given by Eq. (53).  
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Figure 7.  Equilibrium paths of four grains (n=3) with various values of the stiffness 

parameter s from numerical simulation (grey). Analytical results for symmetric configurations 

given by Eq. (56) and (58) for the same stiffness parameters as validation of the numerical 

solutions (black dots). Numerical results are based on scanning the bounded domain 

],0[0 πθ ∈ , ]2,2[,, 321 ππθθθ −∈  and ]30,0(∈β . 
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Figure 8.  Numerical simulation results for the first post-buckling path with various number n 

of grains for stiffness parameter s=0.4 (grey). Approximate analytical results given by Eq. 

(60) (black dashed line) and by Eq. (61) (black dotted line) are also shown.  
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Figure 9.  Numerical simulation results for the first post-buckling path with various number n 

of grains for stiffness parameter s=0.4 (grey). Approximate analytical results given by Eq. 

(60) (black dashed line) and by Eq. (61) (black dotted line) are also shown.  




