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Abstract

The interleaved regulator (implemented by IEEE TSN Asynchronous Traffic
Shaping) is used in time-sensitive networks for reshaping the flows with per-
flow contracts. When applied to an aggregate of flows that come from a FIFO
system, an interleaved regulator that reshapes the flows with their initial con-
tracts does not increase the worst-case delay of the aggregate. This shaping-
for-free property supports the computation of end-to-end latency bounds and
the validation of the network’s timing requirements. A common method to
establish the properties of a network element is to obtain a network-calculus
service-curve model. The existence of such a model for the interleaved regulator
remains an open question. If a service-curve model were found for the inter-
leaved regulator, then the analysis of this mechanism would no longer be limited
to the situations where the shaping-for-free holds, which would widen its use in
time-sensitive networks. In this paper, we investigate if network-calculus service
curves can capture the behavior of the interleaved regulator. For an interleaved
regulator that is placed outside of the shaping-for-free requirements (after a non-
FIFO system), we develop Spring, an adversarial traffic generation that yields
unbounded latencies. Consequently, we prove that no network-calculus service
curve exists to explain the interleaved regulator’s behavior. It is still possible
to find non-trivial service curves for the interleaved regulator. However, their
long-term rate cannot be large enough to provide any guarantee. Specifically,
we prove that for the regulators that process at least four flows with the same
contract, the long-term rate of any service curve is upper bounded by three
times the rate of the per-flow contract.
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1. Introduction

Time-sensitive networks, as specified by the time-sensitive networking (TSN)
task group of the Institute of Electrical and Electronics Engineers (IEEE), sup-
port safety-critical applications in the aerospace, automation, and automotive
domains [1]. To do so, time-sensitive networks provide a deterministic service
with guaranteed bounded latencies.

These guarantees must be validated through a deterministic worst-case tim-
ing analysis that can be performed with network calculus. This mathematical
framework obtains worst-case performance bounds by modeling the flows with
the concept of arrival curves and the network elements with the concept of
service curves. Service curves constrain the minimum amount of service that
network elements provide to a flow or aggregate of flows.

Time-sensitive networks can also rely on a set of mechanisms that improve
the traditional forwarding process of an output port. The traffic regulators are
such hardware elements that support higher scalability and efficiency of time-
sensitive networks. Placed after a multiplexing stage, they reshape the flows
with per-flow shaping curves (by delaying packets if required) and remove the
increase of the flows’ burstiness due to their interference with other flows.

Traffic regulators come in two flavors: per-flow regulators (PFRs) and inter-
leaved regulators (IRs). A PFR processes a unique flow. It stores the packets of
the flow in a first in, first out (FIFO) queue and releases the head-of-line packet
as soon as doing so does not violate the configured shaping curve for the flow.
In contrast, the IR processes an aggregate of flows with a unique FIFO queue.
Each flow has its own configured shaping curve, but the IR analyses only the
head-of-line packet and releases it as soon as doing so does not violate the shap-
ing curve of the associated flow. The packets in the IR queue are blocked by
the head-of-line even if they belong to other flows. This second flavor is imple-
mented within IEEE TSN under the name asynchronous traffic shaping (ATS)
[2].

In time-sensitive networks that contain traffic regulators, end-to-end latency
bounds are obtained from the knowledge of the shaping curves enforced by the
regulators and from the essential “shaping-for-free” property. It states that the
traffic regulators do not increase the worst-case latency of the flow (or of the flow
aggregate) under certain conditions that depend on the type of the regulator
(PFR or IR). Most analyses of traffic regulators rely on this property.

For the PFR, the shaping-for-free property is well understood because a PFR
with a concave shaping curve can be modeled with a context-agnostic service
curve, i.e., a service curve that only depends on the configuration of the PFR
but not on the context in which the PFR is placed. This service curve proves the
shaping-for-free property when the PFR is placed in the appropriate context.
When the PFR’s context deviates from the shaping-for-free requirements, the
context-agnostic service curve still provides performance bounds for the PFR,
and slight deviations of the context lead to bounded delay penalties. On the
contrary, the only context-agnostic service curve known for the IR is the trivial
function t 7→ 0. The non-trivial service-curve models published in the litera-
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ture [3, 4] are context-dependent and always assume that the shaping-for-free
property holds. Without a context-agnostic service-curve model, performance
bounds cannot be obtained for an IR placed outside the shaping-for-free require-
ments, which restrains its use in time-sensitive networks.

In this paper, we investigate if the behavior of the IR can be modeled by a
context-agnostic network-calculus service curve. Our contributions are:
• As opposed to the shaping-for-free property when the IR is placed after a FIFO
system, we prove that the IR can yield unbounded latencies when placed after
a non-FIFO system, even if the latter is FIFO-per-flow and lossless. To obtain
this result, we develop Spring, an adversarial packet sequence that generates
unbounded latencies in an IR placed after a non-FIFO system.
• Based also on Spring, we prove that the shaping-for-free property of the IR
cannot be explained by any network-calculus service-curve model.
• For any IR that processes at least four flows, we prove that any context-
agnostic service curve for an individual flow is upper bounded by a constant.
• We exhibit a strict service curve of the IR and a function that upper bounds
any other context-agnostic strict service curve.
• For any IR that processes at least four flows, we show that the long-term
rate of any context-agnostic service curve for the aggregate is upper bounded
by three times the rate of the per-flow contract.
• We analyze IEEE TSN’s implementation of the IR, asynchronous traffic shap-
ing [2] and discuss possible changes in the ATS specifications for removing the
IR’s head-of-line blocking phenomenon exploited by the Spring adversary and
solving the issues raised in this paper.

The paper is organized as follows. We provide the background on network-
calculus service curves and regulators in Section 2. We discuss the related work
in Section 3 and provide the system model in Section 4. We then analyze the
role of the FIFO assumption in the shaping-for-free property of the IR and
provide an intuition of the Spring adversary in Section 5. Afterward, we discuss
the context-agnostic service curves of the IR in Section 6. In Section 7, we
discuss the consequences for TSN ATS and describe possible changes in the
specifications to solve the issue. In Section 8, we provide the formal description
of the Spring adversary. We provide our conclusive remarks in Section 9.

With respect to our previous work [? ], this paper contains the novel Sec-
tion 7 that is useful for the TSN community as it discusses asynchronous traffic
shaping, the TSN’s implementation of the IR and the possible changes in the
specifications for resolving the issues raised in this paper. Spring’s trajectory
is fundamental in analyzing the IR’s behavior and proving the inexistence of
useful service curves. In [? ], we only provided an intuition of Spring. In this
paper, we keep the intuition in Section 5 but additionally provide the formal
description of the adversary in Section 8 (by using a marked-point-process de-
scription). This description ensures that the properties of the adversary and its
consequences for the IR can be formally verified. Last, we provide the novel
Appendix A that contains all formal proofs of our results.
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2. Background

In time-sensitive networks, performance metrics such as flows’ end-to-end
latencies have to be bounded in the worst case, not in average. The network-
calculus framework [5, 6, 7] can provide such performance bounds. It describes
the data traffic with cumulative functions, such as RA, where, for t ∈ R+, RA(t) is
the amount of data that cross the observation point A between an arbitrary time
reference 0 and t. Cumulative functions belong to F0 = {f : R+ → R+|f(0) = 0}.

2.1. Network-Calculus Service Curves

A causal1 network system S offers a service curve β if (a) β is wide-sense
increasing and (b) for any input cumulative function RA(t), the resulting output
traffic RB(t) verifies

∀t ≥ 0, RB(t) ≥ (RA ⊗ β)(t) (1)

where ⊗ describes the min-plus convolution (Table 1). Common service curves
are of the form rate latency βR,T : t 7→ R · [t− T ]+ with rate R and latency T ,
and [·]+ = max(·, 0).

Some network systems provide stronger guarantees by offering a strict service
curve. A causal network system S offers a strict service curve βstrict if (a) βstrict

is wide-sense increasing and (b) during any time interval (s, t] in which the
system is never empty (a so-called backlogged period), the output RB verifies

∀t ≥ s ≥ 0, RB(t)−RB(s) ≥ βstrict(t− s) (2)

Such a system then also offers βstrict as a service curve: βstrict also verifies
Inequation (1) [5, Prop. 1.3.5].

To distinguish the service curves (strict or not) that model the intrinsic
behavior of a system from those that rely on assumptions on the external envi-
ronment of the system, we define in this paper the concept of context-agnostic
service curves:

Definition 1 (Context-agnostic service curves). We say that a network system
offers a context-agnostic service curve [resp., strict service curve] if (1) [resp.,
(2)] holds for any input RA(t), without any other assumption on the upstream
systems.

Reciprocally, network calculus models traffic flows by arrival curves: a wide-
sense increasing function α ∈ F0 is an arrival curve for the traffic at A if

∀ t ≥ s ≥ 0, RA(t)−RA(s) ≤ α(t− s) (3)

Inequation 3 states that α is an arrival curve for the traffic at A if, for any u,
the amount of data that cross the observation point A during any time interval

1In this paper, a network system is causal if it does not produce any data internally, if it
does not duplicate and does not expand the data.
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Z Z ′ Packetizer
β

⇔

Figure 1: Notations of Definition 2. Z offers the fluid service curve β if it can be modelled
as the concatenation of Z′ followed by a packetizer, where Z′ offers the service curve β.

of duration u is less than α(u). We also denote RA ∼ α and say that the traffic
is α-constrained. Common arrival curves are of the form leaky bucket γr,b with
a rate r and a burst b: ∀t > 0, γr,b(t) = rt+ b.

Given some arrival-curve and service-curve constraints, network-calculus re-
sults provide delay and backlog bounds at a network element. A common ap-
proach for computing end-to-end performance bounds in time-sensitive networks
consists in obtaining an arrival-curve model for each flow and a service-curve
model for each network element. Service-curve models for most IEEE TSN
mechanisms can be found in [8, 9].

2.2. The Packetizer and Fluid Service Curves

In packet-switching time-sensitive networks, the stream of data at an obser-
vation point A can either be fluid (e.g., on the transmission links) or packetized
(packet-by-packet, e.g., within the switches). A packetizer transforms a fluid
stream into a packetized stream by releasing the packet’s bits only when the last
bit is received. The packetizer does not increase the end-to-end latency bounds
[5, Thm. 1.7.5].

When a system Z with packetized input and output can be split into a
fluid service-curve element followed by a packetizer, we say that Z offers a fluid
service curve.

Definition 2 (Fluid service curve). Consider a function β ∈ F0 and a system
Z with packetized input and output. We say that Z offers β as a fluid service
curve if there exists a system Z ′ that offers the service curve β such that Z can
be realized as the concatenation of Z ′ followed by a packetizer (Figure 1).

Some network systems (e.g., the traffic regulators) can only work when
placed within the switches, where the flow of data is packetized: The algorithms
that define their behavior assume that the input is packetized [2, §8.6.11.3]. For
the service curves [resp., strict service curves] of these systems, we continue to
use the adjective context-agnostic (Definition 1) when Inequations (1) [resp.,
(2)] hold for any packetized input RA(t). Indeed, restraining (1) and (2) to
packetized inputs is more an assumption on the type of the system’s border as
it is an assumption on the environment in which the system is placed.

2.3. Individual Service Curve for a Flow

In time-sensitive networks, the service modeled by the service curves of Sec-
tions 2.1 and 2.2 is shared between the flows of the aggregate F . In (1), the
cumulative arrival function RA of the aggregate at A is the sum of the individual
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f1

f2

f1

. . .
f2

(a) per-flow regulators (PFRs)
One per flow (two here).

(b) interleaved regulator (IR)
Only one for the aggregate.

σf1

σf2


σf1

σf2

. . .

Figure 2: Two flavors of traffic regulators. With PFRs, we need one PFR per flow. In
contrast, the IR uses a single FIFO queue to shape several flows. Best with colors (not
required).

arrival functions {RA
f}f∈F for each flow f in the aggregate F : ∀t ∈ R+, RA(t) =∑

f∈F RA
f (t).

We say that a system S offers to flow g the individual service curve βg if (a)
βg is wide-sense increasing, and (b) for any cumulative function RA

g of the flow
g at the input A of S, the cumulative function RB

g of g at its output B verifies

∀t ≥ 0, RB
g(t) ≥ (RA

g ⊗ βg)(t) (4)

2.4. Traffic Regulators and their Shaping-For-Free Properties

Traffic regulators are hardware elements placed before a multiplexing stage
to remove the increased burstiness due to interference with other flows in pre-
vious hops. They enable the computation of guaranteed latency bounds in
networks with cyclic dependencies [3, 10, 11]. They come in two flavors.

A per-flow regulator (PFR) is a causal, lossless, FIFO system configured for
a unique flow f with a shaping curve σf (Figure 2a). It stores the packets of
f in order of arrival and releases the head-of-line (HOL) packet at the earliest
time such that the resulting output has σf as an arrival curve. In a network
with multiple flows, there is one PFR per flow.

The interleaved regulator (IR) is a causal, lossless, and FIFO system that
processes an aggregate F = {f1, f2, . . . } of several flows, each one with its own
shaping curve (σf1 , σf2 , . . . , see Figure 2b). It stores all the packets of the
aggregate F in order of arrival into a single FIFO queue and only looks at the
head-of-line (HOL) packet. The HOL packet p is released as soon as doing so
does not violate the configured shaping curve for the associated flow fi: Packet
p can either be immediately released (if the resulting traffic for fi at the IR’s
output is σfi-constrained) or delayed to the earliest date that ensures that fi
is σfi-constrained at the IR’s output. This delay depends on the shaping curve
σfi for the associated flow fi and the history of departure dates for previous
packets of the same flow. During this delay, any other packet p′ in the queue is
blocked by the HOL packet p, even if p′ belongs to another flow fj and even if
p′ could be immediately released without violating the shaping curve σfj for its
flow fj .
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PFRS

FIFO-per-flow

f
αf

Wf,S Wf,S+PFR

σf ≥ αf

(a) For the PFR

IRS

FIFOf1
αf1

f2
αf2

. . . WS WS+IR


σf1 ≥ αf1

σf2 ≥ αf2

. . .

(b) For the IR

Figure 3: Shaping-for-free properties of the traffic regulators. For the PFR, the system S
only needs to be FIFO-per-flow. For the IR, S must be FIFO for the aggregate. Best with
colors (not required).

Traffic regulators can delay individual packets, but there exist specific con-
ditions in which they do not increase the worst-case latency bounds of the flows.
This fundamental shaping-for-free property is central in the analysis of time-
sensitive networks with traffic regulators. It slightly differs for the two flavors.

Theorem 1 (Shaping-for-free property of the PFR [12, Thm. 3]). Consider a
flow f with input arrival curve αf that crosses in sequence a causal system S
followed by a PFR (Figure 3a). If the PFR is configured with σf ≥ αf and if S is
FIFO for f , then the worst-case delay Wf,S+PFR of f through the concatenation
is equal to the worst-case delay Wf,S of the flow through the previous system S
only.

Theorem 2 (Shaping-for-free property of the IR [12, Thm. 4]). Consider an
aggregate F = {f1, f2, . . . } with input arrival curves {αf}f∈F that crosses in
sequence a causal system S followed by an IR (Figure 3b). If the IR is configured
with ∀i, σfi ≥ αfi and if S is FIFO for the aggregate, then the worst-case delay
WS+IR of the aggregate F through the concatenation is equal to the worst-case
delay WS of the aggregate through the previous system S only.

Theorems 1 and 2 exhibit two fundamental differences. First, Theorem 2
only ensures that the worst-case delay of the aggregate is not increased, whereas
Theorem 1 guarantees that the worst-case delay of the individual flow is pre-
served. Within an aggregate, the first bound can be larger than the latter,
e.g., when the flows have different packet sizes. Second, Theorem 1 only requires
the previous system S to be FIFO for each flow individually (FIFO-per-flow),
whereas the same system is required to be globally FIFO for Theorem 2.

3. Related Work on the Modeling of Traffic Regulators

In time-sensitive networks with traffic regulators, end-to-end latency bounds
for the flows are obtained by combining the shaping-for-free property for traffic
regulators with service-curve-based network-calculus results for other systems.
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This differentiated treatment of network elements (traffic regulators vs. other
systems with service-curve models) restrains the choice of the end-to-end anal-
ysis method. Methods based on total-flow analysis (TFA) [13, §3.2] can be
adapted to networks with traffic regulators [3, 11]. Other approaches, such as
single-flow analysis (SFA) [13, §3.3], pay multiplexing only once (PMOO) [14]
and flow prolongation [15] provide tighter end-to-end latency bounds than TFA
in several types of networks [16], but they heavily rely on service-curve mod-
els. In addition, service-curve models provide continuity and differentiability
properties, which allows for synthesizing network designs from the performance
requirements, as shown by Geyer and Bondorf in [17]. Hence, a need exists
for obtaining service-curve models for all elements of time-sensitive networks,
including traffic regulators such as PFRs and IRs.

The per-flow regulator (PFR) was introduced under the name packetized
greedy shaper in [5, §1.7.4]. Le Boudec and Thiran proved in [5, §1.7.4] that if
σf is concave and such that limt→0+ σf (t) is larger than the maximum packet
size of f , then the PFR offers σf as a fluid service curve [5, Thm. 1.7.3]. This
model proves Theorem 1. In this paper, we say that the curve σf explains
the shaping-for-free property of the PFR and we formally define this notion in
Section 5.2. Due to its network-calculus service-curve model, the behavior of
the PFR can also be studied in situations where Theorem 1 does not apply.
In [18], the consequence of redundancy mechanisms – that can affect the FIFO
property – is studied, and end-to-end latency bounds are obtained for flows in
networks with redundancy mechanisms and PFRs. In [12, §IV.A], Le Boudec
also provides an input-output characterization of the PFR. This type of model
does not rely on the concept of service curve but describes the PFR’s output
packet sequence as a function of the input packet sequence.

The interleaved regulator (IR) was introduced by Specht and Samii under the
name urgency-based scheduler [10]. As opposed to the PFR, its shaping-for-free
property was proved without the concept of service curves: with a trajectorial
approach in [10] and with an input-output characterization in [12, §V]. The
equivalence between the theoretical model of the IR and the TSN implementa-
tion (asynchronous traffic shaping, [2]) was proved by Boyer in [19], who also
provides a second input-output characterization [19, §5.3]. The only useful ser-
vice curves that are known for the IR are only valid when the IR is placed in a
context that meets the conditions of Theorem 2. A first context-dependent ser-
vice curve is provided in [3, §IV.A.1] and then slightly improved in [4, §III.B.1].
Because of their dependency on the context, none of these curves can be used to
analyze the behavior of the IR in the situations where the shaping-for-free does
not hold as in [18]. In contrast, the only context-agnostic service curve known
for the IR is the trivial function t 7→ 0. In [20], Hamscher mentions the first
conjecture on a non-trivial context-agnostic service curve for the IR and uses
a linear-programming approach for hardening their conjecture pending formal
proof. The conjecture was not shared (and, to our knowledge, has not been
published at the time of this writing). However, the presentation triggered dis-
cussions on whether the IR’s behavior could be captured by context-agnostic
service curves. These discussions motivated this paper.
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Table 1: Notations

Common Operators
a ∨ b = max(a, b) Maximum of a and b.
a ∧ b = min(a, b) Minimum of a and b.
[c]+ = max(0, c)
⌊x⌋ = max{n ∈ Z|n ≤ x} Floor function.

f⊗ g t 7→ infs≤t f(s) + g(t− s) Min-plus convolution
f ⊗ g t 7→ sups≤t f(s) + g(t− s) Max-plus convolution
f ⊘ g t 7→ infu≥0 f(t+ u) + g(u) Max-plus deconvolution

F0 = {f : R+ → R+|f(0) = 0} Set of curves
Common Curves

γr,b t 7→

{
0 if t = 0

rt+ b if t > 0
Leaky-bucket curve.

βR,T t 7→ R[t− T ]+ Rate-latency curve.
Flows

f ∈ F A flow f in the set of flows F
{σf}f∈F A set of shaping curves for the flows F

Lmin
f , Lmax

f Minimum [resp., maximum] packet size of flow f

Trajectory Description
x A trajectory: Description of all the events in the network
M An observation point

M x Packet sequence at M in trajectory x
Rx,M Cumulative function of the aggregate. . .

[resp., Rx,M
f ] . . . [resp., of f ] at M in Trajectory x.

Rx,M ∼ α Rx,M is constrained by α, Equation (3)
Parameters of the Spring adversary (Section 5.1)
I Expected spacing for same-flow packets after the IR
d Maximum delay in the Spring-controlled system S1

ϵ Margin (minimum packet spacing after S1)
τ Period of the six-packet-long profile

Hence, two questions remain open: Beyond the function β : t 7→ 0, what
other context-agnostic service curves does the IR provide? Do any of them
explain Theorem 2? We address these two questions in this paper.

4. System Model and Notations

We consider an asynchronous packet-switching time-sensitive network that
contains traffic regulators. We focus on a particular traffic regulator within this
network. It can either be a per-flow regulator (PFR) that processes a single flow
F = {f} with shaping curve σf or an interleaved regulator (IR) that processes
an aggregate F with leaky-bucket shaping curves {σf}f∈F = {γrf ,bf }f∈F . We
focus on the subset of flows F that cross the regulator. We model any other

9



Regulator

B D

Figure 4: Input [resp., output] observation point B [resp., D] for a regulator.

network elements (queues, schedulers, switching fabrics, transmission links, . . . )
or sequence of network elements crossed by the flows F between their sources,
the regulator, and their destinations as black-box systems. Each system has a
traffic input and a traffic output and is only assumed to be causal and lossless:
it neither produces nor loses any data internally. Data is produced at the flows’
sources and consumed at the flows’ destinations.

A trajectory x is a description of all the events in the network (packet arrival,
packet departure). It is acceptable if all known constraints are satisfied. For an
observation point M, we denote by Rx,M [resp., Rx,M

f ] the cumulative function of
the aggregate [resp., of the flow f ∈ F ] at observation point M in trajectory x.
If the stream is packetized at M, we call M x the packet sequence that describes
the packets’ arrival date, size, and associated flow at M in trajectory x.

For an input packet sequence Bx at the input B of the regulator (Figure 4),
we use the equivalent input-output characterizations of traffic regulators from
[12] and [19] to obtain the output packet sequence Dx at the output D of the
regulator.

We list the notations in Table 1.

5. Limits of the Shaping-For-Free Property for the Interleaved Reg-
ulator

The shaping-for-free property is a strong attribute of the interleaved reg-
ulator (IR). However, it is context dependent: It makes assumptions on the
context in which the IR is placed. In this section, we investigate the limits of
these assumptions.

First, we observe that Theorem 2 requires the upstream system to be FIFO.
In Section 5.1, we prove that removing this assumption makes the IR unstable:
it can yield unbounded latencies. We then prove in Section 5.2 that there exists
no service-curve model of the IR that can explain Theorem 2.

5.1. Instability of the IR when Placed after a Non-FIFO System

In this subsection, we discuss the role of the FIFO assumption in Theorem 2.
When removed, we prove that the IR can yield unbounded latencies. Specifically,
we prove

Theorem 3 (Instability of the IR after a non-FIFO system). Consider an IR
that processes three or more flows with the same leaky-bucket shaping curve for
the first three flows: ∀fi ∈ {f1, f2, f3}, σfi = γr,b with r > 0 and b greater than
the maximum packet size of f1, f2, f3. For any W > 0, there exists a system S1

and a source ϕ (Figure 5), such that:

10



S1 IRϕ
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3I + 2ϵ
d+ τ

d

0

d
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d
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ϵ
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I

f1

f3
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shapedblocked by HOL
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blocked by HOL

shaped
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k
=

0
k
=

1

Figure 5: The network N1 and the Spring-generated Trajectory 1 that yields unbounded
latencies in the IR when S1 is not assumed FIFO. Best with colors (not required).

1/ each flow fi is σfi-constrained at the source ϕ,

2/ S1 is causal, lossless and FIFO-per-flow (but globally non-FIFO),

3/ when the system S1 is placed after the source as in Figure 5, then the delay
of each flow within S1 is upper-bounded by W ,

4/ when the IR is placed after S1 as in Figure 5, then the delay of any flow
within the IR is not bounded.

The proof of Theorem 3 relies on an adversarial traffic generation that we
call “Spring”. Spring is an adversary that knows the values of b, r and W in
Theorem 3 and controls the source ϕ and the system S1 of Figure 5 such that
Properties 1 to 4 of Theorem 3 hold. It defines the constants I, d, ϵ and τ as
follows

I ≜
b

r
; 0 < d < min (I,W ) ; 0 < ϵ < min(I − d,

d

3
) ; τ ≜ 3I + 3ϵ− d (5)

The formal description of Spring and the formal proof of Theorem 3 are
available in Section 8. They require formal notations for the packet sequences
that we detail in Section 8. In the following, we provide an intuition of the
Spring adversary without the formal notations.

Intuition. Trajectory 1 generated by Spring is illustrated in Figure 5. All pack-
ets have the size b. The far-left timeline shows the packet sequence A 1 for the
three flows at the output of the Spring-controlled source. A sequence of six
packets is repeated with period τ . Only the period k = 0 is shown.

The dotted arrows that lead to the second timeline highlight each packet’s
delay in the Spring-controlled system S1 and the resulting packet sequence B1.
The main property of Trajectory 1 is that the first packet of the dash-dotted
red flow f2 and the second packet of the solid blue flow f1 have exchanged their
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Figure 6: Notations of Definition 3. βσ explains the shaping-for-free property if any system
Z′ that offers βσ as a service curve does not increase the worst-case delay of the flows when
placed after any FIFO system S.

order at B compared to their order at A. This is because the former suffers
a delay d through S1, but the latter does not suffer any delay. Note that the
Spring-controlled system S1 is not FIFO but remains causal, lossless, and FIFO-
per-flow with a delay bound d < W .

The dotted arrows that link the second to the third timeline describe the
behavior of the IR (not controlled by Spring) when provided with the input
sequence B1. For example, the first packet of f1 is immediately released by the
IR because the network was previously empty. However, the second solid blue
packet of f1 is shaped (delayed) by the IR because releasing it would violate the
γr,b shaping constraint for f1 at the output of the IR. This packet is released
as soon as doing so does not violate the γr,b constraint, i.e., I seconds after the
previous packet. Because of this, the first dash-dotted red packet of the flow f2
is blocked by the head-of-line (HOL). And the second packet of f2 is shaped
and delayed to ensure a distance of I from the previous packet of f2.

As a result, it takes 3I seconds for the IR to output the six packets of the
first period, whereas they entered the IR within τ seconds. As τ < 3I, we can
generate a constant build-up of delay and backlog in the IR by repeating the
six-packet-long profile every τ seconds.

5.2. The Shaping-for-Free Property of the Interleaved Regulator Cannot be Ex-
plained by a Service Curve

Theorem 3 shows that the IR does not provide any context-agnostic delay
guarantees as a stand-alone network element. In contrast, if a system Z offers
a context-agnostic service curve β that explains a context-dependent property
(e.g., shaping-for-free), then β continues to hold when Z is placed in a context
that differs from the assumptions of the context-dependent property. β can
be used to compute the consequences of the deviation from the assumptions
and their resulting penalties on performance bounds. For such a system, slight
deviations from the assumptions should lead to small delay penalties.

This is the case for the PFR, for which we can find a service-curve model
that explains its shaping-for-free property. We formally define this notion as
follows.

Definition 3 (A curve explains the shaping-for-free property). Consider a set
of flows F and a set of shaping curves σ = {σf}f∈F . We say that βσ ∈ F0

explains the shaping-for-free property if and only if: For any causal, lossless
and FIFO systems Z ′ and S, if Z ′ offers βσ as a service curve, then the worst-
case delay of the aggregate between A and B (Figure 6) over all the trajectories

12
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Figure 7: Application of Proposition 1 to prove Theorem 1. (a) A PFR placed in the
conditions of Theorem 1. (b) The equivalent model as per Proposition 1.

X = {x|∀f ∈ F , RA,x
f ∼ σf} equals the worst-case delay between A and C over

the same set X.

As per this definition, a function βσ explains the shaping-for-free property
if any system Z ′ that is only assumed to offer βσ as a service curve does not
increase the worst-case delay of the aggregate F when placed in a context that
meets the assumptions of Theorems 1 and 2 (i.e., placed after a FIFO system S
with flows that are initially constrained by their shaping curves). For the PFR,
we have a positive result:

Proposition 1. Consider a PFR that shapes a single flow F = {f} with a
concave shaping curve σf such that limt→0 σf (t) ≥ Lmax

f . Then the PFR offers
the fluid service curve βσ = σf that explains the shaping-for-free property.

This result directly derives from [5, Thm. 1.7.3]. We provide its formal proof
in Appendix A.1. Note that Proposition 1 contains two statements: (1) σf is
a fluid service curve of the PFR. (2) σf explains the shaping-for-free property
(Definition 3).

Let us discuss why the two statements of Proposition 1 prove Theorem 1.
Consider a causal, lossless, and FIFO system S and a PFR configured with σf

placed after S (Figure 7a). By combining the first statement of Proposition 1
with Definition 2, the PFR can be realized as the concatenation of Z ′ followed
by a packetizer (Figure 7b), where Z ′ is a causal, lossless, and FIFO system
that offers βσ = σf as a service curve. We then combine the second statement
of Proposition 1 with Definition 3. We obtain that if σf is an arrival curve for
f at the input of S, then the worst-case delay of the flow f through S equals
the worst-case delay of the flow through the concatenation of S and Z ′. Finally,
the packetizer does not increase the worst-case latency bounds [12, Thm. 1.7.1],
which proves Theorem 1.

As opposed to the PFR, we now prove that no fluid service curve can explain
the shaping-for-free property of the IR.

Theorem 4. An IR that processes at least three flows with the same leaky-
bucket shaping curve does not have any fluid service curve that explains its
shaping-for-free property.

To prove Theorem 4, we rely on the following Lemma 1, which we prove in
Appendix A.2.

Lemma 1. If βσ explains the shaping-for-free (Definition 3), then βσ ≥
∑

f∈F σf
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To prove Theorem 4, we exhibit a variant of the trajectory from Figure 5 that
shows that a function larger than

∑
f∈F σf cannot be a fluid service curve of

the IR. This variant of the Spring trajectory is formally described in Section 8.3
together with the formal proof of Theorem 4.

6. Service Curves of The Interleaved Regulator

In the previous section, we use the sensitivity of the interleaved regulator
(IR) to the FIFO assumption in Theorem 2 to prove that the IR has no fluid
service curve that can explain its shaping-for-free property.

In this section, we show that the IR still offers a family of non-trivial context-
agnostic service curves. In particular, we exhibit a non-bounded strict service
curve for the IR (Theorem 5). This strict-service-curve model is of interest for
understanding the behavior of the IR in situations that differ from the shaping-
for-free property. It can be used to model the IR in service-curve-oriented
analysis like SFA and PMOO.

However, any service curves of the IR are also fluid service curves of the
IR, and we know from Theorem 4 that they must be weak because they can-
not explain its shaping-for-free property. Indeed, their long-term rate is upper
bounded: For an IR that processes more than four flows, the long-term rate of
any of its service curves is upper bounded by three times the rate enforced for
a single flow, as we show in Theorem 7.

For an IR that processes at least four flows, we also prove that any individual
service curve βg offered to a single flow g is upper bounded by its minimum
packet size Lmin

g (Theorem 6).
The section is organized as follows. First, we obtain a strict service curve of

the IR (Theorem 5) by using the input/output models of [12, 19]. Then, we use
the Spring trajectory from Section 5 to obtain upper bounds on the individual
service curve of the IR for a single flow (Theorem 6). Last, we use Theorem 6
to upper-bound the long-term rate of any context-agnostic service curve of the
IR for the aggregate (Theorem 7).

6.1. A Strict Service Curve for the Aggregate

Even though Spring’s Trajectory from Section 5.1 generates a constant build-
up of delay in the IR, we can observe in Figure 5 that the IR continuously
outputs two packets every I seconds. In fact, we can find a minimum output
rate whenever the IR is non-empty. This shows that the IR offers a strict service
curve as defined in Section 2.1:

Theorem 5 (IR strict service curve). Consider an IR that processes an aggre-
gate of flows F with leaky-bucket shaping curves: ∀f ∈ F , σf = γrf ,bf with
rf > 0 and bf ≥ Lmax

f , where Lmin
f [resp., Lmax

f ] is the minimum [resp., maxi-
mum] packet size of f . Define

Lmin = min
f∈F

Lmin
f Imax = max

f∈F

Lmax
f

rf
(6)
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Figure 8: Three different strict service curves of the IR (Theorem 5). The step dashed blue
function β0 is the first curve obtained in the theorem’s proof. Its supper-additive closure,
the solid red function βsc is then also a strict service curve, as well as the dash-dotted green
rate-latency curve βLmin

Imax ,Imax
. Best with colors (not required).

Then the staircase curve βsc : t 7→ ⌊t/Imax⌋ · Lmin (with ⌊·⌋ the floor function,
Table 1) and the rate-latency curve βR,T with T = Imax and R = Lmin/Imax

(Figure 7) are context-agnostic strict service curves of the IR for the aggregate.

To prove this result, we consider a non-empty IR. The output time of the
head-of-line packet is given by the input/output characterizations of [12, 19]. It
can be upper-bounded. From this we obtain that the dashed-blue curve β0 in
Figure 8 is a strict service curve of the IR, and so is its supper-additive closure
[7, Prop 5.6], defined in [7, §2.4] as the function

β0 ∨ (β0⊗β0) ∨ ((β0⊗β0)⊗β0) ∨ . . . (7)

where ∨ is the maximum and ⊗ is the max-plus convolution (Table 1). The
computation of (7) gives βsc, shown in solid red in Figure 8. Any wide-sense
increasing curve that remains below the βsc service curve is also a strict service
curve of the IR [7, Prop 5.6]. This is the case for the rate-latency service curve
βLmin/Imax,Imax shown with a dash-dotted green line in Figure 8. We provide
the formal proof of Theorem 5 in Appendix A.3.

Application to the Situation of Section 5.1. Figure 9 shows the cumulative
arrival function RB at the input of the IR as well as the cumulative departure
function RD at the output of the IR, in Spring’s trajectory2 described in Sec-
tion 5.1 and Figure 5. We also provide the arrival curve αB of the aggregate at
the input of the IR.

2With the notations of (5), the parameters used in Figure 9 are: W = 0.86I, d = 0.85I,
ϵ = 0.05I.
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Figure 9: Application of Theorem 5 to the Spring trajectory of Section 5.1. The dotted
red [resp., blue] curve is the cumulative function at the input [resp., output] of the IR. The
dash-dotted orange leaky-bucket curve is an arrival curve of the aggregate at the input of
the IR. The solid green rate-latency curve is a strict service curve of the IR, as proved by
Theorem 5. This figure should be printed with colors.

In Section 5.1, all packets of the aggregate have the same size L and all three
flows have the same leaky-bucket shaping curve σf1 = σf2 = σf3 = γr,b with
b = L. The application of Theorem 5 gives that βL

I ,I = βr, br
is a context-agnostic

strict service curve of the IR for the aggregate. In Figure 9, we place this curve
in green at the beginning of the backlog period. We confirm that when the IR
is non-empty, the cumulative output RB is larger than the strict service curve.
Also, it is clear that the horizontal deviation between the arrival curve αB and
the service curve βL

I ,I is not bounded. This means that the network-calculus

theory cannot provide a latency bound with this service-curve model, which is
consistent with Theorem 3.

In Figure 9, the rate L
I = r of the green service curve βL

I ,I does not follow

the long-term rate 2L
I = 2r of the output cumulative function RD. However,

no better rate for the rate-latency context-agnostic strict service curve can be
achieved:

Proposition 2 (Upper bound on the strict service curve). Consider an IR
that processes an aggregate F with leaky-bucket shaping curves {σf}f∈F =
{γrf ,bf }f∈F . Consider a curve βstrict and assume that βstrict is a context-
agnostic strict service curve of the IR. Then

∀t ≥ 0, βstrict(t) ≤ min
f∈F

σf (t) (8)

In particular, if βstrict = βR,T is a rate-latency curve, then R ≤ minf∈F rf .
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Figure 10: Areas of proven, possible, and impossible strict service curves for an IR that
processes the flows with the same shaping curve γr,b and if all packets have size b. This figure
should be printed with colors.

To prove this result, we consider a set of trajectories {xf}f∈F . For each
flow f ∈ F , the trajectory xf is obtained by having only flow f send packets
of size bf to the IR at twice the frequency allowed by its shaping curve. Then
the backlog of the IR quickly becomes non-empty, but the cumulative output
of the IR, Rxf ,D = R

xf ,D
f is constrained by the shaping curve σf : ∀0 ≤ s ≤

t, Rxf ,D(t)−Rxf ,D(s) ≤ σf (t−s). Combined with the definition of a strict service
curve (2), this gives βstrict ≤ σf . This is valid for all trajectories {xf}f∈F , hence
the result. We provide the formal proof of Proposition 2 in Appendix A.4.

Figure 10 shows the areas of proven, possible, and impossible strict service
curves of an IR that processes the flows with the same leaky-bucket shaping
curve γr,b, assuming that all the packets have the size b. Any wide-sense in-
creasing function that remains in the green area is a strict service curve of the
IR, as proven by Theorem 5. In contrast, any function that enters the red area
cannot be a strict service curve of the IR, as proven by Proposition 2.

Incidentally, any wide-sense increasing function that remains within the
green area is also a service curve of the IR. So far, as opposed to the strict-
service-curve property, we have not obtained any limit for the service curve (1).
To obtain this limit, we first need to consider the individual service curve offered
to any flow by the IR, which we analyze in the following subsection.

6.2. Upper-Bound on the Individual Service Curve

Consider an IR that processes an aggregate F and take a flow g ∈ F . In
this section, we are interested in the service the IR guarantees to g, i.e., in an
individual service curve of the IR for g.

If each flow f ∈ F\{g} enters the IR with an arrival curve αB
f that is equal or

smaller than its shaping curve σf , then none of the packets of the flows F\{g}
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Figure 11: Input [resp., output] observation point B [resp., D] for a system S.

is ever delayed by the IR. In this case, the IR acts as a PFR for g and provides
an individual fluid service curve σg to g.

In a more likely setting, though, the IR reshapes flows that exhibit an input
arrival curve (strictly) larger than their configured shaping curve. In such a
case, and if the IR processes more than four flows, no useful individual service
curve for g can be obtained:

Theorem 6 (Upper-bound on the individual service curve). Consider an IR
that processes an aggregate F of at least four flows and with the same leaky-
bucket shaping curve for at least three of them: ∀fi ∈ {f1, f2, f3}, σfi = γr,b.
Consider a flow g ∈ F\{f1, f2, f3} and assume that for each fi ∈ {f1, f2, f3}, γr,bi
is an arrival curve for fi at the input B of the IR (Figure 4), with b1 > b, b2 ≥ b,
b3 ≥ b (permutating the indexes if required). Last, consider a curve βg ∈ F0

that can depend on the knowledge of {σf}f∈F and {αB
h}h∈F\{g}.

If βg is an individual service curve of the IR for the flow g, then βg is upper-
bounded by g’s minimum packet size Lmin

g .

Theorem 6 shows that any individual-service-curve model of the IR for a
flow g can only guarantee that one single packet of g will ever cross the IR over
the entire network’s lifetime. Hence, no useful context-agnostic service curve
exists to model the service offered to a single flow by the IR (each flow is likely
to send many packets).

To prove Theorem 6, we reuse the Spring trajectory of Theorem 3 for the
three flows f1, f2, f3. From Theorem 3, we know that the delay of each individual
flow fi ∈ {f1, f2, f3} through the IR is not bounded.

Remark: We could combine the result of Theorem 3 with the contrapositive
of [5, Thm. 1.4.2]. We would obtain that the horizontal distance between the
individual arrival curve αfi and the individual service curve βfi is not bounded.
However, this approach only provides a result on the long-term rate of the
individual service curve βfi . To obtain a stronger result (an upper bound on
the individual service curve), we need a result different from [5, Thm. 1.4.2],
and whose contrapositive provides an upper bound on the individual service
curve. This result is the following proposition.

Proposition 3 (Delay bound of the first packet in a system that offers an
individual service curve). Consider a causal, lossless and FIFO system S with
a packetized input B and a packetized output D (Figure 11). Consider the
aggregate of flows F that cross S. Take a flow g ∈ F and assume that S offers
to g the individual service curve βg. Denote by Lmin

g the minimum packet size

of g. If there exists u ∈ R+ such that βg(u) > Lmin
g , and if the first packet of g

is of size Lmin
g , then the delay of this first packet in S is upper-bounded by u.
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The proof of Proposition 3 is in Appendix A.5. We observe that we cannot
trigger the contrapositive of Proposition 3 with the flows f1, f2, f3 of Theorem 3.
Indeed, with Spring, the delay of the first packets of f1, f2, f3 is bounded. How-
ever, the trajectory used by Spring creates a constant build-up of delay and
backlog inside the IR. Hence, if we consider a fourth flow, g, then the first
packet of g can suffer a delay as large as desired within the Spring trajectory:
We send it when the accumulated delay in the IR is large enough. The combi-
nation of this observation with the contrapositive of Proposition 3 provides the
result of Theorem 6. The formal proof of Theorem 6 is in Appendix A.6.

6.3. Limits on the Aggregate Service Curve

Let us go back to the analysis of the service offered to the aggregate, by
focusing on (non-strict) service-curve models. One consequence of Theorem 6 is
that the long-term rate of the service curve for the aggregate is upper-bounded
by three times the rate of a single contract.

Theorem 7 (Maximum long-term rate of any service curve). Consider an IR
that processes an aggregate F of at least four flows and with the same leaky-
bucket shaping curve for at least three of them: ∀fi ∈ {f1, f2, f3}, σfi = γr,b.
Consider a curve β ∈ F0 that can depend on {σf}f∈F . If the IR offers β as a
context-agnostic service curve, then

lim inf
t→+∞

β(t)

t
≤ 3r (9)

To prove Theorem 7, we pick one flow g ∈ F\{f1, f2, f3} and a traffic arrival
for h ∈ F\{g} that meets the requirements of Theorem 6. The IR is a FIFO
system. Hence, if β is a service curve of the IR, then for any θ ∈ R+, the curve
βθ
g defined by

βθ
g : t 7→

β(t)− ∑
f∈F\{g}

αf (t− θ)

+

· 1{t>θ} (10)

verifies Inequation (4) [5, Prop. 6.4.1]. In (10), 1{cond} equals 1 when cond

is true, 0 otherwise. Note that βθ
g may not be wide-sense increasing, thus

not an individual service curve for g. Inspired by [7, §5.2.1], we resolve this
by considering the curve βθ

g⊘0 : t 7→ infs≥t β
θ
g(s), where ⊘ is the max-plus

deconvolution (Table 1) and 0 is the zero function t 7→ 0. The function βθ
g⊘0

is wide-sense increasing, smaller than βθ
g , thus an individual service curve for g.

From Theorem 6, we obtain ∀θ ≥ 0,∀t ≥ 0, (βθ
g⊘0)(t) ≤ Lmin

g . The left-hand
side of this inequation is an infimum, but the result is valid for any θ ≥ 0, t ≥ 0.
Hence, we can derive a bound on the long-term rate of β. We provide the formal
proof of Theorem 7 in Appendix A.7.

With Theorem 7, we can conclude that for an IR that processes more than
four flows, no useful context-agnostic service curve exists to model the IR. In-
deed, the aggregate of the four flows can exhibit a sustained rate of four times
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Table 2: Context-Agnostic Service Curves for an IR that Processes at least Four Flows with
the Same Leaky-Bucket Shaping Curve γr,b, Assuming All Packets Have Size b.

Service-curve
type

Curve exhibited
in this paper

Limit exhibited
in this paper

Service curve
β

βr, br
lim inft→+∞

β(t)
t ≤ 3r

Strict service
curve βstrict βr, br

∀t ≥ 0, βstrict(t) ≤ γr,b(t)

Individual service
curve βg, ∀g ∈ F

None
(t 7→ 0)

∀t ≥ 0, βg(t) ≤ Lmin
g

the rate of a single-flow contract, whereas a context-agnostic service curve can
only guarantee a long-term service rate of three times this value. Hence, Theo-
rem 7 concludes our search of context-agnostic service-curve models for the IR
and the results of Section 6 are summarized in Table 2.

7. Relation with TSN Asynchronous Traffic Shaping (ATS)

The results in this paper are based on the theoretical model of an interleaved
regulator (IR), as described in [10] and formally modeled in [5]. Based on
the equivalence result of Boyer [19], we argue in this section that the TSN’s
implementation of the IR, called asynchronous traffic shaping (ATS), suffers
from the same issues. By mapping the theoretical model of the IR with the
ATS standard [2], we then identify which specifications of the ATS behavior
create the head-of-line blocking phenomenon exploited by Spring to generate
unbounded latencies in Section 5.1. We suggest a minor modification to the
ATS standard to remove this head-of-line blocking phenomenon.

7.1. Consequence for the Analysis of Networks that Use TSN ATS

Figure 12 contains four models of the same output port (in dotted boxes),
with a unique traffic class in which four different flows that come from two
different input ports compete to access the transmission link (wavy arrow on
the right). The figure compares the theoretical models of the output port that
are used to analyze the network’s performance with network calculus (subfigures
on the left) and the specified implementation in IEEE TSN asynchronous traffic
shaping (ATS, subfigures on the right)[2]. It also compares whether the output
port uses per-flow regulators (PFRs) (top subfigures) or interleaved regulators
(IRs) (bottom subfigures) to reshape the flows. The analysis in this paper is
focused on the aggregate F of the flows that come from Input Port 1. In this
figure, F contains only two flows: the blue solid flow f1 and the red dash-dotted
flow f2.

Figure 12a depicts the theoretical model of the output port equipped with
per-flow regulators (PFRs) to reshape the flows after an upstream not-shown
multiplexing stage. As discussed in Section 2.4, each flow is assigned to its
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Figure 12: Comparison of the theoretical models of traffic regulators (a, c) and their corresponding ATS configurations (b, d). The configuration
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blocking phenomenon. This figure should be printed with colors.
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own PFR. The flow’s packets are stored in a FIFO queue. When the head-
of-line packet is released according to the shaping curve of the PFR, it joins a
queue shared by all flows where it further competes with other packets to be
transmitted. This competition depends on some subsequent scheduling rule.
Two PFRs are necessary to process our aggregate of interest F = {f1, f2}, and
a total of four PFRs is required in this output port to also accommodate for the
other two flows that come from the other input port. As each PFR relies on a
FIFO queue, this solution requires four FIFO queues in this output port.

Figure 12c depicts the theoretical model of the output port equipped with
interleaved regulators (IRs), as proposed in the original paper of Specht and
Samii [10]. The flows f1, f2 of our aggregate of interest F share the same FIFO
queue. As f1, f2 enter from the same input port, they also compete in the same
upstream output port. If all previous network elements are globally FIFO for
the aggregate F = {f1, f2} (upstream output port, input port, switching fabric),
then the shaping-for-free property of the IR holds and this IR does not increase
the worst-case delay bound of the aggregate F . Hence, Figure 12c illustrates the
main property that motivated the invention of the IR: if all network elements
are globally FIFO, only one IR per input port is required to keep the shaping-
for-free property. This design requires a total of only two FIFO queues instead
of four for the design with PFRs.

We can note that the reduction of the implementation complexity brought by
the IR relies on the assumption that FIFO queues are the default storage units
in hardware components and that they can be combined in the two-step-queuing
format (regulators → shared queue) shown in Figures 12a and 12c. Hence, the
fewer FIFOs queues are required by the design, the simpler the implementation
is.

But, in IEEE TSN, the output-port specification contains a unique queuing
function per traffic class. Moreover, in TSN, a “queue [. . . ] is not necessarily
a single FIFO data structure. A queue is a record of all [packets] of a given
traffic class awaiting transmission [. . . ]” [21, §8.6.6]. Figure 12d depicts the
specification of asynchronous traffic shaping (ATS), the TSN’s implementation
of the IR. In TSN ATS, each flow is processed by an ATS scheduler (ATS
sched., one per flow) that computes for each packet an eligibility time based on
the algorithm described in [21, §8.6.11.3]. The packets and their eligibility times
are then stored in the record of packets (represented by a cloud in Figure 12d).
At any time instant, only the packets whose eligibility times are in the past
can be selected for transmission by the transmission selection function (trans.
select.).

In [19], Boyer proves that the specified ATS implementation (Figure 12d)
is equivalent to the theoretical output-port model with one IR per input port
(Figure 12c): Packets become eligible for transmission in Figure 12d at the
same time instant at which they would have left the IR to reach the shared
queue in Figure 12c. Combined with the results of our paper, this means that
there exists no useful network-calculus service curve for modeling TSN ATS
(Theorem 7). The networks that use the TSN ATS feature can only be validated
with a worst-case delay analysis if the conditions of the shaping-for-free strictly
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hold (Theorem 2). If the globally-FIFO property of any network element is lost
(due, for example, to parallel switching fabrics or redundancy mechanisms), and
if at least three flows enter from the same input port, then the latencies can be
unbounded inside the output port that uses ATS (Theorem 3).

7.2. Discussion on the Head-of-Line Blocking in TSN ATS

The main property of the IR that the Spring adversary exploits to generate
these unbounded latencies is the head-of-line blocking phenomenon in the IR.
In Trajectory 1 in Figure 5, the Spring-controlled system S1 inverts the first
packet of the dash-dotted red flow f2 and the second packet of the solid blue
flow f1. The consequence of this for the theoretical model of the IR is shown
in Figure 12c: The packet of the solid blue flow f1 is delayed due to shaping,
and the packet of the dash-dotted red flow f2 is blocked by f1 in the IR’s FIFO
queue during this delay.

Interestingly, the same head-of-line blocking phenomenon is standardized in
the ATS specification, even though TSN’s output port queuing function is not
necessarily FIFO [21, §8.6.6]. Indeed, “ATS schedulers are organized into ATS
scheduler groups,” and “there is one ATS scheduler group per [input port]” [21,
§8.6.5.6]. The ATS schedulers of one group communicate with each other to
ensure that they assign non-decreasing eligibility times within the group.

The consequence of this normative behavior for our example is illustrated in
Figure 12c. When the solid blue packet of f1 arrives at the blue ATS scheduler,
it must be delayed because of f1’s shaping curve. It is assigned an eligibility time
Ef1 in the future. Here, the ATS schedulers for f1 and f2 belong to the same
ATS scheduler group. Hence, when the dash-dotted red packet of f2 arrives, it is
assigned by the red ATS scheduler an eligibility time Ef2 larger than Ef1 , even
if it could be immediately released according to f2’s shaping curve (i.e., Ef2 set
to the current time). In the current specification of ATS, the packet of f2 is
blocked by the head-of-line packet of f1.

This behavior seems to be standardized so that hardware implementations
of the TSN queuing function can make assumptions on the monotonicity of el-
igibility times: “The organization of ATS schedulers into groups [. . . ] permits
frames of one group to be queued in FIFO order” [21, §8.6.5.6, Note 2]. How-
ever, recent proposals of hardware implementations, such as push-in first-out
queues [22] and rotated gate-control-queues [23], aim at organizing eligibility-
based packet queues efficiently with little to no assumption on the monotonicity
of the eligibility times. If these designs prove to be mature, then a TSN switch
could use one of them to implement the TSN queuing function in the output
port.

This situation is depicted in Figure 12b, where there is no longer any need for
the eligibility time Ef2 to be larger than Ef1 . Figure 12b is not possible with the
current ATS specifications, but removing the normative sentence “There is one
ATS scheduler group per [input port]” [21, §8.6.5.6] and leaving the network
engineer to decide the best allocation of groups is sufficient: In Figure 12b,
each ATS scheduler is alone in its own group. The best selection of groups then
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depends on the hardware implementation of the TSN output port and the FIFO
assumptions for upstream systems.

With the same principle as the equivalence proof in [19], the ATS configu-
ration of Figure 12b is equivalent to the theoretical model of Figure 12a with
per-flow regulators. Hence, for this configuration, context-agnostic network-
calculus service curves are available to perform the worst-case analysis of a TSN
network with switches that are configured as in Figure 12b (Proposition 1). As
opposed to the configuration in Figure 12d, there exists no head-of-line blocking
situation for the Spring adversary to generate unbounded latencies.

8. Formal Description of Spring and Proof of Instability

In this section, we formally define the Spring adversary at the core of most
of the negative results in our paper. For this, we first introduce the formal nota-
tions of packet sequences M x = (Mx, Lx,M, F x,M) using marked-point processes,
and we recall the formal model of traffic regulators of [12]. Then, we provide
the formal proof of Theorem 3 (Instability of the IR placed after a non-FIFO
system) by relying on a first Spring-generated trajectory. Last, we provide the
formal proof of Theorem 4 (The IR has no fluid service curve that explains its
shaping-for-free property) that relies on a few variants of this trajectory.

8.1. Formal Notations for Describing Spring

The Spring adversary relies on the formal model of the traffic regulators as
introduced in [5]. Hence, to describe Spring, we use the marked-point-process
notation of [12, §II.A] as a formal description of the packet sequences M x

introduced in Section 4. Table 3 lists the extended formal notations used in this
section and completes Table 1.

8.1.1. Notation with Marked-Point Processes

For a trajectory x and for a packetized observation point M in the network
N , we define the packet sequence M x = (Mx, Lx,M, F x,M) as in [12, §II.A]:
Mx = (Mx

1 ,M
x
2 , . . . ) is the sequence of packet arrival time instants at M, in

chronological order. Lx,M = (Lx,M
1 , Lx,M

2 , . . . ) is the sequence of packet lengths,
in chronological order. F x,M = (F x,M

1 , F x,M
2 , . . . ) is the sequence of flow indexes:

F x,M
n = f if and only if the n-th packet that crosses M in trajectory x belongs to

f . For another observation point A, we note A x = (Ax, Lx,A, F x,A) the packet
sequence at A.

For two infinite sequence of real numbers A = (An)n∈N∗ , B = (Bn)n∈N∗ , we
note B ≥ A if ∀n ∈ N∗, Bn ≥ An.

8.1.2. Mapping the Notation to Cumulative Arrival Functions

For a packetized observation point M and its packet sequence M x defined in
Section 8.1.1, we denote by R(M x) the cumulative arrival function:

R(M x) : t 7→
∑
n∈N∗

Lx,M
n 1{Mx

n<t} (11)
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Table 3: Extended Formal Notations for the Description of Spring

Common Operators
f↓ w 7→ sup{s ≥ 0|f(s) ≥ w} Pseudo-inverse

h(f, g) supt≥0{inf{d ≥ 0|f(t) ≤ g(t+ d)}} Horizontal deviation

Common Curves

γr,b t 7→

{
0 if t = 0

rt+ b if t > 0
Leaky-bucket curve.

βR,T t 7→ R[t− T ]+ Rate-latency curve.

δW t 7→

{
0 if t ≤ W

+∞ otherwise
Bounded-delay curve.

Notation with Marked-Point Processes
M An observation point

Mx Sequence of packet arrival dates. . .
Lx,M Sequence of packet sizes. . .
F x,M Sequence of flow indexes. . .

M x ≜ (Mx, Lx,M, F x,M) Packet sequence. . .
. . . at the packetized observation point M in trajectory x

Mapping of the Notations
R M x 7→ Rx,M Maps the packet sequence. . .

. . .Mx at observation point M to the cumulative function Rx,M

at the same observation point M in the same trajectory x.
Traffic-Regulator Model [12]

Πγr,b Pi-operator (13) associated with shaping curve γr,b
index(n, f) Index of the n-th packet in the subsequence that

only contains packets of the flow f .
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where 1{cond} equals 1 when cond is true, 0 otherwise. From the definition of
the packet sequence, we have ∀x, ∀M, R(M x) = Rx,M is the cumulative arrival
function of the aggregate at M in trajectory x, as defined in Section 4.

8.1.3. Formal Model For Traffic Regulators

We briefly recall the input-output characterization of traffic regulators from
Le Boudec [12], that we restrain to leaky-bucket shaping curves.

The PFR for the single flow f , configured with a leaky-bucket shaping curve
σf = γrf ,bf , is a causal, lossless and FIFO system (Figure 4) that transforms, for
any acceptable trajectory x, the input packet sequence Bx = (Bx, Lx,B, F x,B)
with F x,B = {f, f . . . } into the output packet sequence Dx = (Dx, Lx,D, F x,D)
with Lx,D = Lx,B, F x,D = F x,B and ∀n ∈ N∗

Dx
n = max

(
Bx

n, D
x
n−1,Π

γrf ,bf (Dx, Lx,D)n
)

(12)

By convention, ∀x,Dx
0 = 0. The Π operator Πγrf ,bf associated with the shaping

curve γrf ,bf is defined in [12, §III.A] for two sequences D,L by, ∀n ∈ N∗

(Πγrf ,bf (D,L))n = max
1≤m≤n−1

Dm + γ↓
rf ,bf

 n∑
j=m

Lj

 (13)

γ↓
rf ,bf

: w 7→ [w − b]+ · 1
r is the pseudo-inverse of γrf ,bf (see Table 3).

The IR for the aggregate F , configured with the leaky-bucket shaping curves
{γrf ,bf }f∈F is a causal, lossless and FIFO system (Figure 4) that transforms
the input packet sequence Bx = (Bx, Lx,B, F x,B) into the output sequence Dx =
(Dx, Lx,D, F x,D) with Lx,D = Lx,B, F x,D = F x,B and ∀n ∈ N∗

Dx
n = max

(
Bx

n, D
x
n−1,Π

γrf ,bf ([Dx]f , [Lx,D]f )index(n,f)
)

(14)

where f = F x,D
n is the flow f ∈ F that owns the n-th packet that crosses the

IR and index(n, f) is the index of the n-th packet in the sequence that contains
only the packets of f . By convention ∀x,Dx

0 = 0. Equation (14) is similar to
(12), except that the flow f ∈ F that defines the applied shaping curve γrf ,bf
changes at every new n and the Π operator is applied only to the subsequences
[Dx]f , [Lx,D]f , obtained from Dx, Lx,D by keeping only the packets that belong
to f , i.e., to the same flow as the current packet n.

8.2. Description of Spring for Proving Theorem 3

Proof of Theorem 3. Consider an IR that processes at least three flows with the
same leaky-bucket shaping curve for three of them: ∀fi ∈ {f1, f2, f3}, σfi = γr,b
with r > 0 and b greater than the maximum packet size of f1, f2, f3.

Let the adversary Spring define the constants I, d, ϵ and τ as in Equation (5):

I ≜
b

r
; 0 < d < min (I,W ) ; 0 < ϵ < min(I − d,

d

3
) ; τ ≜ 3I + 3ϵ− d
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Table 4: Packet Sequences Used by Spring

n : . . . , 6(k − 1) + 6 6k + 1 6k + 2 6k + 3 6k + 4 6k + 5 6k + 6 6(k + 1) + 1 . . .
A1 = A2 = (. . . , 3I + 2ϵ+ (k − 1)τ, d+ kτ, I + ϵ+ kτ, I + d+ kτ, 2I + ϵ+ kτ, 2I + 2ϵ+ kτ, 3I + 2ϵ+ kτ, d+ (k + 1)τ, . . . )

F 1,A = F 2,A = (. . . , f3, f1, f2, f1, f2, f3, f3, f1, . . . )
B1 = B2 = B3 = (. . . , 3I + 2ϵ+ (k − 1)τ, 2d+ kτ, I + d+ kτ, I + ϵ+ d+ kτ, 2I + ϵ+ d+ kτ, 2I + 2ϵ+ d+ kτ, 3I + 2ϵ+ d+ kτ, 2d+ (k + 1)τ, . . . )

F 1,B = F 3,B = (. . . , f3, f1, f1, f2, f2, f3, f3, f1, . . . )
F 2,B = (. . . , f3, f1, f2, f1, f2, f3, f3, f1, . . . )

D1 = D3 ≥ (. . . , B1
1 + 3(k − 1)I + 3I, B1

1 + 3kI, B1
1 + 3kI + I, B1

1 + 3kI + I, B1
1 + 3kI + 2I, B1

1 + 3kI + 2I, B1
1 + 3kI + 3I, B1

1 + 3(k + 1)I, . . . )

(k − 1)th period (k + 1)th periodkth period
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We consider the network N1 of Figure 5, obtained by concatenating the
Spring-controlled source ϕ, the Spring-controlled system S1 and the IR (not
controlled by Spring). We denote by x = 1 the trajectory on the network N1

that results from the choices of Spring, and we formally describe it by using the
packet sequences of the form M 1 = (M1, L1,M, F 1,M) for an observation point M.

The Spring-controlled source ϕ generates at observation point A in Figure 5
the packet sequence A 1 = (A1, L1,A, F 1,A) defined in Table 4. It comprises a
sub-sequence of six packets that repeats every τ seconds. All packets have the
same size3 b, thus L1,A = (b, b, b, . . . ).

By using the definitions of I, d, ϵ and τ , one can verify that the sequence A1

in Table 4 is increasing. For example,

A1
6k+2 −A1

6k+1 = I + ϵ+ kτ − d− kτ = I + ϵ− d ≥ ϵ > 0

because d < I by (5). We can also compute the minimum distance between any
two packets of the same flow. For f1:

A1
6k+3 −A1

6k+1 = I =
b

r

and

A1
6(k+1)+1 −A1

6k+3 = τ − I = 2I + 3ϵ− d ≥ I + 3ϵ ≥ b

r
because d < I (15)

We obtain similar results for f2 and f3. This proves that the minimum distance
between any two packets of the same flow is b

r . Hence, each flow fi is γr,b-
constrained at its source ϕ and Property 1 of Theorem 3 holds.

Remark: Inequation (15) explains why three flows are necessary for Spring.
Indeed, with three flows, the duration of the six-packet-long profile that is re-
peated by Spring is τ = 3I + 3ϵ − d (Equation (5)). In this case, the duration
A1

6k+3−A1
6k+1 = τ−I is strictly larger than I = b

r . This ensures that Property 1
of Theorem 3 holds. With only two flows, Spring would generate a four-packet-
long profile of duration τ ′ = 2I + 2ϵ − d. We observe that τ ′ − I is not larger
than I: Property 1 of Theorem 3 does not hold with Spring and only two flows.

The Spring-controlled system S1 outputs the packet sequence B1 defined by
B1 = (B1, L1,B, F 1,B) with L1,B = (b, b, b, . . . ) and B1, F 1,B defined in Table 4.
For any k ≥ 0, the (6k + 2)th packet in sequence A 1 is now the (6k + 3)th
packet in B1 and vice versa. This is reflected by the sequence F 1,B that differs
from F 1,A.

By comparing F 1,A and F 1,B, we observe that the system S1 is causal, lossless
and FIFO-per-flow, i.e., Property 2 of Theorem 3 holds. One can also verify
from Table 4 that the delay of every packet through S1 is lower-bounded by 0
and upper-bounded by d. This is clear for most packets. We do it for those

3If b is strictly greater than the maximum packet size, then we send two or more packets
at the same time and such that their lengths sum up to b.
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that exchange their order: B1
6k+3 −A1

6k+2 = d and B1
6k+2 −A1

6k+3 = 0. Hence,
Property 3 holds.

The sequence of packets B1 is now the input of the IR in Figure 5. The
output D1 is obtained from B1 by applying the model of the IR from Sec-
tion 8.1.3. Note that Spring does not control the IR. Let D1 = (D1, L1,D, F 1,D)
be the packet sequence at the output of the IR. As the IR is causal, lossless and
FIFO, we have L1,D = L1,B and F 1,D = F 1,B. Furthermore,

Lemma 2. For any h ∈ N, D1
2h+1 ≥ B1

1 + hI, and
D1

2h+2 ≥ B1
1 + hI + I

Proof of Lemma 2. We prove this by induction.

Base case h = 0. We have F 1,B
1 = F 1,B

2 = f1. From Equation (14),

D1
1 = max

(
B1

1 , D
1
0,Π

γr,b([D1]f1 , [L1,D]f1)index(1,f1)
)

≥ B1
1

D1
1 ≥ B1

1 + 0 · I (16)

In addition,

D1
2 = max

(
B1

2 , D
1
1,Π

γr,b([D1]f1 , [L1,D]f1)index(2,f1)
)

≥ Πγr,b([D1]f1 , [L1,D]f1)index(2,f1)

≥ D1
1 + γ↓

r,b(L
1,D
1 + L1,D

2 ) ▷ (13) with m = 1

= D1
1 + [2b− b]+ · 1

r

= D1
1 + I

≥ B1
1 + I ▷ (16)

D1
2 ≥ B1

1 + 0 · I + I (17)

Induction step. Consider h ∈ N, assume that

D1
2h+1 ≥ B1

1 + hI (18)

and D1
2h+2 ≥ B1

1 + hI + I (19)

We have

D1
2(h+1)+1 = D1

2h+3

≥ D1
2h+2 ▷ (14)

≥ B1
1 + (h+ 1)I ▷ (19) (20)
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Now denote f ≜ F 1,B
2h+4. The index 2h+4 is even, hence from the description

of the Spring trajectory (Table 4), we have that F 1,B
2h+3 also equals f . Hence,

D1
2h+4 ≥ Πγr,b

(
[D1]f , [L1,D]f

)
index(2h+4,f)

▷ (14)

≥ D1
2h+3 + γ↓

r,b(L
1,D
2h+3 + L1,D

2h+4) ▷ (13) with m = 2h+ 3

= D1
2h+3 + [2b− b]+ · 1

r

D1
2(h+1)+2 ≥ B1

1 + (h+ 1)I + I ▷ (20) (21)

Equation (20) and (21) conclude the induction step of the proof for Lemma 2.

Now, for k ∈ N,

D1
6k+1 −B1

6k+1 ≥ B1
1 + 3kI −B1

6k+1 ▷ Lemma 2

= B1
1 + 3kI − 2d− kτ ▷ Table 4

= B1
1 + 3kI − 2d− 3kI − 3kϵ+ kd ▷ (5)

= k(d− 3ϵ) +B1
1 − 2d

D1
6k+1 −B1

6k+1 ≥ k(d− 3ϵ) +B1
1 − 2d

As ϵ < d
3 , we obtain supk∈N D1

6k+1 −B1
6k+1 = +∞. We can do the same for the

other indices 6k+2, 6k+3, . . . , 6k+6. Finally, this gives supn∈N∗ D1
n−B1

n = +∞
and Property 4 of Theorem 3 holds.

This proves that the Spring adversary described in Table 4 meets the con-
straints of Theorem 3, does not control the IR of Figure 5, but generates un-
bounded latencies within the interleaved regulator.

8.3. Description of the Spring Variants used in Theorem 4

Proof of Theorem 4. Consider an IR that shapes at least three flows F with
the same leaky-bucket shaping curve for three of them ∀f ∈ {f1, f2, f3} ⊂ F ,
σf = γr,b with b ≥ maxf∈{f1,f2,f3} L

max
f . Assume that there exists a wide-sense

increasing curve βσ such that (a) βσ is a fluid service-curve of the IR and (b)
βσ explains the shaping-for-free. Select an arbitrary W > 0, and consider a
causal, lossless, FIFO system S2 that offers the service curve δW . Consider
now the network N2 shown in Figure 13. Assume that the flows f1, f2, f3 are
γr,b-constrained at A.

We define the Spring constants I, d, ϵ, τ as in (5). We define Trajectory 2
with A 2 ≜ A 1, where the supperscript 1 denotes Trajectory 1 described in
Table 4, and B2 ≜ (B2, L2,B, F 2,B) with B2 ≜ B1, L2,B ≜ L1,B. However,
F 2,B differs from F 1,B by exchanging two packets in every period, as shown in
Table 4. We define the packet sequence D2 as the result of the input-output
characterization of the IR (Section 8.1.3) when it processes B2 as an input.
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S2

FIFO

IRN2

IRN3

Z PacketizerN4

A B D

Figure 13: Several networks and their observation points used in the Proof of Theorem 4.

One can check that Trajectory 2 is acceptable for the given constraints. For
example, A 2 = A 1, hence we know from Section 8.2 that each flow is γr,b-
constrained at A in Trajectory 2.

In addition, F 2,B differs only slighty from F 1,B, so we only need to recompute
the delay through S2 for the two packets with a different order: Packet 6k + 2
has a delay B2

6k+2 − A2
6k+2 = d − ϵ < d through S2 and Packet 6k + 3 has

a delay B2
6k+3 − A2

6k+3 = ϵ < d (Table 4). Consequently, the delay through
S2 in Trajectory 2 is upper-bounded by d. By (5), d < W , so Trajectory 2 is
acceptable with respect to S2’s service-curve constraint δW .

Last, it is clear from Table 4 that the order of the packets is preserved
between A and B in Trajectory 2, so Trajectory 2 is acceptable with respect to
S2’s FIFO property. Also, R(B2) is constrained by the arrival curve 3γr,b⊘ δW
[5, Thm. 1.4.3].

Now we consider the network N3 shown in Figure 13, and we define Trajec-
tory 3 by B3 ≜ B1. In particular, we have B3 = B2.

The operator R : (Mx, Lx,M, F x,M) 7→ Rx,M defined in Section 8.1.2 that
returns the cumulative function Rx,M of the traffic as a function of the packet
sequence (Mx, Lx,M, F x,M), depends only on Mx and Lx,M, thus

R(B3) = R(B2) ∼ 3γr,b ⊘ δW (22)

We now use the fact that βσ is a fluid service curve of the IR. By Definition 2,
the networkN3 can be replaced by the networkN4 and for the same input packet
sequence B4 ≜ B3, we have the same output packet sequence D4 = D3. In
particular, for any n ∈ N∗,

D3
n −B3

n = D4
n −B4

n (23)

In N4, the packetizer does not increase the per-packet delay and Z offers the
service-curve βσ. In addition, B4 = B3 so by Equation (22), 3γr,b ⊘ δW is an
arrival curve for the aggregate at B in N4. By Definition 2, Z is also causal,
lossless and FIFO, hence from [5, Thm 1.4.2] we obtain, ∀n ∈ N∗,

D3
n −B3

n = D4
n −B4

n (24)

≤ h (3γr,b ⊘ δW , βσ) (25)

= h (3γr,b, δW ⊗ βσ) ▷ [5, Thm 3.1.12] (26)
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where h(·, ·) denotes the horizontal deviation between two curves (Table 3).
In addition, βσ explains the shaping-for-free. By Lemma 1, we have βσ ≥∑

f∈F σf ≥ 3γr,b. Combined with [5, Lemma 1.5.2], we obtain

D3
n −B3

n ≤ h (3γr,b, δW ) (27)

≤ W (28)

But the packet sequence B3 in N3 is equal to the packet sequence B1 in the
network N1 of Section 8.2 and Table 4. Hence, D1 is equal to D3. We have a
contradiction because we showed in Section 8.2 that supn D

1
n −B1

n = +∞.

9. Conclusion

Network calculus is a framework for obtaining worst-case performance bounds
of time-sensitive networks, as required for their validation. Most of the mech-
anisms standardized by the time-sensitive networking (TSN) task group of the
IEEE enjoy a network-calculus service-curve model published in the literature.
The interleaved regulator (IR), standardized as asynchronous traffic shaping
(ATS) in TSN, is an exception. Its shaping-for-free property is instrumen-
tal in designing and analyzing time-sensitive networks but was proved without
network-calculus service curves. The existence of a service-curve model that
explains the IR’s behavior and its shaping-for-free property remained an open
question. If such a model existed, network engineers could use the IR outside
of the shaping-for-free requirements and still compute end-to-end performance
bounds with service-curve-oriented tools.

In this paper, we settled the question: Network-calculus service curves can-
not explain the behavior of the IR. We show that the IR still offers non-trivial
functions as (strict) service curves, but (a) none of them can explain the shaping-
for-free property of the IR and (b) these curves are too weak to be helpful and
cannot offer any delay guarantee in most cases. Consequently, performance
bounds cannot be obtained with service-curve-oriented approaches when the IR
is used in a context that differs from the shaping-for-free requirements, e.g., af-
ter a non-FIFO system. We prove that these bounds do not even exist: Our
Spring adversary can yield unbounded latencies in an IR placed after a non-
FIFO system. This instability also affects TSN ATS, but removing a single line
from the IEEE TSN normative requirements tackles the issues raised in this
paper.
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Appendix A. Formal Proofs

This appendix contains the formal proofs of the results in the paper. The
proofs use the notations from Table 1 and Table 3.

Appendix A.1. Proof of Proposition 1

Proof of Proposition 1. We first prove that the PFR offers the fluid service curve
βσ ≜ σf . A shaping curve σf that meets the conditions of Proposition 1 verifies
[5, Eq. (1.24)] (see the discussion in [5, §1.7.3]). From [5, Thm. 1.7.3], a PFR
configured with such a service curve can be realized as the concatenation of a
greedy shaper G with shaping curve σf , followed by a packetizer. From [5, Thm
1.5.1], G offers σf as a service curve. Hence, the PFR offers the fluid service
curve σf as defined in Definition 2.

We now prove that σf explains the shaping-for-free property. Consider two
causal, lossless and FIFO systems S and Z ′ such that Z ′ offers the service curve
βσ = σf (Figure 6). Consider now the network made of S followed by Z ′ and
the subset X of the trajectories on this network such that ∀x ∈ X,RA,x

f ∼ σf .

Denote by W A→B
f the worst-case delay over X of the flow f between A and B

and W A→C
f the worst-case delay over X of the flow f between A and C.

If W A→B
f = +∞, then by causality W A→C

f = +∞ and the result holds.

Assume that W A→B
f is finite. By causality,

W A→C
f ≥ W A→B

f (A.1)

Within the subset of trajectories X, S offers to f the individual service curve
βS,f = δW A→B

f
. Hence, the concatenation of S and Z ′ offers to f the individual

service curve βS+Z,f = βS,f ⊗ βZ,f = δW A→B
f

⊗ σf [5, Thm. 1.4.6]. Within X,

σf is an arrival curve for f at A. Hence

W A→C
f ≤ h(σf , δW A→B

f
⊗ σf ) ▷ [5, Thm. 1.4.2]

= h(σf , σf ⊗ δW A→B
f

) ▷⊗ commutative

= h(σf , δW A→B
f

) ▷ [5, Lem. 1.5.2]

W A→C
f ≤ W A→B

f

Combined with (A.1), we obtain the result.

Appendix A.2. Proof of Lemma 1

Proof of Lemma 1. Consider a set of shaping curves σ = {σf}f∈F . Consider a
wide-sense increasing function βσ. Assume that βσ explains the shaping-for-free
property (Definition 3).

Consider the system S that has no delay. S is causal, lossless and FIFO.
Consider a causal, lossless and FIFO system Z ′ defined by, for all trajectory x,

Rx,C = min(Rx,B, βσ) (A.2)
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where Rx,B [resp., Rx,C] is the cumulative function of the aggregate at the input
B of Z ′ [resp., at the output C of Z ′], see Figure 6. By Equation (A.2), Z ′ offers
βσ as a service curve.

Concatenate now S and Z ′ as in Figure 6 and consider the Trajectory x0

with ∀f ∈ F , Rx0,A
f = σf . x0 belongs to the set X defined in Definition 3. In

addition, S has no delay so

Rx0,B = Rx0,A =
∑
f∈F

σf (A.3)

By Definition 3, the worst-case delay over the set of trajectories X between A

and C in Figure 6 equals the worst-case delay over X between A and B, i.e., zero
(by construction of S). By causality, the worst-case delay between B and C also
equals 0 over X.

As x0 belongs to X, we have Rx0,B = Rx0,C. Combined with Equation (A.2),
we have βσ ≥ Rx0,B. With Equation (A.3), we finally obtain

βσ ≥
∑
f∈F

σf (A.4)

Appendix A.3. Proof of Theorem 5

The proof of Theorem 5 relies on the model of traffic regulators from Boyer
[19] that applies for an IR with leaky-bucket shaping curves.

It relies on the content of token buckets, one per flow. For a flow f ∈ F , Λx
f,n

is defined as the number of tokens inside the bucket for flow f just after packet
n is released from the IR in Trajectory x. The head-of-line packet is released as
soon as the bucket for the associated flow contains at least as many tokens as
the packet’s size. With this model, the release time of packet n (Equation (14))
is [19, §5.3]

Dx
n = max

(
Bx

n, D
x
n−1,

Lx,B
n − Λx

f,n⊖1

rf
+Dn⊖1

)
(A.5)

where f = F x,B
n is the flow that owns packet n and n ⊖ 1 is the index of the

last packet of f just before n. By convention, for any trajectory x and any flow
f , n⊖ 1 = 0 if n is the first packet of f , and Λx

f,0 equals bf , the shaping-curve
burst configured for flow f . Last, Dx

0 = 0.
Boyer’s [19] and Le Boudec’s [12] models are equivalent for leaky-bucket

shaping curves. The following proof uses Boyer’s model because the result is
faster to obtain based on this model.

Proof of Theorem 5. Consider an IR that processes an aggregate F of flows with
leaky-bucket shaping curves: ∀f ∈ F , σf = γrf ,bf with rf > 0 and bf ≥ Lmax

f .
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Define Lmin and Imax as in Theorem 5. Denote by B [resp., D] an observation
point located at the input [resp., at the output] of the IR (as in Figure 4).

Consider an acceptable trajectory x. Consider two time instants s < t
such that (s, t] is a backlogged period for the IR and consider ϵ ∈ R such that
0 < ϵ < t − s. From the definition of the backlogged period, the cumulative
functions at the input and the output verify Rx,B(s+ ϵ) > Rx,D(s+ ϵ).

Both the input and the output of the IR are packetized. Hence, consider
now the packet sequences Bx = (Bx, Lx,B, F x,B) and Dx = (Dx, Lx,D, F x,D) in
trajectory x, at observation point B and D (as defined in Section 8.1.1). The IR
is causal, lossless and FIFO, so we have Lx,B = Lx,D [resp., F x,B = F x,D]. Denote
by Lx [resp., F x] this sequence.

At s+ϵ, we have Rx,B(s+ϵ) > Rx,D(s+ϵ). The IR is lossless, so at s+ϵ, it is
non-empty. In addition, its input and output are packetized, so the IR contains
at least one packet at t + ϵ. The IR is also FIFO, so denote by n the index
within the sequences Bx, Dx of the head-of-line packet inside the IR at s + ϵ
and denote g ≜ F x

n the flow to which packet n belongs in trajectory x.
We now use Equation (A.5) to compute the release time instant of packet n

in trajectory x. At time instant s+ ϵ, packet n is the head-of-line packet in the
IR, so Bn ≤ s+ ϵ, Dn−1 ≤ s+ ϵ and Dn⊖1 ≤ s+ ϵ. Hence,

Dx
n ≤ max

{
s+ ϵ,

Lx
n − Λx

g,n⊖1

rg
+ s+ ϵ

}
(A.6)

≤ max

{
s+ ϵ,

Lx
n

rg
+ s+ ϵ

}
▷ Λx

g,n⊖1 ≥ 0 (A.7)

≤ Lx
n

rg
+ s+ ϵ ▷ Lx

n ≥ 0 (A.8)

With the terminology of [19], Equation (A.8) states that packet n stays at
the head of the line for a duration that is less than the time required for the
associated token bucket to regain as many credits as the length of n. We obtain

Dx
n ≤

Lmax
g

rg
+ s+ ϵ (A.9)

≤ Imax + s+ ϵ (A.10)

The size Lx
n of packet n is greater than Lmin, hence the cumulative function

Rx,D at the output of the IR in trajectory x verifies:

Rx,D(t)−Rx,D(s) ≥

{
0 if t− s ≤ Imax + ϵ

Lmin if t− s > Imax + ϵ
(A.11)

Rx,D(t)−Rx,D(s) ≥ Lmin ∧ (δImax+ϵ) (t− s) (A.12)

where ∧ is the minimum and δ is the bounded-delay curve (Table 3). Equa-
tion (A.12) is valid for any ϵ such that 0 < ϵ < t− s, hence

Rx,D(t)−Rx,D(s) ≥ Lmin ∧ (δImax(t− s)) (A.13)
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Equation (A.13) is valid for any acceptable trajectory x with no assumption on
the context of the IR and for any backlogged period (s, t]. In addition, note that
the function β0 : t 7→ Lmin ∧ δImax(t) is wide-sense increasing. By definition, the
IR offers β0 as a context-agnostic strict service curve. The curve β0 is shown
with a dashed-blue line in Figure 8.

Let us now define the curve βsc as

βsc : t 7→
⌊

t

Imax

⌋
· Lmin (A.14)

where ⌊·⌋ denotes the floor function. We observe that βsc is the supper-additive
closure of β0 (Equation (7) in Section 6.1). Consequently, the IR also offers βsc

as a strict service curve [7, Prop. 5.6, Item 2].
In addition, any curve β′ such that ∀t ≥ 0, β′(t) ≤ βsc is also a strict service

curve of the IR. This is the case, in particular, for the rate-latency service curve

βR,T with R = Lmin

Imax and T = Imax.

Appendix A.4. Proof of Proposition 2

Proof of Proposition 2. Consider an IR that processes an aggregate F with
leaky-bucket shaping curves {σf}f∈F = {γrf ,bf }f∈F . Take a curve βstrict ∈ F0

and assume that βstrict is a context-agnostic strict service curve of the IR.
Take f ∈ F , and consider trajectory xf . Define If ≜ bf

rf
. Let the packet

sequence Bxf at the input B of the IR be Bxf = (0,
If
2 , If ,

3If
2 , 2If , . . . ), L

xf ,B =
(bf , bf , bf , bf , bf , . . . ), F xf ,B = (f, f, f, f, f, . . . ). That is, only flow f sends
packets of size bf at twice the rate allowed by its shaping curve. There are no
packets for flows F\{f}.

Based on the input-output characterisation of the IR from Equation (14),
we directly obtain that the packet sequence Dx at the output D of the IR is
Lxf ,D = Lxf ,B, F xf ,D = F xf ,B and Dxf = (0, If , 2If , 3If , 4If , . . . ).

Hence, σf is an arrival curve for the output traffic Rxf ,D and the IR is non-

empty after
If
2 . By combining (2) and (3), this gives

∀t ≥ 0, βstrict(t) ≤ σf (t) (A.15)

Inequation (A.15) is valid for any f ∈ F , hence the result.

Appendix A.5. Proof of Proposition 3

Proof of Proposition 3. Denote by v the value of βg(u). We have v > Lmin
g . βg

is an individual service curve of S for g. By definition, it is wide-sense increasing.
Hence,

∀t ≥ u, βg(t) ≥ v > Lmin
g (A.16)

The red-shaded area in Figure A.14 represents the possible values of βg.

38



v

u t0

Lmin
g

t0 + u

∀t ≥ u,
βg(t) ≥ v

> Lmin
g

∀t > t0,
Rx,B

g (t) ≥ Lmin
g

∀t > t0 + u,
(Rx,B

g ⊗ βg)(t) ≥ Lmin
g

time interval

data

Figure A.14: If we assume that ∃u ≥ 0, βg(u) = v > Lmin
g as in Proposition 3, then this

figure depicts the envelopes of possible values for the individual service curve βg for g (red

area), for the cumulative function Rx,B
g of g at the input B of S with trajectory x (in blue),

and for the resulting min-plus convolution Rx,B
g ⊗βg (in green). This figure should be printed

with colors.

The observation point B is packetized (Figure 11). Consider an acceptable
trajectory x such that the first packet of g is of size Lmin

g . Denote by t0 the
arrival time instant of the first packet of g at observation point B in trajectory
x. The cumulative arrival function Rx,B

g of g at B is wide-sense increasing and
left-continuous, hence

∀t > t0, R
x,B
g (t) ≥ Lmin

g (A.17)

The blue-shaded area in Figure A.14 represents the possible value of Rx,B
g .

Consider now the min-plus convolution Rx,B
g ⊗ βg. For t > t0 + u, we have

(Rx,B
g ⊗ βg)(t) = inf

0≤s≤t
βg(s) +Rx,B

g (t− s)

= min

(
inf

0≤s≤u
βg(s) +Rx,B

g (t− s), inf
u<s≤t

βg(s) +Rx,B
g (t− s)

)
For s ∈ [0, u], βg(s) ≥ 0 and t− s ≥ t−u > t0, so Rx,B

g (t− s) ≥ Lmin
g (A.17).

For s ∈ (u, t], βg(s) ≥ Lmin
g (A.16) and Rx,B

g (t− s) ≥ 0. Hence, ∀t > t0 + u,

(Rx,B
g ⊗ βg)(t) ≥ min(0 + Lmin

g , Lmin
g + 0) = Lmin

g (A.18)

By assumption, βg is an individual service curve of S for g, so

∀t > t0 + u, Rx,D
g (t) ≥ (Rx,B

g ⊗ βg)(t) ≥ Lmin
g (A.19)

The green-shaded area in Figure A.14 represents the possible value of Rx,D
g .

The system S is causal, FIFO and lossless, and its output is packetized. Hence
Inequation (A.19) implies that the first packet of g exits S before t0+u, i.e., its
delay through S is upper-bounded by u.
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IR

f1
γr,b1

f2
γr,b2

f3
γr,b3

g

B D

Figure A.15: Situation for the Proof of Theorem 6. The flows f1, f2, f3 are processed by
the IR with the same leaky-bucket shaping curve γr,b. They enter the IR with leaky-bucket
arrival curves γr1,b1 ,γr2,b2 and γr3,b3 . We are interested in an individual service curve that
the IR offers to a fourth flow g. Best with colors (not required).

Appendix A.6. Proof of Theorem 6

Proof of Theorem 6. Consider an IR that processes an aggregate F of at least
four flows with the same leaky-bucket shaping curve for three of them: ∀fi ∈
{f1, f2, f3}, σfi = γr,b. Consider a flow g ∈ F\{f1, f2, f3}. For fi ∈ {f1, f2, f3},
assume that the flow fi is constrained at the input B of the IR by a leaky-bucket
arrival curve γr,bi with b1 > b, b2 ≥ b and b3 ≥ b (Figure A.15). Assume that
any other flow h ∈ F\{f1, f2, f3, g} exhibits an arrival curve αB

h at the input B of
the interleaved regulator. Finally, assume that the IR offers to g the individual
service curve βg. This curve can depend on the shaping curves {σf}f∈F and
on the arrival curves of the other flows αB

f1
= γr,b1 , α

B
f2

= γr,b2 , α
B
f3

= γr,b3 ,

{αB
h}h∈F\{f1,f2,f3,g}. Consider X ′, the subset of trajectories such that for each

x ∈ X ′, the first packet of g that enters the IR is of size Lmin
g .

We obtain the proof of Theorem 6 through the following lemma.

Lemma 3. For any duration M ∈ R+, there exists an acceptable trajectory
xM ∈ X ′ such that the delay of the first packet of g within the IR is greater
than M .

Proof of Lemma 3 . For the three flows f1, f2, f3, consider the Trajectory 3 of
Table 4 with

W ≜
b1
r

− b

r
(A.20)

Let the Spring adversary define its parameters I, d, ϵ, τ as in Equation (5). We
have W > 0 because b1 > b. Note that

W = I − 2b

r
+

b1
r

(A.21)

In Trajectory 3, the size of the packets is b and the duration between any
two consecutive packets of f2 [resp., f3] is at least I = b/r at B, so γr,b2 [resp.,
γr,b3 ] is an arrival curve of f2 [resp., f3] at B in Trajectory 3 (because b2 ≥ b
and b3 ≥ b). Similarly, the duration between any two packets of f1 of size b is
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I − d and

−W < −d ▷ (5)

−I +
2b− b1

r
< −d ▷ (A.21)

2b < r(I − d) + b1

This shows that γr,b1 is an arrival curve for f1 at B in Trajectory 3.
From Trajectory 3, we obtain trajectory xM by inserting a packet of g, of

size Lmin
g , between the (6k + 1)th and (6k + 2)th packets of Trajectory 3, with

k ≜

⌈
M + d+ I

d− 3ϵ

⌉
+ 1 (A.22)

where ⌈·⌉ is the ceiling function. This packet takes the index 6k+2 in trajectory
xM , and we have

B3
6k+1 ≤ BxM

6k+2 ≤ B3
6k+2 (A.23)

No other flow h ∈ F\{f1, f2, f3, g} sends any packet in Trajectory xM . For the
three flows f1, f2, f3, Trajectory xM describes the same packet sequence in B

as in Trajectory 3. Hence, γr,b1 , γr,b2 , γr,b3 are also arrival curves of f1, f2, f3
in Trajectory xM . We define DxM as the result of the IR’s input-output model
(Section 8.1.3) on input BxM . Hence, xM is an acceptable trajectory, and, by
definition xM ∈ X ′.

The packet sequences BxM and B3 are identical until index 6k+1 included
and the IR is causal. Hence, the packet sequences DxM and D3 are also identical
until index 6k + 1 included. As the IR is FIFO, we obtain

DxM

6k+2 ≥ DxM

6k+1 = D3
6k+1 (A.24)

By combining (A.23) and (A.24), we obtain

DxM

6k+2 −BxM

6k+2 ≥ D3
6k+1 −B3

6k+2

= B1
1 + 3kI − I − d− kτ ▷ Table 4

≥ (−d− I) + k(3I − τ) ▷ B1
1 ≥ 0

= −(d+ I) + k(d− 3ϵ) ▷ (5)

≥ −(d+ I) +
M + d+ I

d− 3ϵ
(d− 3ϵ) ▷ (A.22)

DxM

6k+2 −BxM

6k+2 ≥ M (A.25)

This gives the result of the Lemma.

To prove Theorem 6, we now simply combine Lemma 3 with the contrapos-
itive of Proposition 3.

Lemma 3 states that for any u ∈ R+, there exists a trajectory x ∈ X ′ such
that the delay of the first packet of g is not upper-bounded u (it is strictly
larger than u). This means that the consequent of Proposition 3 is false. By
contraposition, the antecedent is also false.
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Appendix A.7. Proof of Theorem 7

Proof of Theorem 7. Consider an IR that processes an aggregate F of at least
four flows with leaky-bucket shaping shaping curves {σh}h∈F . Assume that
at least three flows f1, f2, f3 ∈ F share the same leaky-bucket shaping curve:
∀fi ∈ {f1, f2, f3}, σfi = γr,b. Consider now a function β ∈ F0. β can depend on
{σh}h∈F . Assume that the IR offers β as a context-agnostic service curve.

For any acceptable trajectory x with no assumption on the context of the
IR, we have

∀t ≥ 0, Rx,D(t) ≥ (Rx,B ⊗ β)(t) (A.26)

where Rx,B : t 7→
∑

h∈F Rx,B
h (t) is the cumulative function of the aggregate at

B, the IR’s input (Figure 4), in Trajectory x. And Rx,D : t 7→
∑

h∈F Rx,D
h (t) is

the cumulative function at D, the IR’s output, in Trajectory x.
In F\{f1, f2, f3}, choose arbitrarly one flow and call it g. For a given set of

arrival curves {αB
h}h∈F\{g}, we define

α¬g ≜
∑

h∈F\{g}

αB
h (A.27)

where αB
h is an arrival curve for h at the input B of the IR. For each θ ∈ R+,

we also define βθ as:

βθ : t 7→ [β(t)− α¬g(t− θ)]
+
1{t>θ} (A.28)

where 1t>θ equals 1 when t > θ, 0 otherwise. We finally define βθ as:

βθ = βθ⊘0 : t 7→ inf
s≥t

{βθ(s)} (A.29)

where ⊘ is the max-plus deconvolution (Table 1) and 0 is the zero function:
∀t ≥ 0, 0(t) = 0.

Lemma 4. If, for each flow h ∈ F\{g}, αB
h is an arrival curve of h at the input

of the IR, then for each θ ≥ 0, the IR offers βθ as an individual service curve
for g.

Proof of Lemma 4. The IR is a FIFO system that offers the service curve β to
the aggregate. By [5, Prop. 6.4.1], for each θ ∈ R+, the function βθ verifies
Equation (4).

However, for θ ∈ R+, βθ may not be wide-sense increasing, thus not an indi-
vidual service curve for g. But βθ is wide-sense increasing by construction and
∀θ ∈ R+,∀t ≥ 0, βθ(t) ≤ βθ(t). Hence, for θ ∈ R+, βθ also verifies Equation (4),
thus is an individual service curve of S for g.

Take now ϵ > 0 and denote by Xϵ the subset of acceptable trajectories such
that:

• γr,b+ϵ is an arrival curve for f1 at B, and
• γr,b is an arrival curve for f2 at B, and
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• γr,b is an arrival curve for f3 at B, and
• ∀h ∈ F\{f1, f2, f3, g}, ∀t ≥ 0, Rx,B

h = Rx,D
h = 0

For all trajectories of Xϵ, we have

α¬g = γ3r,3b+ϵ (A.30)

By applying Lemma 4, for each θ ∈ R+, βθ is an individual service curve of
the IR for g. In addition, b + ϵ > b so the subset of trajectories Xϵ meets the
assumptions of Theorem 6. By Theorem 6, we have, ∀θ ≥ 0,∀t ≥ 0,

βθ(t) ≤ Lmin
g

inf
s≥t

{βθ(s)} ≤ Lmin
g ▷ (A.29)

inf
s≥t

{
[β(s)− α¬g(s− θ)]

+
1{s>θ}

}
≤ Lmin

g ▷ (A.28)

If we limit to t > θ, we obtain, ∀θ ≥ 0,∀t > θ,

inf
s≥t

{
[β(s)− α¬g(s− θ)]

+
}
≤ Lmin

g (A.31)

For any x ∈ R, x ≤ [x]+, hence ∀θ ≥ 0,∀t > θ,

inf
s≥t

{β(s)− α¬g(s− θ)} ≤ inf
s≥t

{
[β(s)− α¬g(s− θ)]

+
}

(A.32)

By combining Equations (A.31) and (A.32), we obtain ∀θ ≥ 0,∀t > θ,

inf
s≥t

{
β(s)− α¬g(s− θ)+

}
≤ Lmin

g

inf
s≥t

{β(s)− γ3r,3b+ϵ(s− θ)} ≤ Lmin
g ▷ (A.30)

inf
s≥t

{β(s)− 3rs} ≤ Lmin
g − 3rθ + 3b+ ϵ (A.33)

Equation (A.33) is valid for any ϵ > 0. Hence,

∀θ ≥ 0,∀t > θ, inf
s≥t

{β(s)− 3rs} ≤ Lmin
g − 3rθ + 3b

In particular,

∀t >
Lmin
g

3r
+

b

r
, inf

s≥t
{β(s)− 3rs} ≤ 0 (A.34)

Denote t1 ≜
Lmin

g

3r + b
r . With the definition of the infimum, Equation (A.34)
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gives

∀t > t1,∀ϵ′ > 0,∃s ≥ t, β(s)− 3rs ≤ ϵ′

∀t > t1,∀ϵ′ > 0,∃s ≥ t,
β(s)

s
≤ ϵ′

s
+ 3r

∀t > t1, inf
s≥t

β(s)

s
≤ 3r

This shows lim inf
t→+∞

β(t)

t
≤ 3r (A.35)
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