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Abstract
Partisan gerrymandering, i.e., manipulation of elec-
toral district boundaries for political advantage, is
one of the major challenges to election integrity in
modern day democracies. Yet most of the existing
methods for detecting partisan gerrymandering are
narrowly tailored toward fully contested two-party
elections, and fail if there are more parties or if the
number of candidates per district varies. We pro-
pose a new method, applying nonparametric statis-
tical learning to detect anomalies in the relation be-
tween (aggregate) votes and (aggregate) seats. Un-
like in most of the existing methods, we propose
to learn the standard of fairness in districting from
empirical data rather than assume one a priori. Fi-
nally, we test the proposed methods against experi-
mental data as well as real-life data from 17 coun-
tries employing the plurality (FPTP) system.

1 Introduction
Most of the traditional methods developed for detecting ger-
rymandering in first-past-the-post electoral systems assume
that there are only political parties really contesting the elec-
tion, or, at least, that the party system is regular in the sense
that all parties field candidates in every district. This is cer-
tainly a very reasonable assumption in many cases: under a
well-known empirical regularity known as Durverger’s law
FPTP tends to be correlated with the emergence of two-party
systems. Moreover, many of the authors working on gerry-
mandering detection are motivated by U.S. legislative elec-
tions (state and federal), where the regular two-party pattern
of competition prevails. However, in many other systems us-
ing FPTP we discover significant deviations from such pat-
terns in the form of regional parties, strong independent can-
didates, minor parties that forgo campaigning in some dis-
tricts, etc. In the face of such deviations, many of the tradi-
tional methods fail completely. Our objective, therefore, is
to develop a method of detecting gerrymandering that can be
applied to such partially-contested multiparty election.

1.1 Contribution
Our main contribution consists of the development of a non-
parametric method for detecting gerrymandering in partially-

contested multiparty elections. By nonparametric we mean
that, unlike most of the traditional statistical methods, the
proposed method is free of assumptions about the probabil-
ity distribution from which observed data points are drawn or
the latent mechanism through which such data is generated.
Instead we use statistical learning to identify regularities on
the basis of the available empirical data.

By a partially-contested multiparty election we mean any
FPTP election where at least some candidates are affiliated
into one or more political parties (after all, if every district-
level election is completely independent and candidates can-
not be affiliated into blocks, the very concept of gerryman-
dering as traditionally defined is meaningless), but for every
party there is at most one affiliated candidate in every district
(so there is no intra-party competition). We treat independent
candidates as singleton parties.

In particular, we permit the following deviations from the
two-party competition pattern: (1) the number of parties can
differ from two, (2) the number of candidates within each dis-
trict can differ from two, (3) a party can run candidates in any
number of electoral districts, (4) the set of parties contesting
the election varies from one district to another.

Another area in which our approach differs from traditional
methods for detecting gerrymandering is that they have been
tailored towards testing a large ensemble of elections (not
necessarily from the same jurisdiction) rather than a single
election. In particular, the proposed methods, like all statisti-
cal learning methods, require the researcher who wants to use
them to have a large training set of elections that they believe
to be sufficiently similar insofar as the translation of votes
into seats is concerned. If there is a large ensemble of elec-
tions being tested, they might form such a training set itself.
There is no requirement that the training set and the tested
set be disjoint as long as we can assume that gerrymandering
is not ubiquitous and we are only concerned with assessing
individual test cases, since for each test case we can train the
model on the remainder of the ensemble.

1.2 Prior Work
Among the methods of detecting gerrymandering that fo-
cus on the political characteristics of the districting plan
(e.g., its impact on seats-votes translation or district-level
vote distribution) the earliest focused on measuring how ac-
tual elections results deviate from a theoretically or empiri-
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cally determined seats-votes curve [Kendall and Stuart, 1950;
March, 1957; Taagepera, 1973; Grofman, 1983; Browning
and King, 1987; Gilligan and Matsusaka, 1999]). There is
a consensus in the literature that a two-party seats-votes rela-
tion is usually described by a modified power law:

si
1− si

= βi

(
vi

1− vi

)ρ

, (1.1)

where si and vi are, respectively, seat- and vote-share of the
i-th party, βi is party-dependent, and ρ is a constant [Tufte,
1973; Grofman, 1983]. However, only few authors have con-
sidered multiparty elections [Taagepera, 1986; King, 1990;
Linzer, 2012], and their results are mostly heuristic.

The state-of-the-art approach to detecting gerrymandering
is the partisan symmetry method. The general concept was
first proposed by Niemi and Deegan [1978], who noted that
an election should not be regarded as gerrymandered if it de-
viates from a model seats-votes curve as long as the deviation
is the same for each party, i.e., each party has the same seats-
votes curve. The main challenge here lies in obtaining that
curve from a single realization. The original idea has been to
extrapolate by assuming a uniform partisan swing, i.e., that
as the aggregate vote share of a party changes, its district-
level vote shares increase or decrease uniformly and indepen-
dently of their original levels [Butler, 1947]. A more sophis-
ticated extrapolation method has been developed by Gelman
and King [1990a; 1990b; 1994]. Yet neither of these two
methods can account for multiple parties absent very restric-
tive (and unrealistic) assumptions.

The third approach is the efficiency gap method proposed
by McGhee [2014] and further developed in Stephanopou-
los and McGhee [2015]. It is based on the assumption that
in an unbiased election all contending parties should waste
the same number of votes. While prima facie attractive,
this assumption is actually highly problematic because it re-
quires the electoral system to match a very specific seats-
votes curve [McGann et al., 2015, p. 296], see also [Bernstein
and Duchin, 2017]. In this respect it represents a method-
ological step backwards, making it again impossible to dis-
tinguish asymmetry from responsiveness. More importantly
for us, the method fails to account for multiple parties.

Finally, there are several method designed to identify
anomalies in the vote distribution indicative of standard ger-
rymandering techniques like packing and cracking. These
include the mean-median difference test proposed by Mc-
Donald et al. [2011], which measures the skewness of the
vote distribution; the multimodality test put forward by Erik-
son [1972]; the declination coefficient introduced by Warring-
ton [2018] and measuring the change in the shape of the cu-
mulative distribution function of vote shares at 1/2; and the
lopsided winds method of testing whether the difference be-
tween the winners’ vote shares in districts won by the first
and the second party is statistically significant [Wang, 2016].
Again, virtually of all those methods assume a two-party sys-
tem. For instance, natural marginal vote share distributions in
multiparty systems (e.g., beta or log-normal distribution) are
necessarily skewed. Similar assumptions underlie the decli-
nation ratio and the lopsided wins test. Finally, the multi-
modality test assumes a constant number of competitors.

2 Preliminaries
Gerrymandering is usually defined as manipulation of elec-
toral district boundaries aimed at achieving a political benefit.
Hence, intentionality is inherent in the very concept. How-
ever, identical results can also arise non-intentionally, as geo-
graphic concentration of one party’s electorate in small areas
(major cities, regions) can produce similar effects to inten-
tional packing. We use the term ‘electoral bias’ to refer to
such ‘natural gerrymandering’.

Our basic idea is to treat gerrymandering and electoral bias
as statistical anomalies in the translation of votes into seats.
Identification of such anomalies requires a reference point,
either theoretical, such as a theoretical model of district-level
vote distribution, or empirical, such as a large set of other
elections that can be expected to have come from the same
statistical population. As the former approach is burdened
with the risk that the theoretical model deviates from the em-
pirical reality, in this paper we focus on the latter.

One major limitation of our method lies in its inability to
distinguish gerrymandering from natural electoral bias. This
limitation is shared, however, with virtually all methods in
which the evidence for gerrymandering is sought in analyzing
voting patterns. For many applications that may be enough,
since for the end users it might not matter whether the bias
in the electoral system is artificial or natural. If the distinc-
tion does matter, the proposed method can still be useful to
identify cases requiring more in-depth investigation.

There are three basic assumptions underlying our method.
One is that we have a training set of elections that come from
the same statistical population as the election we are studying.
Another one is that electoral bias is an exception rather than a
rule. Thus, we assume that a substantial majority of the train-
ing set elections are free from bias. The third assumption is
that while district-level results can be biased, aggregate elec-
toral results (e.g., vote shares) never are.

2.1 Notation
Let us introduce some basic notation to be used in this paper:

sequence For k ∈ N, let [k] = {1, . . . , k}.
unit simplex For m ∈ N+, we denote the unit simplex by

{x ∈ Rm
+ : ∥x∥1 = 1} by ∆m.

k-th largest / smallest coordinate For m ∈ N+, x ∈ Rm,
and k ∈ [m], we denote the (k)-th largest coordinate of
x by x↓

k, and the (k)-th smallest one by x↑
k.

set of districts We denote the set of districts by D := [c].
set of parties We denote the set of parties by P := [m].
set of contested districts For i ∈ P , we denote the set of

districts in which the i-th party runs a candidate by Di.
set of contesting parties For k ∈ D, we denote the set of

parties that run a candidate in the k-th district by Pk.
district size For k ∈ D, we denote the number of voters cast

in the k-th district by wk.
district-level vote share For i ∈ P and k ∈ D, we denote

the district-level vote share of the i-th party’s candidate
in the k-th district, i.e., their number of votes divided by
wk, by vki . If there is no candidate, we assume vki = 0.
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district-level seat share For i ∈ P and k ∈ D, let ski equal
1 for the winning candidate, and 0 for others.

aggregate vote share For i ∈ P , we denote the aggregate
vote share of the i-th party, i.e., the sum of all votes cast
for that party’s candidates,

∑
k∈D vki wk, divided by the

number of all votes cast in the districts contested by that
party,

∑
k∈Di

wk, by vi. Note that vi differs from mean
vote share over districts by being weighted by wk.

aggregate seat share Let si :=
(∑

k∈Di
ski
)
/|Di| be the

aggregate seat share of the i-th party, i ∈ P .

2.2 Seats-Votes Functions
As noted above, we define electoral bias (and thus gerryman-
dering) in terms of the relations between votes to seats. Math-
ematically, such relation is represented by a seats-votes func-
tion, i.e., a measure-valued function that maps an aggregate
vote share to a probability measure on the domain of possible
aggregate seat shares:

Definition 2.1 (Seats-Votes Function). A seats-votes func-
tion1is an increasing function f : [0, 1] −→ P([0, 1]),
where P(X) denotes the set of Borel probability measures
on some measurable set X , and monotonicity is defined as
by Burkill [1984] in terms of the partial order on P([0, 1])
induced by the stochastic ordering of random variables.

Definition 2.2 (Seats-Votes Curve). For a fixed seats-votes
function, a seats-votes curve is a function s : [0, 1] −→ [0, 1]
that maps an aggregate vote share to the expectation of its
image under that seats-votes function.

Why do we define seats-votes relations in probabilistic
rather than deterministic terms? The answer becomes clear
once we note that in plurality voting systems with districts
the number of seats obtained by a party depends directly not
on its aggregate vote share, but on district vote shares of itself
and of its competitors (or, to be more precise, on the first order
statistic of the latter, i.e., the district vote share of the largest
competitor in a given district). Hence, except for the trivial
case of a single district and two parties, aggregate vote share
carries insufficient information to uniquely determine the re-
sulting seat share. Thus, speaking of a seats-votes function
only makes sense if we treat the two undetermined factors –
allocation of the party vote across districts and division of the
remaining votes among competitors – as random.
Remark 2.1. Consider seats-votes curves in multi-party elec-
tions. If we assume that they are anonymous (i.e., identical
for all parties), non-decreasing, and surjective, perfect pro-
portionality (si = vi for each i ∈ P ) is the only one that does
not depend on the distribution of competitors’ votes [Boratyn
et al., 2022, Theorem 1].

3 Overview of the Method
Our basic idea is to detect electoral bias by comparing ob-
served seat shares with the estimated value of the seats-votes

1It would be more natural to speak of votes-seats functions, since
vote shares are clearly arguments and seat shares are clearly outputs,
but the term seats-votes function is already widely used in electoral
studies literature.

function for a given party at its observed vote share. Seat
share values corresponding to the tails of the seat distribution
are then considered indicative of bias. However, gerryman-
dering arises from the manipulation of district boundaries,
and is thus exclusively associated with the first source of seat
share randomness. Thus, we actually need to compare the
observed seat-share with the value of the seats-votes function
conditional on the competition pattern, i.e., the number of
competitors and the distribution of their votes [Calvo, 2009;
Manow, 2011; Calvo and Rodden, 2015].

3.1 Seat Thresholds
It would be convenient if we were able to describe the compe-
tition pattern by a single numerical parameter. Our objective
here is to find a measure of the ‘difficulty’ of winning a seat
given the number of competitors and the distribution of their
vote shares (renormalized so as to sum to 1). A natural choice
would be the seat threshold:
Definition 3.1 (Seat Threshold). Fix i ∈ [m], and assume
that renormalized vote shares of the competitors of the i-th
candidate equal some random variable Z distributed accord-
ing to some probability measure on ∆m,−i. A seat threshold
of the i-th candidate is such ti ∈ [1/m, 1/2] that Pr(Si =
1|vi) > 1/2 for every vi > ti, i.e., the probability that the
i-th candidate wins a seat with vote share equal vi exceeds
1/2.
Observation 3.1. It is easy to see that the probability of win-
ning a seat, Pr(Si = 1|v), equals 1−FZ↓

1
(v/(1−v)), where

FZ↓
1

is the cumulative distribution function of the renormal-
ized vote share of the largest competitor.

For practical applications, we need to approximate the seat
threshold in cases where we do not have any knowledge of the
distribution of the competitors’ vote shares, but only a single
realization thereof. We therefore need a statistic that is both
a stable estimator of the distribution parameters and highly
correlated with the value of the largest order statistic. We
posit that the best candidates for such statistics are measures
of vote diversity among competitors, and use a Monte Carlo
simulation to test a number of such measures.
Observation 3.2. Let α ∼ Gamma(1, 1), and let V ∼
Dir({α}m), where m = 3, . . . , 12 and Dir(α) is the Dirich-
let distribution with parameter vector α. For a sample of 216
realizations of V we have calculated Spearman’s correlation
coefficients [Spearman, 1904] for:

1. α,
2. V↓

1 , i.e., maximum of the coordinates,

3. V↑
1 , i.e., minimum of the coordinates,

4. median coordinate Vmed,
5. Shannon entropy [Shannon, 1948],

H(V) := −
∑m

i=1
Vi log Vi,

6. Herfindahl–Hirschman–Simpson index [Hirschman,
1945; Simpson, 1949; Herfindahl, 1950],

Φ(V) :=
∑m

i=1
V 2
i ,
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7. Gini coefficient of the coordinates,
8. Bhattacharyya angle [Bhattacharyya, 1943] between V

and the barycenter of the simplex,

B(V) := arccos
∑m

i=1

√
Vi/m.

The results for m = 3 are given in Table 1, while those for
m = 6 and 12 – in the full version of the paper [Słomczyński
et al., 2024].

α V ↓
1 V ↑

1 Vmed H(V) Φ(V) Gini B(V)

α 1.0 -.51 .58 .25 .58 -.56 -.57 -.59
V ↓
1 -.51 1.0 -.81 -.73 -.94 .97 .97 .92

V ↑
1 .58 -.81 1.0 .23 .95 -.92 -.93 -.97

Vmed .25 -.73 .23 1.0 .49 -.56 -.55 -.44
H(V) .58 -.94 .95 .49 1.0 -.99 -.99 -.99
Φ(V) -.56 .97 -.92 -.56 -.99 1.0 .99 .99
Gini -.57 .97 -.93 -.55 -.99 .99 1.0 .99
B(V) -.59 .92 -.97 -.44 -.99 .99 .99 1.0

Table 1: Correlation Matrix for m = 3.

The Herfindahl–Hirschman–Simpson index is consistently
the one that best correlates with the maximal coordinate while
also being a reasonably good estimate of the distribution pa-
rameters. Accordingly, in our procedure for estimating the
seat threshold we use its monotonic transform, known as
the effective number of competitors [Laakso and Taagepera,
1979; Taagepera and Grofman, 1981]:

Definition 3.2 (Effective Number of Competitors). For i ∈
[m] and k ∈ Di the effective number of competitors of the
i-th candidate in the k-th district equals:

φk
i :=

 m∑
j=1,j ̸=i

z2j

−1

, (3.1)

where z ∈ ∆m,−i is a vector of the vote shares of that candi-
date’s competitors normalized so that

∑m
j=1,j ̸=i zj = 1.

We shall see that the vote share and the number and effec-
tive number of competitors enable us to accurately classify
candidates as winning and losing (see Figure 1 and Table 2).

Observation 3.3. Clearly, with three candidates, i.e., two
competitors, the classifier is exact (modulo ties), as the ef-
fective number of competitors uniquely determines the share
of the larger one in their aggregate vote share:

max{zj1 , zj2} =
1

2

(
1 +

√
2

φi
− 1

)
. (3.2)

Then the decision boundary is the set of points satisfying:

φ =
1− 2v + v2

1− 4vi + 5v2
. (3.3)

For the case of more than three candidates, there is no exact
classifier, whence we use an approximate one:

Model 3.1 (Decision Boundary for m > 3). For m > 3, the
decision boundary is determined on the basis of the data us-
ing a support vector machine-based classifier [Boser et al.,
1992; Cortes and Vapnik, 1995] with a third-order polyno-
mial kernel, and then approximated by a strictly decreasing
B-spline of degree 3, with boundary nodes at 1/m and 1/2
and interior nodes fitted using cross-validation.

A definition of the effective seat threshold follows from the
one of the decision boundary:
Definition 3.3 (Effective Seat Threshold). The effective seat
threshold of the i-th party in the k-th district, tki , is the value
of the v coordinate of the decision boundary at the point
where m = |Pk| and ϕ = ϕk

i .
Definition 3.4 (Effective Seat Threshold Classifier). An ef-
fective seat threshold classifier is a function s : [0, 1] × N ×
[1,∞) → B that maps a triple (v,m,φ) to 0 iff the probabil-
ity of winning with vote share v, m − 1 competitors, and φ
effective competitors is below 1/2.

m R m R m R

3 .0035 7 .0136 11 .0142
4 .0137 8 .0068 12 .0186
5 .0152 9 .0073 13 .0152
6 .0137 10 .0067 14 .0171

Table 2: Effective seat threshold classifier error, R.

v (vote share)

φ
(e

ff
ec

tiv
e

nu
m

be
ro

fc
om

pe
tit

or
s)

Figure 1: Effective seat thresholds for m = 3, 4, 5, 6. Blue points
indicate successful candidates, while red points – unsuccessful can-
didates.

By averaging effective seat thresholds over districts, we fi-
nally arrive at our measure of the difficulty of winning a seat:
Definition 3.5 (Mean Effective Seat Threshold). Mean effec-
tive seat threshold, ti, is given by ti := ⟨tki ⟩k∈Di .

3.2 Estimating Seats-Votes Functions
A natural approach to estimating seats-votes functions would
be to start with some probabilistic model of inter-party vote
distribution, preferably derived axiomatically from first prin-
ciples, then use it to calculate the seat threshold, and use a
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probabilistic model of inter-district vote distribution to calcu-
late the probability of district vote share exceeding the seat
threshold. Finally, either by convolving binomial distribu-
tions (for small values of c) or by the central limit theorem
(for large values of c) we would obtain the seat distribution.

Unfortunately, any approach based on a theoretical seats-
votes function has an unavoidable weakness: a systematic de-
viation from the expectation of such a function might just as
easily arise from electoral bias as from incongruities between
the theoretical distributional assumptions and the empirical
reality. To avoid this issue we derive our model seats-votes
function solely from the reference election dataset with min-
imal theoretical assumptions2 by using the kernel regression
method [Nadaraya, 1965; Watson, 1964]. Its general idea is
to estimate the conditional expectation of a random variable
at a point in the condition space by averaging its realizations
at neighboring points with distance-decreasing weights.

Model 3.2 (Locally-Constant Kernel Regression). Let S ∈ R
be a random response variable, and let X ∈ F, where F is
some linear feature space and D := dimF, be a vector of
predictor variables. Assume we have a vector of N realiza-
tions of S, s, and an N×dimF matrix of realizations of X, x.
We denote its j-th row by xj . Then the locally-linear kernel
regression estimate of the conditional expectation of S given
a vector of predictors x0 ∈ F is given by:

E(S|x0) =

∑N
j=1 sjK

(
(xj − x0)hx0,xj

)∑N
j=1 K

(
(xj − x0)hx0,xj

) , (3.4)

where N is the number of observations (in our case, sum of
the number of parties over all elections in our set of elec-
tions), K is a second-order kernel, and hx0,xj

∈ RD
+ is a

bandwidth parameter for the pair (x0,xj). In other words,
we average the values of s over all parties with weights de-
termined by the value of the kernel at (xj − x0)hx0,xj

.

The above general model can be used with different kernel
and bandwidth definitions. We use the following ones:

Definition 3.6 (Kernel). Let K be the D-variate Gaussian
kernel:

K(x) := (2π)−k/2 exp

(
−1

2
∥x∥2

)
(3.5)

Definition 3.7 (Multivariate Adaptive Nearest-Neighbor
Bandwidth [Breiman et al., 1977; Abramson, 1982; Silver-
man, 1986; Schucany, 1995]). For x0,xj ∈ F, the i-th co-
ordinate of the multivariate adaptive nearest-neighbor band-
width, i = 1, . . . , D, is given by:

(hx0,xj )i = h0,i|x0,i − xNi
k(xj),i|, (3.6)

where N i
k(x) is the index of the k-th nearest neighbor of x

along the i-th dimension of the feature space under the abso-
lute difference metric, and h0 ∈ RD

+ is a scaling vector.

The choice of a Gaussian kernel is a standard one, and the
use of adaptive bandwidth is motivated by nonuniformities in
data density in both feature and response domains.

2In particular, we assume the seat shares to be distributed accord-
ing to some absolutely continuous probability measure on [0, 1].

We still need to choose two hyperparameters of the model:
The scaling vector h0 and the nearest-neighbor parameter
k. This we do using leave-one-out cross-validation [Li and
Racine, 2004; Härdle et al., 1988] with the objective func-
tion defined as the Kullback-Leibler [Kullback and Leibler,
1951] divergence between the predicted and actual value vec-
tors, together with an optimization algorithm by Hurvich et
al. [1998] which penalizes high-variance bandwidths (with
variance measured as the trace of the parameter matrix) sim-
ilarly to the Akaike information criterion [Akaike, 1974].

3.3 Deviation from the Seats-Votes Function
By this point, we have estimated a party’s expected seat share
given its aggregate vote share and the competition patterns
in the districts it contests. But what we actually need is a
measure of how much the actual seat share deviates from that
expectation. A natural choice would be the difference of the
two. It is, however, inappropriate, as seat shares only assume
values within a bounded interval [0, 1] and there is no reason
to expect seat share distributions to be even approximately
symmetric around the mean.

We therefore use another measure of deviation: the proba-
bility that a seat share deviating from the median more than
the empirical seat share could have occurred randomly. Note
how this quantity is analogous to the p-value used in statisti-
cal hypothesis testing.
Definition 3.8. Electoral Bias p-Value. Let si be an empir-
ical seat share and let µ be the conditional distribution of
the aggregate seat share given the empirical aggregate vote
share and the empirical mean effective seat threshold. Then
the electoral bias p-value is given by:

πi := min{µ((0, si)), µ((si, 1))} = min{F (si), 1−F (si)},

where F is the cumulative distribution function of µ.

We thus need not a regression estimator, but a conditional
cumulative distribution function estimator. One approach
would be to estimate the conditional density of Si [Rosen-
blatt, 1956; Parzen, 1962] and integrate it numerically. This
method, however, is prone to potential numerical errors. We
therefore use another approach, relying on the fact that a con-
ditional cumulative distribution function is defined in terms of
the conditional expectation, and therefore its estimation can
be treated as a special case of the kernel regression problem.

There remains one final problem: When comparing parties
contesting different number of districts, we need an adjust-
ment for the fact that the probability of getting an extreme
value depends on that number (decreasing exponentially as
the number of contested districts increases). To avoid that
problem, the kernel model for parties with exactly k districts,
k ∈ [c], is trained only on parties with as many or fewer con-
tested districts. If the distribution of the number of contested
districts has a tail, it is optimal to adopt a cutoff point k0 such
that for the set of parties contesting k0 or more districts each
party is compared with a model trained on that set.

3.4 Aggregation
The final step is the aggregation of party-level indices into a
single election-level index of electoral bias. We would like
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our aggregation function to: (1) assign greater weight to ma-
jor parties than to minor parties; (2) be sensitive to very low
p-values and less sensitive to even substantial differences in
large p-values; and (3) be comparable among elections, i.e.,
independent of the number of parties and districts. We use
the weighted geometric mean:

π := exp

(
m∑
i=1

wi log πi

)
, (3.7)

where wi is the number of votes cast for the i-th party divided
by the number of all valid votes cast in the election (including
those cast in districts not contested by the i-th party).

4 Experimental Test
Testing our proposed method is nontrivial, as we do not have a
reliable empirical benchmark: while for two-party elections,
such as U.S. congressional elections, there is a wealth of al-
ternative gerrymandering indices, this is emphatically not the
case for multiparty elections. Nor there are other data sources
that would enable us to label some multiparty elections as
gerrymandered apart from anecdotal evidence in the literature
which is in most cases either methodologically unreliable, be-
ing based on highly circumstantial and indirect evidence, or
limited to the most extreme of cases.

We address this problem by testing our method on a large
sample of simulated elections, consisting both of ‘fair’ dis-
tricting plans, drawn at random with a distribution intended to
approximate the uniform distribution on the set of all admis-
sible plans, and of ‘unfair’ plans generated by an optimaliza-
tion algorithm designed to maximize one party’s vote share.
To ensure that the simulated elections resemble real-life ones,
we use empirical data on voting patterns and electoral geog-
raphy from France, Germany, and Poland.

4.1 Experimental Setup
Our baseline dataset consists of data from 6 French legisla-
tive elections (1993–2017), 7 German legislative elections
(1998–2021), 9 Polish legislative elections (1991–2019), and
one municipal election in a major European city. For each
election, our input data consists of a neighborhood graph of
territorial units (over 35,000 communes / 1,800 cantons in the
French case, nearly 300 Wahlkreise in the German case, close
to 2,500 municipalities in the Polish case, and 456 in the mu-
nicipal case), where each unit k is associated with a tuple
(vk, wk), vk ∈ ∆m is a vote share vector, and wk ∈ R+ is a
population weight.
Remark 4.1. In real life, there can be significant deviations in
unit population, but because we are unable to subdivide the
largest units (lacking lower-granularity data), we ignore those
deviations, instead assigning population numbers to units by
transforming their empirical distribution to a lognormal dis-
tribution with parameters µ = 0 and σ = 1.

We use algorithms described in the following two subsec-
tions to draw 192 fair districting plans, 64 unfair plans drawn
to advantage the largest party, and 64 unfair plans drawn to
advantage the second largest party. The output of each dis-
tricting algorithm consists of a districting plan, i.e., a parti-
tion of the neighborhood graph into connected components

(districts) of approximately equal population weight (we per-
mit 20% deviation from the mean). We fix the number of
districts to be created at 80 in the French and Polish case, and
50 in the German and municipal cases.

4.2 Algorithms for Generating Fair Plans
To generate fair districting plans we use three Monte Carlo
algorithms. The Monte Carlo algorithms are: the Sequen-
tial Monte Carlo algorithm by McCartan and Imai [2023],
based on drawing random spanning trees and then semi-
randomly eliminating edges to partition the graph; the Merge-
Split Markov Chain Monte Carlo algorithm by Autrey et
al. [2019], based on randomly recombining and repartition-
ing spanning trees; and the FLIP MCMC algorithm by Fi-
field et al. [2015; 2020], using the Swendsen-Wang algo-
rithm [Swendsen and Wang, 1987], as modified by Barbu and
Zhu [2005], to randomly walk the graph of solutions.3 For
all three algorithms the stationary distribution is the uniform
distribution on the set of admissible partitions. For all three
Monte Carlo algorithms, we generate the starting partition us-
ing a heuristic Random Seed Growing algorithm by Chen and
Rodden [2013; 2015].

4.3 Algorithm for Generating Unfair Plans
To generate unfair districting plans we used an integer lin-
ear programming algorithm introduced in [Flis et al., 2023,
Ch. 3.7]. We consider all connected components of the input
graph, K1, . . . ,Kd, satisfying∣∣∣∣∣∣

(
c
∑
k∈Kj

wk

)/( c∑
k=1

wk

)∣∣∣∣∣∣ ∈
(
1− 1

5
, 1 +

1

5

)
(4.1)

for every j ∈ [d], and solve the following optimization prob-
lem for the party to be advantaged, i ∈ [m]:
Problem 4.1. For

ξ ∈ Bd

maximize
d∑

j=1

ξjsi

∑
k∈Kj

vkwk

 (4.2)

subject to ∑d

j=1
ξj = c, (4.3)∑d

j=1
1Kj

(k) = 1 for every k ∈ [c], (4.4)

where si : ∆m −→ B equals 1 iff the i-th coordinate of the
argument is the largest one.

In practice, it is infeasible to enumerate all possible dis-
tricts with hundreds of precincts. We therefore first artificially
combine leaf nodes, small precincts, and similar precincts un-
til the number of precincts is reduced below 320. Only then

3This algorithm has a better rate of convergence than classical
Metropolis-Hastings, but obtaining satisfactory performance still re-
quired additional heuristics like simulated annealing [Marinari and
Parisi, 1992; Geyer and Thompson, 1995].
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we run the ILP solver and recover the full solution by replac-
ing combined precincts with their original elements. We then
run a local neighborhood search to find a local maximum. By
randomizing the combination process, we are able to obtain
diverse gerrymandering plans of different quality (in terms of
advantage to the favored party).

4.4 Results
On the experimental dataset, our method achieves precision
of .896 and recall of .912.

5 Empirical Test
We have tested our method on data from four sets of elections:

1. D14, 2014 Polish municipal elections (2412 instances),
2. D18, 2018 Polish municipal elections (2145 instances),
3. DU , U.S. House elections, 1900-2022 (2848 instances),
4. DN , national legislative elections from 15 countries

(206 instances) [Kollman et al., 2023].
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Figure 2: Nonparametric seats-votes curves for the four training sets.

Finding an appropriate baseline for comparison, however,
is quite difficult. Even if we were able to easily model the
expected scale of random electoral bias, it would still be im-
possible to determine whether deviation from it is caused
by the deficiencies of our method or by actual instances
of gerrymandering. Hence, a more appropriate test would
be to analyze whether our measure agrees with other meth-
ods for detecting gerrymandering used in the literature. In
[Stolicki, 2024], one of us tests our method against eight
other ones, including partisan bias (two variants), efficiency
gap, mean-median difference, and declination coefficient, as
well as methods based on express distributional assumptions
[Stolicki et al., 2019], Monte Carlo simulations [McCartan
and Imai, 2023], and district geometry [Niemi et al., 1990],
using data from the 2022 congressional elections. The kernel
method exhibits the highest Pearson’s correlation coefficient
with the normalized aggregate out of all nine, 0.623, suggest-
ing that it best captures the core concept of gerrymandering.

6 Conclusions
We introduce a new method for detecting gerrymandering
solely on the basis of aggregate seat and vote counts. It has
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Figure 3: The expected (left) and empirical (right) seat shares as
functions of the vote share and the effective seat threshold. From
the top: PL2014, PL2018, international, and U.S. elections.

two significant advantages over existing methods: freedom
from restrictive theoretical assumptions regarding preference
distribution, voter clustering patterns, or seats-votes relations,
as the standard of electoral fairness is not derived from such
assumptions, but learned from available empirical data; and
suitability for use in multi-party elections, including those
where independent candidates play a significant role and
where different parties contest different districts.

We have tested our method primarily on the basis of exper-
imental (simulation) data, where it performed very well. We
have also demonstrated that the application of our method to
real-life data is feasible, and that for U.S. elections leads to
results that are in agreement with other existing methods.

Future work will focus primarily on developing better
benchmarks, testing the method against more simulations
based on real-life data as well as purely random elections. We
will also seek to explain disagreements between the proposed
method and other methods found in the literature.
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