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Stable and tempered stable distributions and processes: an

overview toward trajectory simulation

Jalal Taher ∗

Abstract

Stable distributions are a celebrated class of probability laws used in various fields.
The α-stable process, and its exponentially tempered counterpart, the Classical Tempered
Stable (CTS) process, are also prominent examples of Lévy processes. Simulating these
processes is critical for many applications, yet it remains computationally challenging, due
to their infinite jump activity. This survey provides an overview of the key properties of
these objects offering a roadmap for practitioners. The first part is a review of the stabil-
ity property, sampling algorithms are provided along with numerical illustrations. Then
CTS processes are presented, with the Baeumer-Meerschaert algorithm [3] for increment
simulation, and a computational analysis is provided with numerical illustrations across
different time scales.

Keywords: Stable distribution; Tempered stable distribution; Lévy processes; Process sim-
ulation.

Introduction

Among the many examples of Lévy processes, the α-stable process stands out as a central
example of processes with an infinite jump activity. Understanding these processes reduces to
the study of stable distributions, a topic extensively covered in the literature. Stability was
first characterized in 1925 by Levy in [35] while exploring the properties of the sum of i.i.d.
random variables. Gnedenko and Kolmogorov later emphasized the potential applications of
stable distributions in [21], stating that it deserves ”the most serious attention. It is probable
that the scope of applied problems in which they play an essential role will become in due
course rather wide”.

There are many reasons why stable distribution and processes are attractive for appli-
cations. They encompass a wide range of behaviors; e.g. they include the Cauchy and the
Gaussian distributions as special cases. They also arise in the generalized Central Limit Theo-
rem as the only limit of normalized sums of i.i.d. random variables. Additionally, their heavy
tails align with studies suggesting the importance of extreme events, providing an alternative
to Gaussian models. Therefore, stable distributions and processes have found applications
across various fields, including behavior studies [55, 48, 5], signal processing [44], computer
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science [54]. It also holds a particular place in finance since Mandelbrot in [38] discarded the
historical Gaussian assumptions for asset returns and inaugurated the use of stable distribu-
tions. It has been central in pricing options [30] and modeling the price of commodities (e.g.
electricity [58], agricultural [28]). There also has been a renewed interest in heavy-tail distri-
butions in more recent topics in deep-learning [24, 29]. For further details on applications,
refer to [43, 60, 11, 47].

However, the infinite variance of non-Gaussian stable distributions (see (8)) and the in-
adequacy of this assumption in various models (see [47]), led to considering alternative dis-
tributions. Methods to circumvent this issue have historically originated in physics, trying
to maintain a stable-like distribution in some central region while lightening the tails so the
variance is finite. Mantegna and Stanley [39] introduced the truncated Lévy flight, cutting
the density function f of a stable distribution; fT pxq9fpxq1|x|ďT . While this modification
yields finite moments, and resembles stable distribution for large T , it looses the infinite di-
visibility property (see Remark 2) which is a central tool for computations. Koponen in [32]
solved this issue with a smooth exponential cutoff resulting in the Classical Tempered Stable
(CTS) distribution. They have been discovered multiple times resulting in various termi-
nology; smoothly truncated Lévy flight (STLF) [32, 22], Tempered stable (TS) [11, 34, 43],
KoBol in [4], CGMY (for the symmetric version) [8], exponentially tilted stable distribu-
tions in the sampling literature [27, 13]. Notable limit cases include the bilateral Gamma
[33] and the Variance Gamma [36] distributions. In this article, we adopt the term Classical
Tempered Stable (CTS) following [47]. Finally, in [51], Rosinski generalized the CTS distri-
bution with different tempering functions and in higher dimensions; these are referred to as
Tempered Stable distribution. The CTS discussed in this article can be seen as a specific
subclass in dimension d “ 1 with exponential tempering function (see Chapter 6 of [22]). The
CTS distributions and processes are also widely applied in fields including actuarial science
[23, 25] cellular biology [46], computer science [6]. But it has been extended and considerably
developed in financial applications (see [22, 47] for an overview).

Simulating trajectories of stable and CTS processes is crucial for their use in applications.
These processes exemplify infinite activity Lévy processes and are used in many inference
models [59, 41]. They also serve as numerical validation proxies of statistical methods [18, 37,
15]. In practice, once the simulation of stable and CTS distribution is achieved, a trajectory
approximation of the corresponding process can be derived thanks to the independent and
stationary increments property. This incorporates a temporal aspect to the problem through
the sampling rate ∆ ą 0 which can impact the computational efficiency of algorithms. For the
stable distributions, direct sampling algorithms relating to the work of Chambers, Mallows,
Collin, and Stuck [9] are available and commonly used in practice [11, 43]. Thanks to the
selfsimilarity of α-stable process (see 1.2), the sampling of X∆ can be reduced to that of X1,
hence the computational cost of trajectory simulation remains consistent across time scales:
it is as costly in high (large ∆) of low (small ∆) frequency (see 1.3.1).

For CTS distribution, simulation is more intricate. Lévy process methods include Com-
pound Poisson approximation complemented with Gaussian approximation of the small jumps
(see Section 6.3 of [11], [2, 7] for theoretical justifications, Section 4 of [31] for computational
details), shot noise series representation (see [49, 31] and Section 8.3.2 of [47]), subordination
in the symmetrical case (see Proposition 4.1 of [11] and Section 8.5.1 of [47]). We refer to
the textbook by Asmussen and Glynn [1] for a general overview of Lévy process simulation.
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Alternatively, rejection-based sampling algorithms can be derived from specific properties of
CTS [12, 3, 14, 27]. Kawai and Masuda [31] provide a comprehensive comparison of these
methods, highlighting the Baeumer-Meerschaert algorithm [3] as the most efficient and prac-
tical to tune for small time increments. It is widely used for its simplicity in recent work
involving CTS distributions as in [19, 10].

This article aims to provide hands-on algorithms for simulating increments and trajectories
of both α-stable and CTS Lévy processes. It also serves as a road map for practitioners
to navigate the interlaced concepts and algorithms provided for the CTS processes and its
avatars (CGMY, Kobol, Smoothed Levy flight...). It is structured as follows. The first part is
a review of stable distributions, presenting the equivalent definitions of stability (Theorem 1).
Selected properties are outlined with a view toward simulation. Finally, sampling algorithms
and numerical illustration are provided in section 1.3.1. The second part focuses on the CTS
process detailing the Baeumer-Meerschaert algorithm in the bilateral case and discussing
computational aspects with illustrative examples.

Notations: For X a random variable, we denote its characteristic function by ϕX , where
ϕXpuq “ EpeiuXq for u P R. If it law PX is absolutely continuous with respect to the Lebesgue

measure, we denote its density function by fX . The notation X
d
“ Y signifies that random

variables X and Y have the same distribution. The upper incomplete Gamma function is
defined for x ě 0, s ą 0 by Γps, xq “

ş8

x e´xxs´1dx (when x ą 0 it can be extended to an
entire function).

1 Stable distributions and α-stable Lévy processes: an overview

1.1 The stability property

Four equivalent definitions of stability are presented, each shedding light on a distinct property
of stable distributions. The term ’stable’ initially refers to sum stable as random variables
that keep the same shape under summation. Linearly combining two i.i.d. stable variables
corresponds to the same distribution as an affine transformation of one of them (1) and so
is an n´sum (2). An equivalent approach to stable distributions comes through normalized
sums. They constitute the unique limits of normalized sums for i.i.d. random variables
pXiqi; this corresponds to the Generalized Central Limit Theorem, as outlined in (3). If
Xi has a finite variance, the limit distribution is Gaussian and the classical Central Limit
Theorem is recovered. If the variance is infinite, the only limits are in the class of stable
distributions, giving a perspective on stability as a generalization of Gaussianity. Finally,
stable distributions are within the rich class of infinitely divisible random variables (see [53]
for a detailed presentation on the topic), leading to closed formulas of their characteristic
function in (4). All equivalent definitions are summarized in the following Theorem.

Theorem 1. A random variable X is said to have a stable distribution if one of the equivalent
following properties is met.

• Sum stability for linear combination. For any a, b ą 0 there exist two constants
c ą 0 and d P R such that

aX1 ` bX2
d
“ cX ` d, (1)
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where X1 and X2 are independent copies of X.

• Sum stability for n terms sum. For any n P N such that n ě 2, there exist two
constants cn ą 0 and dn P R such that

X1 ` X2 ` ¨ ` Xn
d
“ cnX ` dn, (2)

where X1, X2, ¨ ¨ ¨ , Xn are independent copies of X and for all n P N there exists α P

p0, 2s called the stability index such that cn “ n1{α.

• General Central Limit Theorem. There exist Y1, ¨ ¨ ¨ , Yn i.i.d. random variables
and two sequences panqnPN, pbnqnPN, where @n P N, an ą 0 and bn P R such that

an

˜

n
ÿ

i“1

Yi

¸

´ bn
d

Ñ X, (3)

when n Ñ `8

• Stable characteristic function. There exist 0 ă α ď 2, σ ě 0, β P r´1, 1s and δ P R
such that the characteristic function ϕX of X is given for all u P R by

ϕXpuq “

#

exp
`

´σα|u|α
`

1 ´ iβsignpuq tan
`

πα
2

˘˘

` iδu
˘

if α ‰ 1

exp
`

´σ|u|p1 ` iβ 2
πsignpuq logp|u|qq ` iδu

˘

if α “ 1.
(4)

Remark 1. The closed formula (4) yields the fact that stable distributions are a parametric
class of distributions. They are characterized by four parameters.

• The stability index α P p0, 2s; it affects the shape of the distribution and its tails (see
Figure 1), e.g. α “ 1 corresponds to a Cauchy distribution, α “ 2 to a Gaussian
distribution

• The skewness parameter β P r´1, 1s; the distribution is said to be totally positively
(negatively) skewed if β “ 1 (β “ ´1) it also affects the shape of the distribution (see
Figure 3).

• The scale parameter σ ą 0; which is not the standard deviation of non-Gaussian stable
distributions as the variance is infinite when α P p0, 2q (see (8)) (see figure 2).

• The location parameter δ ą 0; it is not the mean (see (8)) but has a drifting effect on
the distribution (see Figure 4).

Notation: In the following a stable distribution will be denoted by Sαpσ, β, δq which corre-
sponds to the standard notation used in [52]. In the literature, several other parametrizations
have been used, which might create confusion. This issue is discussed in [26] and described
as a ’comedy of errors’. The notation used here corresponds to the 1´parametrization in [43]
and to the parametrization A in [60]. See Table in [43] for an exhaustive presentation of the
different parametrizations of stable distributions.
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Remark 2. ( Infinite divisibility). A random variable X is infinitely divisible if for all n ě 2

there exist Y
pnq

1 , ¨ ¨ ¨Y
pnq
n independent random variables such that X

d
“ Y

pnq

1 ` ¨ ¨ ¨ ` Y
pnq
n (e.g.

Definition 3.2 in [11]). Thanks to the Lévy-Khintchine Theorem (Theorem 3.2 in [11]), the
characteristic function of infinitely divisible random variables can be expressed using generic
integral terms. They rely on the Lévy triplet pb, A, νq where A ě 0, c P R and ν is a σ´finite
measure satisfying

ş

Rpx2^1qνpdxq ă 8. For u P R the characteristic function of any infinitely
divisible random variable is given by

ϕXpuq “ exp

ˆ

iuc ´
σ2

2
u2 `

ż

R
peiux ´ 1 ´ iux1r´1,1sqνpdxq

˙

. (5)

Let X be a stable distribution. It follows from (2) that for all n ě 2 there exist cn ą 0 and

dn P R such that X1 ` ¨ ¨ ¨ `Xn
d
“ cnX ` dn. Choosing Y

pnq

i “ 1
cn

`

Xi ´ dn
n

˘

for i P t1, ¨ ¨ ¨ , nu,
ensures that X is infinitely divisible. For stable distributions, the Lévy measure is absolutely
continuous with respect to the Lebesgue measure and takes the following form (see [21, 53])

νpdxq

dx
“

P

x1`α
1xą0 `

Q

|x|1`α
1xă0, (6)

where P,Q ě 0 and P ` Q ą 0. If α “ 2 the Lévy measure ν is null and X is a rescaled
Gaussian random variable.

Sketch of the proof of Theorem 1. One can show that (1),(3) and (4) are respectively equiva-
lent to (2). For further details, we refer to [17, 21, 43].

• ((1) ðñ (2)). The direct implication is achieved by induction. The converse ((2)
ùñ (1)) leverages the fact that cn “ n1{α (see Theorem 1 in VI.1.1 of [17]). For
simplicity, we assume that X is strictly stable (i.e. dn “ 0). If Sn “

řn
i“1Xi then by

regrouping the terms we derive that Sn`m “ Sn ` pSn`m ´ Snq. Since Sn`m “ cm`nX,
by independence we get that

pn ` mq1{αX
d
“ n1{αX1 ` m1{αX2.

This can be extended by replacing n and m, with rational numbers and subsequently
with real numbers using a continuity argument. (see [17] for more details)

• ((3) ðñ (2)). The implication (2) ùñ (3) is straightforward taking an “ n1{α and
bn “ dn

an
. The conserve follows as a consequence of the Convergence of Type Theorem

(see Theorem 3.11 in [43]).

• ((4) ðñ (2)). Assuming that X satisfies (4), then it can be shown that (2) holds with
cn “ n1{α and dn “ pn ´ n1{αqδ. The converse relies on the infinite divisibility of X.
The closed formulas for characteristic function are achieved using the Lévy Khintchine
formula (5), the Lévy measure expression (6) along with the complex integrals in Lemma
14.11 of [53].
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General distributional properties

In this section, we present some important properties of stable distributions. First, the
Sαpσ, β, δq parametrization is endowed with simple formulas when rescaling and shifting allow-
ing major simplifications when it comes to simulations (Proposition 1). Moreover, asymptotic
estimates of the tail behavior of stable distribution (Proposition 2) emphasize their utility as
proxies for heavy-tailed distributions, while also inducing infinite variance as a counterpart
(8). An extensive presentation of the many other properties of stable distributions can be
found in the following monographs [52, 43, 53, 60] among others.

The parametric form of the characteristic function (4), implies that both rescaling and
shifting preserve the stability property. Moreover, under the same stability index assumption,
linear combinations of independent stable random variables also remain stable.

Proposition 1 (Proposition 1.4 of [43]). Let X and Y be independent stable random variables
such that X „ Sαpσ0, β0, δ0q and Y „ Sαpσ1, β1, δ1q where α P p0, 2s, βi P r´1, 1s and δi P R
and i P t1, 2u.

1. For any a ‰ 0, b P R we have that

aX ` b „

#

Sα p|a|σ0, signpaqβ0, aδ0 ` bq if α ‰ 1

S1

`

|a|σ0, signpaqβ0, aδ0 ` b ´ 2
πβ0a logp|a|q

˘

if α “ 1.

2. The sum X ` Y „ Sα

´

σα
1 ` σα

2 ,
β0σα

0 `β1σα
1

σα
0 `σα

1
, δ0 ` δ1

¯

.

Proposition 1 provides a simple expression of Sαpσ, β, δq as a rescaling and shifting of an
Sαp1, β, 0q. In fact given two independent random variables X „ Sαpσ, β, δq where σ ą 0 and
Z „ Sαp1, β, 0q, X can be expressed as

X
d
“

#

σZ ` δ, if α ‰ 1

σZ ` δ ` 2
πβσ logpσq if α “ 1.

(7)

Tail behavior, moments and support: The tail behavior of Gaussian distributions is well
know; the survival function of X „ N p0, 1q asymptotically behaves like the following PpX ą

xq „
xÑ8

1
x

?
2π
e´x2{2. For general stable distributions (α P p0, 2q), similar equivalents can be

derived. The asymptotic behavior of a X „ Sαp1, 0, 0q is of the order of a power function x´α,
which dominates the Gaussian tail equivalent, justifying the term ’heavy-tailed’ distribution.

Theorem 2 (Theorem 1.2 [43]). Let X „ Sαpσ, β, δq with α P p0, 2q, σ ą 0, δ P R. Let fX be
the corresponding density.

1. For β P p´1, 1s, PpX ą xq „
xÑ8

cασ
αp1 ` βqx´α, and fXpxq „

xÑ8
αcασ

αp1 ` βqx´α´1.

2. For β P r´1, 1q, PpX ă xq „
xÑ´8

cασ
αp1´βqx´α, and fXpxq „

xÑ´8
αcασ

αp1´βqx´α´1,

where cα “ 1´α
2Γp2´αq cospπα{2q

1α‰1 ` π´11α“1.
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Moments of any random variable can be expressed using the distribution function as
Ep|X|pq “

ş8

0 Pp|X|p ą xqdx. For stable random variables, the existence of its moments is
linked to the stability index α as a consequence of Theorem 2. Among α-stable distributions
(α P p0, 2s), only the Gaussian distribution (α “ 2) have finite variance (and moments of any
order). Moreover only distributions with α P p1, 2s have a finite mean. More generally (see
Proposition 1.2.16 in [52])

Ep|X|pq ă 8 for all p P p0, αq, (8)

Ep|X|pq “ 8 for all p P rα,`8q. (9)

Stable random variables either take values on the whole line R (in most cases) or in half
lines when they are totally skewed (β P t´1, 1u). Let X „ Sαpσ, β, δq, the support of the
associated density function fX is given by

supppfXq “

$

’

&

’

%

rδ ´ σ tanpπα{2q,`8q α ă 1 and β “ 1

p´8, δ ` σ tanpπα{2qs α ă 1 and β “ ´1

R otherwise.

(10)

A proof relying on an integral expression of the distribution function can be found in Section
3.2 of [43]. A parallel instructive approach involves a compound Poisson approximation and
showing that Sαpσ, 1, 0q is the limit distribution of positive compound Poisson distributions
(Proposition 1.2.11 of [52]).

Numerical evaluation of the stable densities

A major holdback of the stable distribution lies in the lack of tractable formulas for the den-
sities. In most cases, there is no explicit formulation of both the density and the distribution
function of Sαpσ, β, δq. However, some properties of these densities are known to provide
numerical approximation algorithms. First, due to the exponential decay of their character-
istic function, stable random variables exhibit . The law PX is absolutely continuous, and
its density is smooth. Indeed from (4) any stable random variable X „ Sαpσ, β, δq satisfies
for u P R and k P N, |ukϕXpuq| “ |u|k|E

`

eiuX
˘

| “ |u|ke´σα|u|α , providing a bound by an
integrable function. Consequently, using Fourier theory, the density fX P C8pRq X L2pRq.

A first approach for numerical approximation of fX is to use Fourier inversion and numeri-
cal integration. In practice, directly inverting the expression (4) of the characteristic function
is numerically costly and can propagate errors due to the oscillating term and the infinite
integration bound. For example, if X „ Sαp1, β, 0q the density of X is given by

2πfXpxq “

ż

R
e´iuxϕXpuqdx “

#

2
ş8

0 e´uα
cospxu ´ β tanpπα2 quαqdu if α ‰ 1

2
ş8

0 e´u cos
`

xu ` β 2
πu logp|u|q

˘

du if α “ 1.

Using a reformulation by Zolotarev of the stable densities and distribution functions (see
[60] and [43] for more details), more refined expressions can be derived, avoiding the numeri-
cal issues arising from the oscillatory nature of the integrand. First, using the reduction (7),
one can focus on Z „ Sαp1, β, 0q and achieve the density of X „ Sαpσ, β, δq by rescaling and
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shifting; fXpxq “ σ´1fZppx´rδq{σq where rδ “ δ`p 2
πβσ logpσqq1α“1. In [43], the following con-

tinuous function is introduced Vα,β in p´θ0, π{2q where θ0 “ α´1 arctanpβ tanpπα{2qq1α‰1 `
π
21α“1,

Vα,βpθq “

$

&

%

pcospαθ0q
1

α´1

´

cospθq

sinpαpθ0`θqq

¯
α

α´1 cospαθ0`pα´1qθ
cospθq

α ‰ 1

2
π

´ π
2

`βθ

cospθq

¯

exp
`

β´1pπ2 ` βθq tanpθq
˘

α “ 1, β ‰ 0.

Note that for α “ 1 and β “ 0, the function Vα,β is not defined but in this case, Z is a Cauchy
random variable for which a simple formula of its density is available. The most important
feature of V is its non oscillatory behavior over the integration interval p´θ0, π{2q (Lemma
3.9 in [43]). The following formulas for the density are derived.

Theorem 3 (Theorem 3.3 of [42]). Let Z „ Sαp1, β, 0q and denote by fZ the corresponding
density function. Then, for α ‰ 1 and θ0 “ α´1 arctanpβ tanpπα{2qq1α‰1` π

21α“1, the density
fZ can be expressed for x P R as

fZpxq “

$

’

’

’

&

’

’

’

%

αx
1

α´1

π|α´1|

ż π{2

θ0

Vα,βpθq exp
´

´x
α

α´1Vα,βpθq

¯

dθ x ą 0,

π´1Γp1 ` α´1q cospθ0qpcospαθ0qq1{α x “ 0,

f´Z,αpxq x ă 0.

where ´Z „ Sαp1,´β, 0q. For α “ 1, the density fZ can be expressed for x P R as

fZpxq “

$

’

&

’

%

1
2β e

´πx
2β

ż π{2

´π{2
V1,βpθq exp

´

´e
´πx

2β V1,βpθq

¯

dθ β ‰ 0,

1
πp1`x2q

β “ 0.

Combining (7) and Theorem 3 lead to more robust numerical computations of the afore-
mentioned densities. More details on the numerical approximation of stable densities and dis-
tribution functions can be found in [42]. The following figures display densities of Sαpσ, β, δq

with varying parameters pα, σ, β, δq and illustrate their effect on the stable densities.

Figure 1: Display of the density fXpxq where X „ Sαp1, 0, 0q with varying α P t0.4, 1, 1.2, 1.8u.
The index α affects the tail; the smaller α is the heavier is the tail.
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Figure 2: Display of the density fXpxq where X „ Sαp1, 0, 0q with varying σ P t1, 3, 5u,
α “ 0.5 (left) and α “ 1.5 (right). The parameter σ has a rescaling effect on the density

Figure 3: Display of the density fXpxq where X „ Sαp1, 0, 0q with varying β P t1, 3, 5u,
α “ 0.5 (left) and α “ 1.5 (right). The parameter β affects the shape of the density.

Figure 4: Display of the density fXpxq where X „ Sαp1, 0, 0q with varying δ P t0, 1, 2, 3u,
α “ 0.5. The parameter δ has a shifting effect on the density.
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1.2 The α-stable Lévy process

The infinite divisibility of stable random variables provides via the Lévy-Khintchine theorem a
useful expression of the characteristic function (see Remark 2). It also establishes a connection
between stable random variables and Lévy processes. Specifically, for every Lévy process
pXtqtPR`

the increment Xt is infinitely divisible. Conversely, if Y is an infinitely divisible

random variable, it is always possible to construct a Lévy process pXtqtPR` such that X1
d
“ Y

(Theorem 7.10 of [53]). An α-stable Lévy process is then defined as a Lévy process pXtqtě0

such that X1 is a stable random variable with stability index α P p0, 2s. Every Lévy process
pXtqtPR`

is characterized by the Lévy triplet of the infinitely divisible random variable at time
1.

Remark 3. For α P p0, 2q, the Lévy triplet of pXtqtPR`
is pb, 0, νq where b P R is the drift

term, the volatility parameter is null, and the Lévy measure is given by

νpdxq “
P

x1`α
1xą0 `

Q

|x|1`α
1xă0, (11)

where P,Q ě 0 such that P`Q ą 0. In this case, the total mass is infinite, i.e. νpRq “ 8. The
α-stable Lévy process is an important example of a Lévy process with infinite jump activity.
For α “ 2, the process pXtqtPR`

is a rescaled Brownian motion of Lévy triplet pb, σ, 0q.

Selfsimilarity and stable parameters

The stability of X1 transfers to all marginals Xt for t ą 0, thanks again to the infinite
divisibility property. Let X1 „ Sαpσ, β, δq. For all t ą 0 the characteristic function can be
expressed as ϕXtpuq “ etηpuq where η P R Ñ C is usually called the Lévy symbol (see [53]).
Consequently, it appears that for u P R, ϕXtpuq “ ϕX1puqt. From the general expression of the
stable characteristic function (4) @t ą 0, Xt is an α- stable random variable

ϕXtpuq “ ϕX1puqt “

#

exp
´

´
`

t1{ασ
˘α

|u|α
`

1 ´ iβsignpuq tan
`

πα
2

˘˘

` iδtu
¯

if α ‰ 1,

exp
`

´tσ|u|p1 ` iβ 2
πsignpuq logp|u|qq ` iδtu

˘

if α “ 1.

Moreover, as a stable random variable, the parameters of Xt are merely computed by rescaling
those of X1; i.e. for all t ą 0, Xt „ Sα

`

t1{ασ, β, tδ
˘

. It leads to the following equality in law
for Xt

Xt
d
“

#

t1{αX1 `
`

t ´ t1{α
˘

δ, if α ‰ 1,

tX1 ` 2
πβt logptq, if α “ 1.

(12)

This property is known as broad-sense selfsimilarity. Selfsimilar processes are an example
of processes that exhibit an invariance property connecting a scaling in time to a scaling in
space (see [53, 52] for more details). A stochastic process pXtqtě0 is said to be broad-sense
selfsimilar with Hurst index H ą 0 (Definition 13.4 [53]) if, for any r ą 0 there exist a function
b : p0,8q Ñ R such that

tXrt, t ě 0u
d
“ trHXt ` bptq, t ě 0u.

10



For example, any drifted Brownian motion pσWt ` btqtPR`
with σ ą 0 and b P R is a broad-

sense selfsimilar process with Hurst index 1{2. From the fact that ϕXtpuq “ ϕX1puqt it is
straightforward to see that the only broad-sense selfsimilar Lévy process are the α-stable
processes. Morally, the α-stable Lévy process can be seen as an extension of the Brownian
motion through its selfsimilarity property.

Remark 4. (From the Lévy parameters pP,Q, αq to the stability parameters pα, σ, β, δq).
Given an α-stable Lévy process, our access to its characteristic parameters may be limited to
the Lévy triplet. For this reason, it is important to explicitly provide formulas connecting the
(α, σ, β, δ) parameterization of stable distributions to the Lévy parameters (α, P,Q). Let X
be an α-stable Lévy process with α P p0, 2q and with Lévy triplet p0, 0, νq where ν is given by
(11). Let X1 „ Sαpσ, β, δq for σ ą 0, β P r´1, 1s and δ P R then the following formulas can be
derived.

σ “

$

&

%

´

pP`Qq

α Γp1 ´ αq cos
`

πα
2

˘

q

¯1{α
α ‰ 1

π
2 pP ` Qq, α “ 1

, β “
P ´ Q

P ` Q
, δ “

#

Q´P
1´α α ‰ 1

cpP ´ Qq α “ 1
(13)

where c “
ş8

1
sinprq

r2
dr `

ş1
0

sinprq´r
r2

dr. It comes from a straightforward computation using the
Lévy-Khintchine formula (5) with σ “ δ “ 0 and the complex integral from Lemma 14.11 of
[53]. The drift term δ depends on the convention form of the Lévy-Kintchine formula (see
[53]).

1.3 Trajectory simulation

This section is organized as follows. A sampling algorithm for a general X „ Sαpσ, β, δq

random variable is presented: Algorithm 1. It is based on a Box-Muller-type algorithm
proposed by Chamber and Mallow in [9]. Then for an α-stable Lévy process, using the
independence and stationarity of its increments, a sample of the trajectory can be computed
via Algorithm 2. Several references are devoted to simulating stable random variables and
processes [11, 57]. To assess the accuracy of these algorithms, the increments histogram is
compared to the stable densities which are numerically computed based on Theorem 3.

1.3.1 Sampling from stable distributions

The 2´stable distribution is a Gaussian X „ N pb, A2q, and the Box-Muller algorithm is
widely used for simulating X. Let U1, U2 be two independent uniform random variables on
r0, 1s, then

b ` A
a

´2 logpU1q cosp2πU2q „ N pb, A2q.

An analogous algorithm can be devised for simulating the Cauchy distribution with parameter

X „ S1pσ, 0, δq as X
d
“ σ tan pUq ` δ, where U „ U

`

´π
2 ,

π
2

˘

.
In the more general setting of Sαpσ, β, δq simulation simplifies through rescaling and shift-

ing to that of Sαp1, β, 0q (7). The following Theorem gives a general method to sample from
Sαp1, β, 0q, for all α P p0, 2q .

11



Theorem 4 (Theorem 1.3 [43]). Let α P p0, 2q and U, V be two independent random variables
such that U „ U

`

r´π
2 ,

π
2 s

˘

and V „ Ep1q. Let θ “ α´1 arctan
`

β tan
`

πα
2

˘˘

for β P r´1, 1s and
α ‰ 1 then

X „

$

&

%

sinpαpθ`Uqq

pcospαθq cospUqq
1{α

´

cospαθ`pα´1qUq

V

¯p1´αq{α
if α ‰ 1,

2
π

”

`

π
2 ` βU

˘

tanpUq ´ β log
´ π

2
V cospUq
π
2

`βU

¯ı

if α “ 1,
(14)

is distributed as Sαp1, β, 0q.

Remark 5. In particular, for symmetric stable distribution (i.e β “ 0), the formula simplifies
in

sinpαUq

cospUq1{α

„

cosppα ´ 1qUq

V

ȷ
1´α
α

„ Sαp1, 0, 0q,

tanpUq „ S1p1, 0, 0q,

which aligns with the standard Cauchy simulation algorithm.

The following Proposition establishes that any stable random variable Sαp1, β, 0q can be
expressed as a linear combination of positively skewed stable random variables Sαp1, 1, 0q.
These simple distributions relate to the class of stable subordinator processes that are key to
sample of CTS Lévy processes (Section 2.2).

Proposition 2 (Proposition 1.2.13 of [52]). Let X „ Sαp1, β, 0q where α P p0, 2q and β P

r´1, 1s. For Y1, Y2 are independent random variables distributed as Sαp1, 1, 0q, it holds that

X
d
“

$

&

%

´

1`β
2

¯1{α
Y1 ´

´

1´β
2

¯1{α
Y2 if α ‰ 1,

´

1`β
2

¯

Y1 ´

´

1´β
2

¯

Y2 ` σ
´

1`β
π log

´

1`β
2

¯

´
1´β
π log

´

1´β
2

¯¯

if α “ 1.
(15)

Remark 6. An arbitrary stable distribution Sαpσ, β, δq can be sampled through the combined
application of Theorem 4 and (7). An alternative approach involves using Theorem 4 to
simulate 2 copies of an Sαp1, 1, 0q and subsequently, by Proposition 2, obtaining realizations
from Sαp1, β, 0q which can be shifted and rescaled (as in (7)) into a realization of Sαpα, β, δq.
Algorithm 1 is derived for the former approach.

1.3.2 Simulating trajectories of α-stable Lévy processes

Among the rich class of Lévy processes, the α-stable Lévy process is an example where exact
simulation of the increments is achievable (see [11]). In practice, simulation methods typically
focus on constructing a discrete skeleton of the Lévy process over a fixed grid. Let X be a
Lévy process, and consider a fixed time horizon T ą 0 and n ě 1 the number of observations.
The observation or sampling rate is defined as ∆ “ T

n .

• Leveraging the fact that the increments are independent and distributed as the first one
X∆, trajectory simulation reduces to sampling n independent copies of X∆.

12



• Using the (broad-sense) selfsimilarity property (see Section (1.2)) it is sufficient to draw
n independent copies pYiq

n
i“1 of X1 and use (12). To sample X1 given the Lévy param-

eters pα, P,Qq a translation into the stable parameters pα, σ, β, δq is achieved using the
formula devised in (13).

• Then by summing the increments we derive a discrete time numerical approximation
of the continuous time Lévy process trajectory. Usually for displaying, the value of Xt

at time t P r0, T s where t ‰ k∆ for k ď n is computed via a linear interpolation. For
t P r0, T s we define

rXt “

#

řk
j“0∆

pjqX if t “ k∆, k “ 0, ¨ ¨ ¨ , n

linearly interpolated, elsewhere.
(16)

Remark 7. In terms of complexity, the sampling algorithms are equivalently costly for low and
high-frequency observations. This is mostly due to the selfsimilarity property which reduces
the sampling of X∆ to that of X1.

Algorithm 1: Simulation of X „ Sαpσ, β, δq

Step 1. Generate independently U „ Ur´1, 1s and V „ Ep1q.
Step 2: if α “ 1 then

Z “ 2
π

”

`

π
2 ` βU

˘

tanpUq ´ β log
´ π

2
V cospUq
π
2

`βU

¯ı

.

return σZ ` δ ` 2
πβσ logpσq

else

Z “
sinpαpθ`Uq

pcospαθq cospUqq
1{α

´

cospαθ`pα´1qUq

V

¯p1´αq{α
.

return σZ ` δ.

Algorithm 2: Sampling p rXtqtPR`
on t0,∆, ¨ ¨ ¨ , n∆u for an α-stable Lévy process

with triplet pb, 0, νq (ν given by (6))

Step 1. Compute pσ, β, δq from pα, P,Q, bq using (13).
Step 2. Sample n independent copies pYi,1qni“1 of X1 using Algorithm 1 where
Y0,1 “ 0.
Step 3. Compute Yi,∆ “ ∆1{αYi,1 ` p∆ ´ ∆1{αqδ ` 2

πβ∆ logp∆q1α“1 for
i P t1, ¨ ¨ ¨ , nu.

return
´

řℓ
i“1 Yi,∆

¯n

ℓ“0
.

2 Classical Tempered Stable Lévy processes (CTS)

2.1 Tempering an α-stable process

Lévy processes can be constructed using various transformations of other Lévy processes
e.g. by linear transformation or subordination (see [11]). Tempering is one such procedure. It
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Figure 5: Trajectories of a symmetric α- stable Lévy process with Lévy triplet p0, 0, |x|´1´αq

where α P t0.5, 1, 1.5u, ∆ “ 1, n “ 1000. Histogram of X∆ and the stable density fX∆
are

displayed.
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relies on multiplying a Lévy measure ν of a Lévy process pXtqtPR`
by a decreasing exponential

function on each half-axis. This results in a modified measure

rνpdxq “ pe´AxPx´1´α1xą0 ` e´B|x|Q|x|´1´α1xă0q,

which still satisfies the properties of a Lévy measure. The associated Lévy process p rXtqtPR`

governed by rν is referred to as the Esscher transform [16] (see Chapter 9 of [11]). This trans-
formation has proven useful in actuarial science [20]. Furthermore, exponential tilting is also
strongly connected with Monte-Carlo methods, including rejection sampling and importance
sampling ([3, 1]). These connections play a critical role in the sampling algorithm for the
tempered processes (see Section 2.2).

Specifically, tempering an α-stable Lévy process leads to the Classical Tempered Stable
process (CTS), defined as a Lévy process pXtqtPR`

with a Lévy triplet pb, 0, νq where b P R
and

νpdxq

dx
“

Pe´Ax

x1`α
1xą0 `

Qe´B|x|

|x|1`α
1xă0. (17)

where P,Q,A,B P R` such that P ` Q ą 0 and A ` B ą 0, α P p0, 2q. When P,Q ‰ 0 the
process is referred to as bilateral CTS (see [31]) encompassing the totally positively (resp.
negatively) skewed CTS process Q “ 0 (resp. P “ 0).

Remark 8. Tempering can be interpreted through its effect on the trajectories t Ñ Xt. The
exponential factor diminishes the intensity of the big jumps while preserving the stable nature
of small jumps. As a result of tempering the Lévy measure, the activity index α can take
negative values as

ş

Rpx2 ^ 1qνpdxq ă 8 for α P p´8, 2q. Indeed, if α ă 0, the total Lévy
measure is finite νpRq “ pPAα ` QBαqΓp´αq ă 8. In this case, the process pXtqtPR`

is a
Compound Poisson process offering finite jump activity models with intricate structures. If α P

r0, 1q, the process has infinite activity since νpRq “ 8 and a finite variation
ş

|x|ă1 |x|νpdxq ă

8. Conversely, if α P r1, 2q, the total variation is infinite, i.e.
ş

|x|ď1 |x|νpdxq “ 8.

2.1.1 Distributional properties with a view toward simulation

In this Section, we select the key tools from the many properties of CTS distributions, to
tackle the sampling problem. For further details, we refer to [33, 11, 51]. First, we highlight
that closed parametric formulas for their characteristic functions (19) are available. These
computations rely on the Lévy-Khintchine formula, but where the classical small and big jump
decomposition is dropped. In particular, let pXtqtPR`

to be a CTS Lévy process with triplet
pbν , 0, νq where bν is a drift term bν “

ş

|x|ą1 xνpdxq “ PAα´1Γp1´α,Aq ´QBα´1Γp1´α,Bq

ensures that for t ą 0

logpϕXtpuqq “ itubν ` t

ż

R
peiux ´ 1 ´ iux1r´1,1sqνpdxq “ t

ż

R
peiux ´ 1 ´ iuxqνpdxq. (18)

Using complex contour integration [33] or with a power series argument [11] the following
result can be derived
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Proposition 3 (Proposition 4.2 of [11]). Let pXtqtPR be a CTS Lévy process with Lévy triplet
pbν , 0, νq where ν defined as in (17) and bν “

ş

|x|ą1 xνpdxq. For t P R`, the characteristic
function exponent can be expressed for u P R as

logpϕXtpuqq “

#

tPΓp´αq
`

pA ´ iuqα ´ Aα ` iuαAα´1
˘

` tQΓp´αq
`

pB ` iuqα ´ Bα ` iuαBα´1
˘

α ‰ 1,

iutpP ´ Qq ` tP pA ´ iuq log
`

1 ´ iu
A

˘

` tQpB ´ iuq log
`

1 ´ iu
B

˘

α “ 1.

(19)

For α ą 1 and A “ B “ 0 the exponent (19) yields an equivalent formulation of the
α-stable characteristic function exponent (4). For instance for α P p1, 2q and A “ B “ 0 and
Q “ 0 the characteristic function exponent is given by

logpϕXtpuqq “ tPΓp´αqp´iuqα “ ´tPα´1Γp1 ´ αq cospπα{2q|u|αp1 ´ isignpuq tanpπα{2qq,

aligning with Formula (13).

Remark 9. For α-stable Lévy processes the self-similarity property reduces the computational
cost (see Remark 7). However, the characteristic function expression (19) shows that this
property does not extend to the CTS processes. Sampling increments in low-frequency (small
∆) is computationally more expensive than for high-frequency (large ∆) (see Section 2.2).

One of the key property of CTS processes is that, unlike α-stable process, they have finite
moments. In fact, Ep|Xt|

βq ă 8 for all β ą 0 (Proposition 2.7 [51]). Furthermore, they also
have finite exponential moments: EpeθXq ă 8 if θ ď minpA,Bq ((iv) of Proposition [51]).
In the general setting, the cumulant generating function can be derived (see Remark 2.8 of
[34]). It provides parametric estimators of the Lévy measure parameters α, P,A,Q and B (see
Section 6 of [33] for more details).

Remark 10. (Long and short time behaviors) The asymptotic behavior of CTS processes
resembles a stable Lévy process in a small time scale while in a long time scale, it approximates
a Brownian motion. After appropriate shifting and rescaling, the following convergence in
distribution holds

ˆ

X∆t ´ btp∆q

∆1{α

˙

tPR`

Ñ
∆Ñ0

pStqtPR`

ˆ

X∆t ´ btp∆q

∆1{2

˙

tPR`

Ñ
∆Ñ0

pWtqtPR`
,

where S is a strictly stable α-stable process and W is a drifted Brownian motion, btphq is a
adequate shifting term (see Theorem 3.1 of [51] for more details).

2.1.2 CTS densities and numerical approximation

The class of CTS process stands among the Lévy process for which the smoothness of the
density is not a time-dependent property (see [53]). Indeed, it satisfies the Orey’s smoothness

criterion for infinitely divisible distributions lim infrÑ0

ş

|x|ďr x
2νpdxq

x2´α ą 0 (see Proposition 28.3
[53] and [45]). This means that for all t ą 0, Xt has a density fXt which is of class C8. In the
finite variation case α P p0, 1q, an extensive study of the unimodality and asymptotic behavior
of fXt is provided in [34]. In particular, Theorem 7.10 of [34] states that for t ą 0 there exists
a constant C ą 0 such that,

fXtpxq „
xÑ`8

C
e´Ax

x1`α
.
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Compared to the asymptotic equivalent for the α-stable density (Theorem 2), the tempering
adds a decreasing exponential factor. This ensures finite moments but still preserves a quasi-
stable behavior in a short time.

For the numerical aspects of CTS densities fXt , a natural approach is to use the Fourier
inverse formula leveraging the explicit characteristic function (19). To the best of our knowl-
edge, no simplified formulation as in Section 1.1 can be used to avoid the oscillating effect
of the characteristic function. Morally one can expect those to be tempered by the exponen-
tial term leading to a more robust integration method. We denote by rfXt,M the following
approximation function of fXt defined for x P R as

rfXt,M pxq “ p2πq´1

ż M

´M
ϕXtpuqe´iuxdu.

The choice of M ą 0 is crucial and can be numerically costly. In practice one might select M
large enough such that rfXt,M does not change, i.e. for η small enough | rfXt,M pxq´ rfXt,M 1pxq| ď

η for all x and any M 1 ě M .

Remark 11. For totally positively skewed CTS processes pQ “ 0q, the density can be related
to that of a totally skewed α-stable process (β “ 1) for which efficient numerical algorithms are
available (see Section 1.1). Let pY `

t q be a centered and totally positively skewed CTS distribu-

tion i.e. whose characteristic function is given by EpeiuY
`
t q “ exp

´

t
ş

R`
peiux ´ 1 ´ iuxqPe´Ax

x1`α dx
¯

.

We denote by pS`
t qtPR`

the totally positively skewed α-stable Lévy process (A “ 0) such that
S`
t „ Sαptσ, 1, 0q where σα “ PΓp1 ´ αqα´1 cospπα{2q1α‰1 ` P

2π1α“1. From Proposition 1 of
[40] the density of Y `

t can be expressed as the following transformation of that of S`
t ,

fY `
t

pxq “

#

e´Ax´p1´αqtPΓp´αqAα
fS`

t

`

x ´ tPαΓp´αqAα´1
˘

α ‰ 1,

e´Ax`tPAfS`
t

px ´ Ptp1 ` logpAqqq α “ 1.
(20)

2.2 Trajectory simulation algorithms

Among the many algorithms designed for sampling CTS distributions and processes on R, the
Bauemer-Merchaer acceptance-rejection algorithm [3] strikes a good balance between simple
implementation, parameter tuning, and computing efficiency. It relies on the simulation
and rejection of stable increments for which efficient algorithms are established (see Section
1.3.1). A complete comparison between the Bauemer-Merchaer method and other algorithms
(such as Devroye’s algorithm [14], Compound Poisson approximation [11], shot noise series
approximation [50]) is discussed in [31] which concludes to its numerical efficiency in small
time. In this section, we present the complete bilateral case. For simplicity, we assume
that the index α P p0, 1q Y p1, 2q, as similar computations can be conducted when α “ 1.
First reduction to totally skewed CTS processes is discussed. Then, leveraging Remark 11,
the Bauemer-Merchaer algorithm is outlined (Algorithms 3 and 4). A computational time
analysis is conducted in both finite and infinite variation cases. Finally, trajectories are
displayed (Figure 6), and a comparison between the histogram of the samples of X∆ and
the numerical computation of the CTS densities (as discussed in Section 2.1.2) evaluates the
accuracy of the procedure.
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Reduction to totally positively skewed CTS processes

Similarly to α-stable processes (see Proposition 2, simulating general CTS process with bi-
lateral Lévy measure νpdxq as in (17) reduces to sampling two totally positively skewed
CTS processes. In the following, pXtqtPR`

is a CTS process with Lévy triplet pbν , 0, νq and
bν “

ş

|x|ą1 xνpdxq. The characteristic function exponent (19) can be separated into two com-

ponents. Consequently, one can decompose Xt “ Y `
t ´Y ´

t where Y ` and Y ´ are independent
and their characteristic function is given for t ą 0 by

EpeiuY
`
t q “ etPΓp´αqppA´iuqα´Aα`iuαAα´1q (21)

EpeiuY
´
t q “ etQΓp´αqppB´iuqα´Bα`iuαBα´1q.

The trajectories t Ñ Xt can be sampled by simulating the increments on a grid of observation
rate ∆ ą 0. The following steps are outlined for Y ` but can be straightforwardly adapted to
Y ´, replacing P and A by Q and B.

2.2.1 Bauemer-Merchaer algorithm

The Bauemer-Merchaer algorithm is based on the density equation (20) that provides a pro-
posal distribution for the acceptance-rejection algorithm (see [31] for more details). However,
it applies differently to the finite variation case α P p0, 1q to the infinite variation case α P p1, 2q.
In the first case, the sampling is exact while in the other it only provides an approximation.

Finite variation case, α P p0, 1q.

Given the explicit expression of ϕY `
∆

in (21), the process Y ` is a drifted tempered subordina-

tor, and it can be decomposed into Y `
∆ “ Z`

∆ ´ ∆αΓp´αqPAα´1∆. The density fZ`
∆
is then

merely given after shifting in (20) for x P R by

fZ`
∆

pxq “ e´Ax´∆PΓp´αqAα
fS`

∆
pxq. (22)

Leveraging the fact that the support of S`
∆ is supppfS`

∆
q “ R` (see (10)), the ratio fZ`

∆
pxq{fS`

∆
pxq

can uniformly be bounded byM “ e´∆PΓp´αqAα
. Consequently, Z`

∆ can be sampled by accept-

ing S`
∆ as a draw when U ď e´AS`

∆ for U „ Up0, 1q. The increments S`
∆ are straightforwardly

sampled using Algorithm 1 of Section 1.3.1. Algorithm 3 summarizes the above discussion
and provides an exact algorithm for simulating increments Y `

∆ when α P p0, 1q. In Figure 6
trajectories for α “ 0.5, P “ 1.7 and Q “ 0.3 are displayed, with n “ 1000 increments across
different time scales (∆ P t0.01, 0.1, 1u) and computation time is fast.

Algorithm analysis: Let N` be the number of rejected samples in Algorithm 3. It is
known that N` has a geometric distribution of ’success’ parameter s` given by the formula
s` :“ s`

∆,α,P,A “ PpU ď e´AS`
∆q. Conditioning by S`

∆, yields an expression for s`

s` “ E
´

e´AS`
∆

¯

“ eΓp´αq∆PAα
. (23)
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The expected number of iterations is EpN`q “ e´Γp´αqP∆Aα
(Γp´αq ă 0 when α P p0, 1q).

Consequently, the computing time grows exponentially with the sampling rate ∆ ą 0 and
the jump mass P . More precisely, the algorithm is faster in a high-frequency framework;
as s` increases to 1 and N` decreases to 0 when ∆ Ñ 0. Whereas, when ∆ Ñ `8 the
success parameters s` decrease to 0 and the number of iterations explodes toward infinity
exponentially. As a function of α, it appears from (23) that it is more costly to sample when
α is close to the edges 0 or 1. For the bilateral Lévy measure the expected number of iteration
is given by EpN` ` N´q “ e´Γp´αqP∆Aα

` e´Γp´αqQ∆Bα
, where N´ is defined analogously to

N` for Y ´
∆ .

Infinite Variation Case, α P p1, 2q

In this case, the latter acceptance-rejection method cannot be directly implemented for α P

p1, 2q. In fact the decomposition into Z`
∆ ´ ∆αΓp´αqPAα´1 is no longer valid. Moreover,

the density equation (20) cannot be leveraged to provide another rejection algorithm since
the support of S`

∆ is now the whole line R (see (8)). However, it can be adapted by injecting
c ą 0, which serves as a truncation parameter, into the acceptance condition. The outcome
of such an algorithm is an approximation of the desired distribution Y `

∆ .
In practice a uniform random variable is sampled U „ Upr0, 1sq and Y „ S`

∆ then Y

is accepted when U ď e´ApS`
∆`cq. The result of this procedure, rY `

c,∆, is a good candidate

for approximating Y `
∆ . Theoretical guarantees are provided in Theorem 8 of [3] stating that

rY `
c,∆

L1

Ñ Y `
∆ when c Ñ `8.

Algorithm analysis: The acceptance rate and the approximation error are interlaced;
as c grows, the approximation is better, but the sampling is more costly. The ’success’ rate
is given by

s` “ s`
∆,α,P,A,c “ PpU ď e´ApS`

∆`cqq “ Epe´ApS`
∆`cq1S`

∆ą´cq ` PpS`
∆ ď ´cq.

The expected number of iterations is then merely the inverse EpN`q “ ps`q´1. It is clear that
s`Ñ0 when c goes to `8. This suggests that a compromise has to be made in the selection
of c. Seen as a function of the step ∆ ą 0, the acceptance rate s` Ñ

∆Ñ0
1, meaning that the

high-frequency regime necessitates fewer iterations. Neither the asymptotic behavior of the
acceptance rate nor the choice of a suitable approximation metric is straightforward. In [31],
the interplay between the approximation error in Kolmogorov-Smirnov distanceDKSprY `

∆ , Y `
∆ q

and the acceptance rate s` is numerically explored. The use of minimization algorithms to
numerically compute the parameter c is suggested. In our illustrative examples, the parameter
c ą 0 has been selected after preliminary computations on each set of parameters and gives
satisfactory results, especially for small ∆. In Figure 6 trajectories for α “ 0.5, P “ 1.7
and Q “ 0.3 are displayed, with n “ 1000 increments across different time scales (∆ P

t0.01, 0.1, 1u). The selected parameters in these cases are c “ 1 for ∆ P t0.01, 0.1u and c “ 10
for ∆ “ 1. The computation time drastically grows with ∆.
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Algorithm 3: Sampling Y `
∆ for α P p0, 1q Y p1, 2q.

Step 1. Generate U „ Up0, 1q and S`
∆ „ Sαp∆1{ασ, 1, 0q.

Step 2. Fix rc “ c1αPp1,2q where c ą 0.

Step 3: if U ď e´ApS`
∆`rcq then

return S`
∆ ´ Γp1 ´ αq∆PAα´1.

else
Return to Step 1.

Algorithm 4: Sampling a trajectory of a CTS Lévy process on a grid
t∆, 2∆, ¨ ¨ ¨ , n∆u.

Step 1. Sample n copies of pY `
∆ , Y ´

∆ q using Algorithm 3.
Step 2. Compute n copies of X∆ “ Y `

∆ ´ Y ´
∆ .

return
´

ři
j“1X

piq
∆

¯n

i“1
.

∆ “ 0.01, α “ 0.5 (top), α “ 1.5 (bottom)
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∆ “ 0.1, α “ 0.5 (top), α “ 1.5 (bottom)

∆ “ 1, α “ 0.5 (top), α “ 1.5 (bottom)

Figure 6: Trajectories of a CTS Lévy process pXtqt with Lévy triplet pbν , 0, νq, P “ 1.7, Q “

0.3, sampled with n “ 1000 observations of step ∆ P t0.01, 0.1, 1u. The parameter c “ 1
for ∆ ă 1 and c “ 10 for ∆ “ 1. Histograms of the increments X∆ (red) and numerical
approximation CTS density fX∆

(green) are displayed.
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