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Abstract: The COVID-19 outbreak caused saturations of hospitals, highlighting the importance of
early patient triage to optimize resource prioritization. Herein, our objective was to test if high
definition metabolomics, combined with ML, can improve prognostication and triage performance
over standard clinical parameters using COVID infection as an example. Using high resolution
mass spectrometry, we obtained metabolomics profiles of patients and combined them with clinical
parameters to design machine learning (ML) algorithms predicting severity (herein determined as
the need for mechanical ventilation during patient care). A total of 64 PCR-positive COVID patients
at the Poitiers CHU were recruited. Clinical and metabolomics investigations were conducted 8 days
after the onset of symptoms. We show that standard clinical parameters could predict severity
with good performance (AUC of the ROC curve: 0.85), using SpO2, first respiratory rate, Horowitz
quotient and age as the most important variables. However, the performance of the prediction was
substantially improved by the use of metabolomics (AUC = 0.92). Our small-scale study demonstrates
that metabolomics can improve the performance of diagnosis and prognosis algorithms, and thus be
a key player in the future discovery of new biological signals. This technique is easily deployable in
the clinic, and combined with machine learning, it can help design the mathematical models needed
to advance towards personalized medicine.

Keywords: predictive algorithm; metabolomics; machine learning; COVID-19

1. Introduction

Emergency services are often saturated, as was the case during the COVID-19 out-
break, with significant consequences for healthcare providers, from resource allocations to
prioritization of patients [1]. A necessary step for such triage is correct patient outcome
prediction. While recent studies have demonstrated the benefits of newer techniques such
as Forced Oscillation Technique (FOT) [2], as well as novel biomarkers such as plasma
KL-6 levels combined with chest radiographic severity grade (RSG) [3], the limited number
of tools at the clinician’s disposal condemn the healthcare staff to react to the symptoms
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rather than anticipate them. It is therefore crucial to develop and validate new tools to help
design the care plan for each patient [4].

One major hurdle in creating such a tool is the multifaceted nature of the encountered
pathologies, the disparity of the symptoms, their apparent severity and the speed at which
an apparently mild ailment can progress to severe outcomes.

To apprehend the multifactorial nature of such diseases, researchers have deployed
machine learning-based strategies that can easily integrate a variety of clinical parameters.
Indeed, such data mining technologies demonstrate an interesting ability of predicting
the outcome; for instance, with COVID, measurable benefits for the patients and the
healthcare system were shown [5], with several authors demonstrating the prognostic
value of blood parameters when risk stratification is optimized by machine learning,
combining co-morbidities with blood parameters [6], or only using blood gas parameters
which can be obtained rapidly with delocalized biochemistry automata [7]. Usually, ML is
capable of producing reliable risk scores for hospitalization or mortality based on typically
measured blood parameters [8–10].

On the other hand, ML is sometimes not capable of producing reliable and repro-
ducible scoring algorithms, as shown in a recent systematic review of more than 400 ML
models using radiographs and scans in COVID-positive patients [11]. Hence, it is important
not to limit the source of data to train the model. One important new source of data is high
resolution mass spectrometry to perform metabolomics analysis. This permits the extrac-
tion of numerous biological signals from a small volume of sample and thus optimizes
valorization of the patient’s fluids. Regarding COVID, these studies have identified a wide
variety of biomarkers [12], with many studies identifying dysregulation of amino acids,
and others focusing on patient lipidomes [13–16]. Indeed, authors have recently shown
a good degree of performance from prediction algorithms using metabolomics data from
saliva [17,18] or plasma [19,20].

A synthetic literature review is proposed in the Supplementary Materials.
The objective of our study was to test the hypothesis that metabolomics, combined with

ML, can improve COVID severity prediction. To this end, we compared the performance
of models issued from blood parameters highlighted in the literature with models issued
from a dataset combining such parameters with results from a metabolomics screening.

2. Results
2.1. Patients Clinical and Bloodwork Parameters

A total of 69 patients were included in the study, of which 5 withdrew consent (Sup-
plementary Figure S1). No patients were under artificial ventilation at the time of blood
sample collection. The severity of COVID infection was determined by the necessity for
mechanical ventilation during patient care. Such a parameter is indeed acknowledged in
the Institute for Health and Care Excellence guidelines for the use of dexamethasone in
COVID-positive patients, a recommendation also formulated by the World Health Organi-
zation [21]. The non-severe patients were slightly more numerous that the severe patients
(35–29, respectively).

We explored blood parameters highlighted as pertinent for COVID severity predic-
tion by the literature (detailed list and references of the 39 parameters are displayed in
Supplementary Table S1). Of these, only 5 were statistically different between the popu-
lations, with severe patients surprisingly demonstrating a higher proportion of younger
people, a higher respiratory rate and SpO2. Severe patients also showed significantly lower
coagulation time as well as lower serum albumin.

2.2. Predicting COVID Severity with Clinical and Bloodwork Parameters and/or Metabolomics

To test the predictive potential of the 39 clinical parameters, we conducted machine
learning-based approaches to generate predictive algorithms. Of all the algorithms tested,
Random Forest showed the most relevant performances across all indicators, however with
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a large confidence interval. SpO2, first respiratory rate, Horowitz quotient, age and CRP
were the most important variables (Supplementary Table S2, Top, and Figure 1A).
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metabolomics screening. ROC curves including 95% confidence intervals were drawn using the 
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Our results show that, indeed, while parameters alone have good predictive perfor-
mance, combination with metabolomics substantially improves prediction and precision 
of infection severity in COVID-positive patients. 

Considering the later algorithm was based mainly on metabolites, such improvement 
in the performance in terms of patient discrimination demonstrates the potential of metab-
olomics regarding decision making at the bedside, confirming recent conclusions in the 
literature [22]. 

We tested several classifiers in our ML strategy and differing results demonstrated 
the wisdom of this approach, suggesting that any ML-based approach should propose 
several classifiers each representing a different way to analyze data. The robustness of 
Random Forest [23] in regard to its capability to extract relevant features from numerous 
variables and a limited number of cases was again demonstrated here as it performed well 
with all datasets. 

Figure 1. COVID-19 severity predictive algorithm performance. Several machine learning classifiers
were used to attempt to build a predictive algorithm for COVID-19 severity 8 days after the onset
of symptoms, using two different datasets. Representative ROC curves and main contributing
variables are shown. (A) Performance and contributive variables of the Random Forest model built
from the database containing bloodwork and clinical data only. (B) Performance and contributive
variables of the Random Forest model built from the dataset containing bloodwork, clinical data
and metabolomics screening. ROC curves including 95% confidence intervals were drawn using the
pROC package and a bootstrapping strategy.

Then, we explored the ability of metabolomics data alone to generate a predictive
algorithm, (Table 1, Middle) showing that, on its own, it was unsuccessful in providing a
performant discrimination between severe and non-severe patients.

However, combining both clinical and bloodwork parameters with results from the
metabolomic study (Table 1, Bottom and Figure 1B), we showed that both Random Forest
and KNN had significant performances, with higher AUC of the ROC curves compared to
the clinical and bloodwork parameters model, with tighter confidence intervals. Extracting
the parameters used for these algorithms revealed that the top ten included only metabolites
(Supplementary Table S3).

Hence, metabolomics substantially improved the predictive performance of typical
clinical parameters, showing a high potential of complementarity between the techniques.
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Table 1. Performance indicators for each of the predictive algorithms built with either the clinical and
bloodwork dataset (top) or the full dataset which includes metabolites (middle) or both (bottom).

Clinical and Bloodwork Dataset

AUC (95%CI) Specificity Sensitivity Brier Score Youden’s index [Acc > NIR]
p-Value

GLM 0.62 (0.32, 0.86) 0.71 0.5 1.31 0.214 0.3938

RandomForest 0.85 (0.55, 0.98) 1 0.67 1.38 0.67 0.0222

KNN 0.77 (0.46, 0.95) 0.86 0.67 1.46 0.52 0.0798

SVM 0.69 (0.39, 0.91) 0.71 0.67 1.54 0.381 0.2033

C5.0 0.77 (0.46, 0.95) 0.71 0.83 1.77 0.55 0.0798
Metabolomics Alone Dataset

AUC (95%CI) Specificity Sensitivity Brier Score Youden’s index [Acc > NIR]
p-Value

GLM 0.7 (0.46, 0.88) 0.81 0.56 1.3 0.374 0.1299

RandomForest 0.75 (0.50, 0.91) 1 0.44 1.05 0.44 0.0553

KNN 0.7 (0.46, 0.88) 0.64 0.78 1.7 0.414 0.1299

SVM 0.8 (0.56, 0.94) 1 0.56 1.2 0.556 0.0189

C5.0 0.7 (0.46, 0.88) 1 0.33 0.9 0.33 0.1299
Full Dataset Which Includes Metabolites

AUC (95%CI) Specificity Sensitivity Brier Score Youden’s index [Acc > NIR]
p-Value

GLM 0.77 (0.46, 0.95) 0.86 0.67 1.46 0.52 0.0798

RandomForest 0.92 (0.64, 0.99) 1 0.83 1.62 0.83 0.0039

KNN 0.92 (0.64, 0.99) 0.86 1 1.92 0.857 0.0039

SVM 0.69 (0.39, 0.91) 1 0.64 0.923 0.333 0.9623

C5.0 0.77 (0.46, 0.95) 0.86 0.67 1.46 0.524 0.0798

Performance statistics were calculated with R.

3. Discussion

Herein, we conducted a small-scale clinical study to evaluate the potential of using
LC-MS HRMS metabolomics to improve disease prediction. COVID-infection was used as
an example of a pathology requiring such prognostication, using the need for mechanical
ventilation as severity [21].

Our results show that, indeed, while parameters alone have good predictive perfor-
mance, combination with metabolomics substantially improves prediction and precision of
infection severity in COVID-positive patients.

Considering the later algorithm was based mainly on metabolites, such improve-
ment in the performance in terms of patient discrimination demonstrates the potential of
metabolomics regarding decision making at the bedside, confirming recent conclusions in
the literature [22].

We tested several classifiers in our ML strategy and differing results demonstrated the
wisdom of this approach, suggesting that any ML-based approach should propose several
classifiers each representing a different way to analyze data. The robustness of Random
Forest [23] in regard to its capability to extract relevant features from numerous variables
and a limited number of cases was again demonstrated here as it performed well with
all datasets.

Interestingly, the fact that the model used metabolites issued for all four settings of
LC/MS (i.e., HILIC and C18 columns with both positive and negative ionization) showed
the importance of multiplying the protocols to optimize the output of a metabolomics
investigation. Of note, the dataset built only with metabolomics data did not show high
levels of performance, highlighting the complementary nature of both sources of data.
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Comparing our results on the clinical dataset alone with published investigations
(references in Supplementary Table S1 and the Supplementary Synthetic Literature Review),
we notice similarities in the variables demonstrating the highest weight in the model.
However, other parameters are not represented in our model, such as immune cell balance,
blood gas results, etc.; however, this may be explained by the fact that there is a lot of
correlation between these parameters (Supplementary Figure S2). To our knowledge, this is
the first study regrouping this number of clinical parameters in a single patient cohort and
presenting this type of result, which could justify a reduction in the number of biochemical
analyses performed in the future.

The level of performance reached by our algorithm (0.92) is higher than the results
of other studies (Supplementary Table S1 and the Supplementary Synthetic Literature
Review [18,24]) as well as on par with more recent algorithms such as the one combining
plasma KL-6 and RSG [3]. It would thus be very interesting to combine these approaches in
a larger-scale study.

The important variables of the full dataset models revealed a majority of metabolites,
and preliminary attempts at identification showed sensible data in regard to the pathology
(Supplementary Table S3). Interestingly, our findings are in line with a recent review which
highlights the involvement of ceramides and other lipid mediators in COVID infection [12],
although not in totality. This may be due to the differing aims between previous studies
and ours: while others have been describing the metabolic profiles in the context of COVID
infection [25], we aimed at predicting severity.

Of note, measuring the potential of the top 10 metabolites by PCA to discriminate
between the groups (Supplementary Figure S3) demonstrated a good level of performance
and the importance of interaction between the metabolites.

Our study remains limited by the sample size, rather small for a machine learning
approach. However, in accordance with the TRIPOD guidelines, we showed that the risk
of overfitting is low with a decoy strategy (Supplementary Figure S4), highlighting the
specific nature of our models towards COVID severity in our patients. Our results are thus
preliminary, but our goal was to demonstrate the added value of metabolomics and not
necessarily to publish a defined predictive algorithm. An interesting perspective would
be to test the complementarity of metabolomics with newer techniques such as FOT [2] or
plasma KL-6 levels and RS) [3], which may be the object of a future study on a larger scale.
A final limitation of the paper is the use of standard ML algorithms, and indeed, further
studies would profit from the use of novel and innovative approaches [26,27]

While an important limitation in metabolomics study is the lack of inter-laboratory
unification in terms of techniques and controls, recent efforts have been made towards
standardization of the technique [28,29]. Hence, high throughput metabolomics has a very
high potential for deployment in the clinic.

4. Materials and Methods

This work was performed following the TRIPOD guidelines (Supplementary Data) [30].

4.1. Patient Population

Patients were included at the Poitiers CHU (France) from 12-2020 to 4-2021 if they
were hospitalized, their SARS-CoV-2-positive status was confirmed by RT-PCR, they were
adults and free of any tutelage, they were affiliated to social security and gave informed
consent. The patients included in the cohort were not vaccinated.

4.2. Judgment Criteria

Patients requiring mechanical ventilation were deemed to have a severe infection
(45.31% of included patients, 29/64).
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4.3. Clinical Parameters

Clinical parameters were chosen according to the literature (Supplementary Table S1).
Biochemical analyses were performed on COBAS Pro automatons (Roche, Meylan, France).
Samples were stored at the Poitiers CHU Biological Resources Center (BB-0033-00068).

4.4. Metabolomics Analysis

Procedures were performed in a blinded manner according to previously optimized
protocol in which all the technical details are highlighted and the choices in extraction and
liquid chromatography parameters are optimized [31]. The data were then pre-processed
by the Compound Discoverer 3.3 software. Contributing variable names were imputed
from interrogating MetaboLights, Metabolomics Workbench and Human Metabolome
datasets [32] with the LC-HRMS signals.

4.5. Statistical Analysis and Machine Learning

To reduce interference from the LC-HRMS data, feature pre-selection was applied only
for metabolites appearing to be different between the severe/non-severe groups (evaluated
by t-test after parameter checks with F-test and Shapiro–Wilk test, p threshold set at 0.2) [33].
We used the R software 4.3.3 [34] with the tidyverse environment [35] to analyze the dataset
created from clinical parameters and metabolomics screening. Missing data were minimal
(1.2%) and were imputed using missRanger.

A standard training/testing set approach was adopted (80/20 split). The artificial
intelligence classifiers were chosen according to the literature [36,37], as well as their
technology, to test several ways of apprehending the data in order to extract the relevant
information. We thus compared the performance of general logarithmic regression (GLM),
K-nearest neighbor (KNN), support vector machine (SVM), Random Forest and boosted
trees (C5.0). Candidates with the best performance (estimated by shape of the ROC curve,
its AUC, the specificity, sensitivity, Brier Score and Youden’s Index) on the testing set of
the data (i.e., not used for classifier training) were selected. Hyperparameter tuning was
performed by 0.632 Bootstrapping. The risk of overfitting was estimated by performing the
decoy strategy, in which the outcome variable was scrambled and the whole ML strategy
was reperformed. The significance level was set at 0.05.

5. Conclusions

We demonstrate the highly relevant potential of metabolomics in studies aimed at
the discovery of new biological signals and their inclusion into novel predictive algo-
rithms. While our study was limited by the number of patients and was thus prelim-
inary, we provided good evidence that combined with the power of machine learning,
metabolomics can help design the mathematical models needed to advance towards per-
sonalized medicine. Moreover, unlike biological signals issued from other omics [38], the
transfer of a metabolomics-based prediction algorithm to the healthcare professional does
not present many hurdles and could rapidly improve patient care. Further development of
metabolomics should include larger cohorts and more modern ML approaches to fully take
advantages of the richness of the data produced.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms252212199/s1. References [39–53] are cited in the
Supplementary Materials.
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