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ABSTRACT: Urban air quality management is dependent on the
availability of local air pollution data. In many major urban centers of
Africa, there is limited to nonexistent information on air quality. This is
gradually changing in part due to the increasing use of micro air sensors,
which have the potential to enable the generation of ground-based air
quality data at fine scales for understanding local emission trends.
Regional literature on the application of high-resolution data for
emission source identification in this region is limited. In this study a
micro air sensor was colocated at the Physics Department, University of
Ghana, with a reference grade instrument to evaluate its performance for
estimating PM2.5 pollution accurately at fine scales and the value of these
data in identification of local sources and their behavior over time. For
this study, 15 weeks of data at hourly resolution with approximately
2500 data pairs were generated and analyzed (June 1, 2023, to September 15, 2023). For this time period a coefficient of
determination (r2) of 0.83 was generated with a mean absolute error (MAE) of 5.44 μg m−3 between the pre local calibration micro
air sensor (i.e., out of the box) and the reference-grade instrument. Following currently accepted best practice methods (see, e.g.,
PAS4023) a domain specific (i.e., local) calibration factor was generated using a multilinear regression model, and when this factor is
applied to the micro air sensor data, a reduction, i.e. improvement, in MAE to 1.43 μg m−3 was found. Daily variation was calculated,
a receptor model was applied, and time series plots as a function of wind direction were generated, including PM2.5/PM10 ratio
scatter and count plots, to explore the utility of this observational approach for local source identification. The 3 data sets were
compared (out of the box, domain calibrated, and reference-grade) and it was found that although there were variations in the data
reported, source areas highlighted based on these data were similar, with input from local sources such as traffic emissions and
biomass burning. As the temporal resolution of observational data associated with these micro air sensors is higher than for reference
grade instruments (primarily due to costs and logistics limitations), they have the potential to provide insight into the complex, often
hyperlocalized sources associated with urban areas, such as those found in major African cities.
KEYWORDS: High-resolution data, Ghana, Africa, Micro air sensors, PM2.5, Source apportionment

1. INTRODUCTION
Air pollution is a significant and pressing issue worldwide, with
severe consequences for human health and the environ-
ment.1−3 It is especially problematic in Africa, where it has
resulted in over 1.1 million annual premature deaths, according
to recent reports.1,4,5 This highlights the urgent need for
effective air quality monitoring and mitigation measures to
protect people from the adverse health effects of air pollution.2

However, to be able to best mitigate the impact of air pollution
on public health, it is crucial to have reliable, meaningful, open-
source, and quantitative air quality data in line with Giles-Corti
and group’s assertion “what gets measured, gets done”.6 A
limited number of governments worldwide carry out routine
and relatively widespread air quality monitoring based on
networks of reference grade instruments operated using

accepted standards and protocols. This approach is expensive
to initiate and operate, is logistically challenging, and is limited
in terms of expansion for these same reasons.

In relatively high-income countries like the US and the UK,
regulatory monitors are typically distributed across urban areas,
with one monitoring station covering 100000 to 600000
residents and there are often dozens of regulatory monitoring
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stations in larger cities.7 These regulatory air quality
monitoring stations and networks have been instrumental in
enabling the scientific and regulatory communities to collect
reliable and accurate data, which is essential for developing
effective air pollution management and control policies to
safeguard public health.8,9 The data obtained from these
monitoring stations also play a critical role in developing long-
term air quality management plans.8 These data are used to
identify areas where air quality is below identified targets or
limits and to determine the individual or general sources of
pollution, which can then be targeted with policies to reduce
pollution levels and protect public health. By analyzing trends
in air pollution data over time, policymakers can determine
whether their policies and regulations are effective in reducing
air pollution levels and protecting public health.8 In contrast, in
low- and middle-income countries (LMICs), air quality
monitoring is sporadic due to limited logistics, the cost
associated with procuring and operating regulatory monitors,
and limited local expertise.10 Air quality monitoring programs
in LMICs where they exist tend to focus on PM2.5 monitoring
due to three key factors. First, exposure to PM2.5 is a key driver
for the disease burden associated with outdoor air pollution.2

Second, PM2.5 is globally recognized as a crucial indicator of
urban air quality and is used to establish national air quality
standards (see ref 11). Finally, there are limited resources,
capabilities, and expertise in LMICs for running different
technologies to monitor other key air pollutants such as
gaseous pollutants.10

Micro air sensors (defined in this study as smaller air sensors
due to their size and minimal logistical demands for installation
and operation), or low-cost sensors, have the potential to

revolutionize air quality monitoring in urban settings,
especially in regions where more traditional monitoring
methods based on reference grade instrumentation are sparse
or absent. In high-income countries, micro air sensors have
been used for various purposes, including raising awareness of
air quality issues,12 identifying hot spots of atmospheric
emissions,13 and complementing regulatory monitoring.14

These applications have been supported by research
institutions, regulatory bodies, and community science
organizations, which have validated and calibrated local data
from micro air sensors for PM monitoring to support air
pollution research and mitigation.15,16

One of the main challenges in use of this class of PM sensor
as part of regulatory or compliance monitoring is the lack of
accepted standard calibration methodologies for micro PM air
sensors, which makes it difficult to use the fine scale data for
developing site-specific mitigation policies and estimating the
health burden of air pollution.13,14,17−21 Micro air sensors are
also known to respond differently to particles of different size
fractions22,23 or compositions.24 Accounting for these differ-
ences requires careful calibration across a variety of particle
size and composition regimes, which is challenging in
practice.25 In addition, there are no specific standards for
selecting and using PM sensors to supplement sparsely
distributed air quality monitoring stations with relatively
poor spatial and temporal resolution air quality data.19,26−28

For example, reference stations operated by the Ghana
Environmental Protection Agency rely on conventional
gravimetric methods for reporting data for PM at six-day
resolution, generating ∼5 data points per month (Personal
Communication, EPA Ghana). This poor temporal resolution

Figure 1. Map showing the study area with the blue triangle labeled Afri-SET indicating the study site highlighting the N4-Highway and Botanical
Garden Road developed using QGIS version 3.32.0-Lima.
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limits our understanding of local trends in PM pollution. Thus,
integrating data from micro air sensors is a potentially
promising new approach for source identification,29 though
micro air sensor use has some challenges highlighted above.

In this study, we demonstrate the suitability of high-
resolution data from a selected micro air sensor when coupled
with a receptor model approach for identifying sources of
PM2.5 in an urban setting typical of the geographic region to
help develop, implement, and track clean air solutions.

2. METHODS
2.1. Study Area. As shown in previous studies for

calibrating micro air sensor data, a crucial factor is collocating
the micro air sensors with regulatory or reference grade
monitors in the same environment.14,21,30−32 Sampling the
same air over time generates the paired micro air sensor and
reference grade monitor data required for calibration. In this
study, the Department of Physics, University of Ghana, Legon
(now known as the Afri-SET reference site), was selected as it
routinely measures PM with a reference-grade PM mass
monitor and is representative of the Greater Accra Region
(GAR). An AirGradient Open Air PM monitor was colocated
with a Teledyne API PM Mass Monitor at the site for ∼3
months for this case study. The University of Ghana is
approximately 8.4 km north of Accra Central and 4.8 km from
the N4-Highway South (a major regional route, see Figure 1).
The GAR has a population of approximately 5.5 million
inhabitants.33 Weather patterns across Ghana are not uniform,
with significant variation between coastal and maritime
influenced zones and more inland areas. The climate of the
GAR is characterized by seasonal harmattan winds, which blow
from the northern part of the country between late December
and February, as well as the southern rainy season that peaks in
August and September, with heavy rainfall occurring from
April to June. Annual rainfall is 1250 mm in the northern part
of the country and 2150 mm in southern Ghana. The GAR
climate is tropical, predominantly warm and humid with an
annual mean temperature between 26 and 29 °C.34 Prevailing
climatic conditions in the GAR are typically affected by dry
tropical continental winds that mainly originate from the
northeast and cross the Sahara. Conditions at the Afri-SET site
are characterized by complex sources of PM2.5. To the east
there is the N4-Highway and to the northeast and southeast of
the site is the campus road network, including the Botanical
Garden Road that routinely experiences major levels of traffic.
On-campus transportation and other background activities
such as open burning in the local area are also a factor.

A wind rose plot presented in Figure 2 shows that the
dominant wind direction at this site for the period of the
deployment was almost exclusively from the southwest sector.
2.2. Instrumentation and Data Acquisition. The micro

air sensor used in this study is the AirGradient Open Air PM
(AirGradient, Chiang Mai, Thailand). This micro air sensor
was deployed at the Afri-SET reference site following a
protocol similar to that used by the Raheja group.32 It was
collocated with an Afri-SET reference PM Mass Monitor
(Teledyne API, San Diego, California, USA). Both the micro
air sensor and Teledyne API PM Mass Monitor were placed at
a height of approximately 5 m above ground. The AirGradient
Open Air PM uses a Plantower PMS5003T sensor element and
reports data via the Open Air platform (AirGradient, Manual).
Figure 3 shows how the PMS5003T is mounted within the
AirGradient Open Air PM monitor. The PMS5003T is widely

used by micro air sensor manufacturers (e.g., QuantAQ,
AirQo, Clarity Movement, and PurpleAir). The PMS5003T
uses light scattering to measure PM (i.e., by employing a laser
to estimate particle concentrations with manufacturer-defined
algorithms, which convert the scattered light into particle
concentrations). A number of manufacturers using the
PMS5003T report data for PM1, PM2.5, and PM10; however,
emerging evidence shows that the PMS5003T is only suitable
for measuring PM2.5.

22,35 Current best practice for use of micro
sensors under real world conditions is to apply a domain
specific calibration to improve the data representativeness (e.g.
refs 35−38). To generate calibration factors, sensors are
collocated with an accepted reference instrument that is being
operated according to appropriate operational protocols (e.g.,
Federal Reference Method and/or Federal Equivalence
Methods) for a representative period (where representative
refers to both the expected range of pollutants as well as
climatological conditions). Uncorrected PM2.5 data from the
micro air sensor are then compared with the reference data and
an analysis is undertaken to generate comparative statistics and
correction factors which, when applied to the uncorrected data,
bring them into line with the reference data. Methods to
generate these factors include regression analysis and
increasingly machine learning tools (see e.g., refs 13, 14, 25,
30, and 37). As a part of this process, a correction to account
for temperature and humidity can be applied based on locally
reported temperature and relative humidity.13,14,25,30,37 The
reference PM instrument has the ability to provide 1 min time
resolution data but, as operated at the Afri-SET site, reports
hourly processed data via the Ghana EPA.

Figure 2. Wind rose plot showing wind speed/direction frequencies
for the Physics Department at the University of Ghana (Afri-SET),
where the study was conducted for the period of deployment, based
on hourly wind data from the weather station at the site.
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2.3. Data Cleaning and Calibration. Standard quality
control and assurance measures were employed to clean the 5
min resolution data from the AirGradient Open Air monitor.
Following the same quality control procedure as shown in ref
30 for Plantower devices, all zeros and spurious values above
1000 μg m−3 were removed and we ensured that the time
stamp was representative of the local time zone. A common
time stamp was selected for calibration with the two sets of
data in the same resolution. Simply put, the 5 min data were
converted into hourly average data to match the resolution of
the Teledyne API PM Mass Monitor PM2.5 data sets. For this
study, this resulted in 2544 paired data points over the 107-day
deployment.

Prior studies on micro air sensors in Ghana have used
different types of micro air sensors and multiple types of
correction factor algorithms with varying degrees of complexity
depending on the objectives of the study (e.g., the Gaussian
Mixture Regression model by refs 30 and 39) and inbuilt
calibration protocols (e.g., refs 22 and 40). Previous studies,
such as that in ref 41, have demonstrated that multiple linear
regression (MLR) is a useful tool for improving raw PM2.5 data
quality and can be applied to improve micro air sensor data to
meet regulatory recommendations (e.g., refs 14, 21, and 30).
Its application for improving air sensor data is suitable for
extracting source features of pollutants.42 This is particularly
important in technologically lagging environments with limited
regulatory monitoring mechanisms and expertise. Thus, a MLR
model was used to calibrate the AirGradient Open Air PM2.5
data sets with internal temperature and relative humidity
measurements from the same instrument. The linear equation
developed to calibrate the reported data is

[ ]

= + × + × + ×

calibrated PM

raw PM Temp RH
2.5 AirGradient

0 1 2.5 2 3
(1)

where α0 = intercept from the statistical summary of the
model, α1 = coefficient of raw AirGradient PM2.5 data, α2 =
coefficient of temperature, and α3 = coefficient of relative
humidity.

We withheld a randomly selected 20% of the reported data
to test and validate the correction model while using 80% to

develop the model by identifying suitable values for the
coefficients using a linear regression package implemented in
the R-programming language and environment such that the
linear model summary generated values for each of the
coefficients α0, α1, α2, and α3. We then present a case for the 3
sets of data (raw, calibrated, and reference grade) to identify
the potential sources of PM2.5 as shown in the rest of the
analysis.
2.4. Data Analytical Approach. We based all analysis on

the “openair” package for air pollution data analysis using the
functions windRose, timePlot, scatterPlot, timeVariation,
polarPlot, calendarPlot, and timeProp for wind rose, time
series, scatter, daily variation, bivariate polar, calendar, and
temporal variation plots, respectively,43 in the R-programming
language and environment version 2024.09.0+375. For source
apportionment, we employed a receptor model.43 Source
apportionment studies using this approach are not new,44,45

but this approach with air sensor data is relatively new.
Reference 29 attempted to identify sources of PM in an urban
setting in Ghana using high temporal resolution data from air
sensors. A recent study in Birmingham, UK has also shown
that micro air sensor data is useful for inferring sources of PM
in a quarry setting.46 We introduced a relatively new concept
using the PM2.5/PM10 ratio in bivariate polar, scatter, and
count plots as shown in refs 47 and 48 to provide insights into
the constituents of the reported PM2.5 using calibrated PM2.5
data and PM10 measurements from the Teledyne API PM
Mass Monitor.

3. RESULTS

3.1. Linearity and Precision of the Air Sensor. By
comparing the AirGradient and T640 PM2.5 data sets, we
observed that the AirGradient overestimated the PM2.5
concentrations by 34% with a mean absolute error (MAE) of
5.44 μg m−3 and r2 of 0.85. The following equation was
developed using the MLR model to improve out of the box
PM2.5 values from the AirGradient monitor, as discussed in
Section 2.3.

Figure 3. AirGradient Open Air PM2.5 Monitor. Image adapted from AirGradient.
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[ ]

= + × + ×

+ ×

calibrated PM

23.25 0.53 raw PM ( 0.34) Temp

( 0.16) RH

2.5 AirGradient

2.5

(2)

Using this MLR model, we calibrated the AirGradient PM2.5
data and achieved an improved MAE to 1.43 μg m−3 (Table
1). The nearness of the MAE to zero indicates the accuracy of

the model used for calibrating the PM air sensor data. This
observation compounds the growing body of evidence on the
need for calibration when using air sensor data in these types
of environments, particularly since environmental agencies are
now turning to these types of approaches for estimating air
pollution. Reported mean values were 19.03 μg m−3 for raw air
sensor data and 14.17 μg m−3 for calibrated air sensor and
reference-grade data, representing a 34% overestimate by the
raw data. Figure 4 shows that calibrated and reference data
agree well with each other, and raw overestimates but also
follows the same trends, as reflected in the high r2.

Also, we observed that the impact of relative humidity on
the observed PM2.5 was significant at a higher relative
humidity. A scatter plot is presented in Figure 5 for the raw
(Figure 5A) and calibrated (Figure 5B) data against the
reference grade data sets. Both the raw and calibrated data
have a strong linear relationship with the reference data. The
AirGradient (raw) overestimated PM2.5 at higher relative
humidity (>70%), which was largely accounted for using the
calibration factor in Figure 5B.
3.2. Sources of PM2.5. Fine scale data from air sensors are

useful for understanding trends in local pollution that have
previously been unachievable. We employed a timeVariation
function as a source feature tool to understand the impacts of
anthropogenic activities on the observed PM2.5 data. We

observed a similar pattern in peak periods with caveats when
comparing the raw to the calibrated and reference-grade PM2.5
data sets. It was observed that PM2.5 pollution was influenced
by human activities such as vehicular emissions and biomass
burning, considering background activities and hours of the
day of observed peaks. For example, we observed hourly peaks
of 20 μg m−3 around 07:00 h for calibrated and reference grade
data but ∼32 μg m−3 for the raw data (Figure 6). This was due
to the overestimation as flagged above, but the raw data do
provide a clue on sources, especially by linking the observed
concentrations to hours of the day and prevailing human
activities.

Daily variation for PM2.5 using the high-resolution data
showed peaks in concentration associated with the morning
rush hour around 07:00 h and evening rush hour at around
18:00 h (left bottom panel, Figure 6). We also observed that
the concentrations do not drop overnight, which could be due
to prevailing meteorological conditions and potentially cooking
and/or biomass burning. Reduced background activities
between 12:00 h and 15:00 h caused drops in the reported
levels (left bottom panel, Figure 6). Monthly, lower
concentrations were observed in September due to the heavy
rains which might have washed down PM2.5, though this was
only for the first 15 days of the month (middle bottom panel,
Figure 6).

Also, we adapted bivariate polar plots to identify sources of
PM2.5, which provides a clear graphical representation of the
observed PM in relation to wind speed and direction.
Graphically, we observed that the NW quadrant (Figure 7)
is a major source of PM2.5, which comprises campus road
networks and commercial activities where food cooking and
vending is based on a mixture of energy sources (charcoal,
liquified petroleum gas) and open burning. Also, we observed
that the highest concentrations in the raw data are linked to
the SW wind direction but do not appear in the calibrated data.
Although an overestimation of concentrations in the raw data
was observed, this indicates that the overestimate is not purely
systematic but has some dependence on wind direction,
possibly due to different meteorological factors (e.g., high
humidity) being associated with certain wind directions. This
is an important confounding factor to note when using

Table 1. Regression Model, Average Time, r2, and MAE
Statistics for Raw and Calibrated PM2.5 Data

data type model average time (h) r2 MAE (μg m−3)

AirGradient_raw none 1 0.83 5.44
AirGradient_cal MLR 1 0.85 1.43

Figure 4. Time series plot for PM2.5 showing AirGradient raw (black), calibrated (green), and T640 (red) on hourly data sets.
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uncalibrated micro air sensor data to conduct source
identification. A bivariate polar plot of the reported data is

presented in the Supporting Information (Figure S1, at the
levels of relative humidity, and Figure S2, at the levels of

Figure 5. Scatter plot for PM2.5 as a function of RH for raw (A) and calibrated (B) data against T640 data.

Figure 6. Daily variation of PM2.5 using raw (black), calibrated (green), and T640 (red) data sets.

Figure 7. Hourly bivariate polar plot for PM2.5 using AirGradient raw (a) and calibrated (b) and T640 (c) data sets.
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temperature). Relative humidities were grouped into four
levels; first 33.4−56.7% (PM2.5 was mostly from NW, W, and S
for the raw and NW for the calibrated and reference-grade),
56.7−66.8% (PM2.5 was mostly from all quadrants for the raw
and NE, NW, and SW for the calibrated and reference-grade);
66.8−69.6% (PM2.5 was mostly from all wind sectors for the
raw except that toward the W sectors and higher sources were
observed at winds speeds >3 ms−1; a similar observation was
made for the calibrated and reference-grade data but the
graphical representation shows a smaller margin toward the
SW), and 69.6−74.9% (higher local sources for PM2.5 from all
wind sectors with a slightly bigger margin toward the N as
compared to the observations at 66.8−69.6% for the raw data
set; NE, N, and NW sources for the calibrated and the
reference-grade data showing lower levels, below 12 μg m−3

from the NW quadrant) (Figure S1). In Figure S2, similar
observations were made except in the opposite such that the
sources at lower temperature levels, e.g., 21.5−24.3 °C,
corresponded to the observations at higher relative humidity
levels, i.e., 69.6−74.9%, which is expected due to the inverse
relationship between temperature and relative humidity in
atmospheric observations.

Further to the above analysis, we employed the calendar plot
to provide a graphical picture of wind direction on the

observed daily PM2.5 concentrations. These plots revealed
common wind direction for the 3 sets of data with varying
mean values. Daily average winds were exclusively from the W
or SW; therefore, it was impossible to identify other wind
directions which might have contributed to the PM2.5 pollution
for this period at the site using this daily average data alone
(Figure 8).

To understand the impacts of wind direction on hourly
observations, we plotted the observed PM2.5 levels (3 sets of
data) as a function of wind direction. We observed that W,
NW, and SW winds contributed to higher PM2.5 but NW
winds were patchy and associated with higher concentrations
(35 μg m−3 for the raw and 23 μg m−3 for both the calibrated
and reference-grade PM2.5 data sets) (Figure 9). This was
followed by W winds (35 μg m−3 for the raw and 23 μg m−3 for
both the calibrated and reference-grade PM2.5 data sets) and
SW (30 μg m−3 for the raw, 20 μg m−3 for the corrected, and
18 μg m−3 for the reference-grade PM2.5 data sets) (Figure 9).
It is noteworthy that these observations were not shown in the
bivariate polar and calendar plots, which shows the limitations
of relying solely on bivariate polar and calendar plots for
extracting the source features of pollutants. Though the
dominant wind source was from the SW direction (Figure 2),
higher observed concentrations were associated with the NW

Figure 8. Calendar plot for PM2.5 as a function of wind direction showing AirGradient raw (a) and calibrated (b) and T640 (c) data sets.
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winds, indicating a potential major source in this direction
(local), which were influenced by a mixture of background
activities including vehicular emissions, windblown dust, and
biomass burning. This plot also revealed that there were
multiple sources of PM2.5 pollution at this site, but identified
sectors with higher sources need to be further investigated.

Using PM10 data from the Teledyne API PM Mass Monitor,
a scatter plot using the hourly data of PM2.5 against PM10 with
the PM2.5/PM10 ratio is presented in Figure 10a showing three
main categories of ratios: ratios in blue (i.e., <0.3), green (i.e.,
between 0.3 and 0.9) and yellow (i.e., between 0.9 and 1). In
Figure 10b, the scatter plot of PM2.5 and PM10 concentrations
is drawn based on the ratios. The PM2.5/PM10 ratio in the
bivariate polar plot in Figure 10c reaffirms a potential source of

fine aerosol in the NW wind sector from vehicular activities
and biomass burning.

4. DISCUSSION
We used a 15-week data set to compound emerging evidence
on the usefulness of micro air sensor data for source
identification of PM2.5 in an environment where this
information will be more readily available. The analysis
presented in this work is unachievable using conventional
gravimetric monitoring in Ghana, which generates only 5 data
points per month depending on the availability of consum-
ables. It is however important to note that, as demonstrated in
previous studies and highlighted in the introductory part of this
study, the use of micro air sensors does come with some
disbenefits, specifically the impacts of temperature and relative

Figure 9. Time series plot for PM2.5 as a function of wind direction raw AirGradient (a), calibrated AirGradient (b), and T640 (c) on hourly data
sets.
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humidity on the reported data, hence the need for domain-
specific calibration (see previous studies from this site and
similar environments30,31). Reference 29 published the first-
ever work on low-cost source identification using micro air
sensor data in Africa at an urban area in Central Ghana with
relative concentrations of PM2.5. A recent publication from
Westervelt and his group42 re-echoed this evidence that micro
air sensor data are useful for tracking sources of air pollutants
and46 also inferred sources of PM2.5 at a quarry using fine scale
air sensor data. In this specific work, we initially evaluated the
performance of an AirGradient micro air sensor in a tropical
environment with complex and high sources of PM2.5. We then
make a case to support emerging evidence on micro air sensor
use for source identification of pollutants, PM2.5 in this case.
The results have shown that wind speed−direction data can
provide a useful tool for inferring sources of PM2.5 when
combined with high-resolution micro air sensor data. A further
investigation of the identified wind sectors would generate
added value for PM2.5 emission control at and around the
urban environment at the University of Ghana. This work
contributes to the growing body of knowledge on the use of
high resolution data from air sensors for cost-efficient
identification of sources of air pollution in major parts of
Africa with limited air quality monitoring capabilities. It is a
useful reference for developing, implementing, and tracking air
pollution mitigation strategies in these types of environments
by regulatory bodies and other relevant stakeholders.
4.1. Linearity and Precision of the Air Sensor. The

AirGradient monitor overestimated PM2.5 measurements by
34% but the trends follow the same pattern as compared to the
referenced grade reported data. Similar findings were observed
in previous studies using air sensors in Africa.30,31,42 This
shows that raw air sensor data are useful for understanding
local PM trends, but to support local mitigation strategies,
community engagement, and emission source identification,
data improvement via local collocation with reference
instruments is required.

4.2. Sources of PM2.5. Reference 49 showed that PM
pollution in Accra neighborhoods is linked to charcoal and
fuelwood burning and traffic. In this study, bivariate polar,
calendar, time series, PM2.5/PM10 ratio scatter, and count plots
as a function of wind speed−direction were used to identify the
sources of PM2.5 at the University of Ghana. The aim was to
verify if relative measurements from air sensors could provide
useful insights for source feature extraction, as previously
shown in ref 29, which is linked to background activities as
echoed by ref 49. We found that emissions were mainly from
the NW sector (vehicular emissions from campus road
networks and commercial activities, which includes use of
solid fuel and burning of waste). These findings align with past
studies using similar sensors,40 although long-term data would
be needed for further verification at the University of Ghana.

It is worth noting that protocols for assessing air sensor data
for source identification depend on the investigator’s purpose,
but previous studies have shown that a ±50% data quality from
air sensors is sufficient for extracting source features of
atmospheric pollutants in highly polluted environments.50,51

The findings as presented in this study using the raw,
calibrated, and regulatory data to identify the sources of
PM2.5 pollution using the receptor model compounds
emerging evidence on the usefulness of micro air sensor data
to support source feature extraction, a low capital cost
approach for source identification (e.g., refs 29, 42, and 46).
The calendar plot was used to achieve this objective and
indicated that high PM2.5 pollution was driven by southwest-
erly winds. A limitation of the calendar plots presented is that,
for the daily average data, there is little variability in wind
direction (as noted previously, throughout the study period,
winds tended to originate from the southwest). This makes it
difficult to distinguish the potential influences of different
sources. On the other hand, the high temporal frequency data
available from the air sensors allows for finer distinctions to be
made based on more frequent changes to wind speed and
direction, as evidenced by the polar plots and time series plots

Figure 10. Scatter plot of PM2.5/PM10 ratio (a), particle count (PM2.5 vs PM10) (b), and bivariate polar plot for PM2.5/PM10 (c) ratio in color code
on hourly data for June 1 to September 15, 2023.
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in wind direction. However, micro air sensors do not measure
wind speed−direction, indicating the need for site specific
wind component data using auxiliary instrumentation or
modeled data as demonstrated in ref 29. This study also
highlighted that the use of polar plots for understanding the
sources of pollutants has limitations and that understanding
meteorological factors, such as wind direction and speed, is
crucial for air pollution management and control. To account
for this, we used the PM2.5/PM10 ratio as shown in ref 47 to
provide core insights into the potential components of the
observed PM. The results demonstrate the potential usefulness
of micro air sensor data for managing and controlling air
pollution in LMIC with limited air quality monitoring
capabilities at low cost. Furthermore, it was observed in this
study that the identified source of PM pollution was slightly
different across all data sets in the bivariate polar plot noting
the difference in the raw hourly data as compared to the
calibrated and reference-grade data sets but similar in the time
series plot in wind direction. This shows that relative
concentrations of PM2.5 measured from micro air sensors can
be used to develop and track mitigation strategies for air
pollution management and control. While the AirGradient
monitor is not filter-based to support speciation, the
approaches applied here give stakeholders, especially the
environment agencies in Africa that are now turning to
lower-cost air quality monitoring approaches, a toolkit for
further investigation of background activities.
4.3. Hourly Bivariate Polar Plot Sources and Time

Series in Wind Direction of PM2.5. A limitation of the polar
plot is that the graphical identification of source of pollutants is
influenced by the capabilities of the investigator and these plots
only group mean concentrations by wind speed and
direction,43 making it difficult to specifically match wind
sectors with sources of pollutants. To provide a clearer picture
that is only achievable with high-resolution data, we introduced
the time series plot as a function of wind direction (Figure 9).
For example, in ref 29, a cluster analysis was introduced to
group sources from the same wind speed−directions to
augment the findings in the bivariate polar plots. By way of
observation, multiple and the same wind directions con-
tributed to the reported PM regardless of the data quality but
concentrations varied. Comparatively, in the bivariate polar
plot for example, higher sources were associated with the NW,
W, and SW winds for all sets of the data (Figure 7). However,
in the raw data sets, the SW wind speed−direction was
noticeable as compared to calibrated and reference-grade data
sets (Figure 7). The time series plot in wind−direction shows
sources are similar but higher concentrations were associated
with NW sector followed by the W and SW. The contribution
from the NW were however patchy though associated with
high concentration indicating a major source; winds from the
W were dominant and similar to those from SW but with
concentration below 30 μg m−3 for the raw, 20 μg m−3 for the
corrected, and 18 μg m−3 for the reference data sets. This
finding echoed previous findings on the usefulness of fine scale
relative concentrations from micro air sensors to identify
sources of pollutants in urban settings. This is however not
achievable with the filter-based monitoring regime currently
operated by the Ghana EPA, since there are only ∼5 data
points per month. However, filters do provide a useful tool for
source apportionment following laboratory analysis, which can
support the findings in this study if combined. The laboratory
analysis of these filters requires expertise and is associated with

high operational costs, making them expensive to run. In
essence, micro air sensors provide a low-cost alternative, where
the higher time resolution allows for the detection of shorter-
lived sources or of sources from wind directions which are only
prevalent for a short part of the day.

Further to the above, in many cases, it will not be possible to
perform a local calibration of the micro air sensors, and so
examining and emphasizing the advantages and limitations of
the raw versus calibrated sensor data can be valuable for those
trying to replicate this work. In Figure 6, the hourly, daily, and
monthly patterns are basically the same in the raw data as in
the calibrated data, just with a different magnitude; this might
indicate that even uncalibrated data could be useful for
distinguishing between local sources with likely short-term
impacts and more regional sources that have longer-term
impacts or for comparing the relative impacts of sources at
different times of the day. However, in Figure 7, the
uncalibrated data show the highest concentrations associated
with winds from the SW, while the calibrated data do not; this
is potentially a major limitation of using uncalibrated data
when relying only on bivariate polar plots using raw values of
air sensors for source identification.
4.4. PM2.5/PM10 Ratio. The ratios below 0.3, represented

in blue in Figure 10a,c, indicate that PM10 is the primary
pollutant originating from windblown and resuspended dust
due to traffic. A higher ratio of PM2.5/PM10 (>0.5),
represented in yellow in Figure 10a,c, shows a higher fraction
of fine (PM2.5) than of coarse (PM2.5−10) mass which is either
emitted from direct burning of biomass or vehicular emissions
or by the reactions of nitrogen oxides and sulfur oxides with
oxidants such as OH radicals and ozone to form secondary
nitrate and sulfate aerosols, considering the background
activities.52 Most of the data represent a ratio of about 0.5,
with a typically strong correlation between PM2.5 and PM10
(Figure 10b). Since micro air sensors are not filter-based but
can generate fine scale PM data as highlighted in the sections
above, the PM2.5/PM10 ratio in scatter, particle count, and
bivariate polar plots using the concentrations of the reported
PM2.5 (calibrated) and PM10 (e.g., from the Teledyne API PM
Mass Monitor) is a useful model to classify sources of the
reported PM tied to the wind speed−direction and background
activities. This is useful for signals linked to the potential
components of the reported PM classification. Existing works
have shown that PM2.5/PM10 ratios >0.5 signify sources of
particulate matter characteristic of fine aerosols and secondary
particulates: namely, NO3

−, NH4
+, and organics. In other words,

lower ratios are indicative of coarse particles.53,54 The
suitability of distinguishing between PM2.5 and PM10 sources
using this approach is echoed in ref 47. This is useful and
applicable for extracting source features of PM2.5 with fine scale
data from micro air sensors if combined with PM10
measurements. By way of demonstration, we used the
calibrated PM2.5 and the Teledyne API PM Mass Monitor
PM10 data from the same site because the AirGradient Open
Air micro air sensor is not suitable for measuring PM10 as
mentioned in the introductory part of this work. It is
noteworthy that the PM2.5/PM10 ratio analysis presented in
this work is unachievable without the PM10 data from the
reference grade Teledyne PM Mass Monitor data. However,
other micro air sensor technologies suitable for reporting PM10
data such as those offered by QuantAQ which combine
different technologies (i.e., Plantower and Alphasense OPC-
N3 for PM2.5 and PM10, respectively) may provide this valuable
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information for these types of analysis. Per the background
activities at this study site for this period, we infer that
vehicular emissions and biomass burning are major sources of
observed PM2.5. This information is desirable in major parts of
Africa for clean air solutions considering the increasing use of
different micro air sensor technologies for air quality
campaigns. Also, the capability of using fine scale micro air
sensor data for understanding local sources of PM2.5 are useful
for regulatory bodies to mitigate air pollution in these types of
environments.48,55,56 As mentioned, lower ratios point to
mainly natural sources such as sand, resuspended dust, and
long-range transport (windblown) of dust, a major source of
air pollution in Africa and linked to harmattan in Western
Africa.30 As noted in ref 57, NO3

− is associated with sources
such as soil dust, coal combustion, shipping emissions, sea salt,
industrial emissions, biomass burning, and vehicle emissions.

5. CONCLUSIONS
We compound emerging evidence on the usefulness of air
sensor data to support air pollution mitigation in environments
where this information will be more desirable. We first
compared raw PM2.5 data from a micro AirGradient PM
monitor to a reference grade monitor Teledyne API PM Mass
Monitor T640. The AirGradient overestimated PM2.5 values
with an r2 of 0.83 and mean absolute error (MAE) of 5.44 μg
m−3. We improved the raw data using an MLR model,
reducing the MAE to 1.43 μg m−3. We leverage the 3 sets of
reported PM2.5 data (raw, calibrated, and reference grade) to
provide insights into PM2.5 sources. The results show that out-
of-the-box measurements are useful for source identification,
with caveats highlighting the need for calibration. Due to the
complexity of the site and the limitation of air sensors, we were
only able to link the observed dominant wind speed−
directions to prevailing background activities such as vehicles
and biomass burning from dominant northwesterly winds. This
study has shown that the raw high-resolution data from air
sensors are useful for source identification and relying on
bivariate polar plots has some degree of limitation, especially if
these are carried out in an environment with no capabilities of
calibrating the air sensor data. To account for this, we
recommend a time series plot as a function of wind−direction
as shown in this study. We also observed multiple sources at
this site for this period, although concentrations vary from each
wind sector. We have shown in this study the usefulness of a
simplified calibration methodology for improving out-of-the-
box measurements from low-cost PM air sensors to provide
meaningful insights for source identification. We recommend
long-term data collection at this site to provide an overview of
long-term wind component data on the distribution of PM2.5.
Furthermore, in this study, we only make use of hourly data
from the micro air sensors, as this is the time resolution for
which reference data were available for calibration. However,
the sensors are capable of higher (5 min) temporal resolution,
which might provide further insights into local sources with
short-duration impacts. Further study is needed to evaluate the
usefulness of such even higher temporal resolution data.
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