
HAL Id: hal-04831761
https://hal.science/hal-04831761v1

Submitted on 11 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Seeking universal approximation for continuous limits of
graph neural networks on large random graphs

Matthieu Cordonnier, Nicolas Keriven, Nicolas Tremblay, Samuel Vaiter

To cite this version:
Matthieu Cordonnier, Nicolas Keriven, Nicolas Tremblay, Samuel Vaiter. Seeking universal approx-
imation for continuous limits of graph neural networks on large random graphs. Asilomar 2024 -
Asilomar Conference on Signals, Systems, and Computers, Oct 2024, Pacific Grove, United States.
pp.1-5. �hal-04831761�

https://hal.science/hal-04831761v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Seeking universal approximation for continuous
limits of graph neural networks on large random

graphs.
Matthieu Cordonnier

GIPSA-lab
Université Grenoble Alpes

Grenoble, France

Nicolas Keriven
IRISA
CNRS

Rennes, France

Nicolas Tremblay
GIPSA-lab

CNRS
Grenoble, France

Samuel Vaiter
Laboratoire J. A. Dieudonné

CNRS
Nice, France

Abstract—We propose a notion of universality for graph neural
networks (GNNs) in the large random graphs limit, tailored for
node-level tasks. When graphs are drawn from a latent space
model, or from a graphon, GNNs on growing graph sequences are
known to converge to limit objects called “continuous GNNs", or
cGNNs. A cGNN inputs and outputs functions defined on a latent
space, and as such, is a non-linear operator between functional
spaces. Therefore, we propose to evaluate the expressivity of a
cGNN through its ability to approximate arbitrary non-linear
operators between functional spaces. This is reminiscent of
Operator Learning, a branch of machine learning dedicated to
learning non-linear operators between functional spaces. In this
field, several architectures known as Neural Operators (NOs) are
indeed proven to be universal. The justification for the universality
of these architectures relies on a constructive method based
on an encoder-decoder strategy into finite dimensional spaces,
which enables invoking the universality of usual MLP. In this
paper, we adapt this method to cGNNs. This is however far from
straightforward: cGNNs have crucial limitations, as they do not
have access to the latent space, but observe it only indirectly
through the graph built on it. Our efforts will be directed toward
circumventing this difficulty, which we will succeed, at this stage,
only with strong hypotheses.

Index Terms—graph neural networks, random graphs, neural
operators.

I. INTRODUCTION

Despite being state-of-the-art in many practical situations,
the properties of graph neural networks (GNNs) remain
poorly understood. The dominant approach for theoretical
analyses of GNNs is based on combinatorial approaches,
mostly via graph isomorphism testing and comparison to the
Weisfeiler-Lehman (WL) heuristic [1]. However, this point
of view is somewhat of limited interest for large graphs and
node-level tasks. Large graphs are better understood through
their macroscopic properties and patterns rather that their
exact adjacency structure. Moreover, isomorphism testing is
inherently graph-level, and bears limited connection to node-
level tasks. In general, notions of expressive power for GNNs
in the context of node-level tasks are somewhat scarcer. In this
study, we propose a notion of expressive power for GNN in
the large graphs limit, tailored for node-level tasks.

A recent axis of research make use of statistical models to
explore properties of GNNs on large-scale graphs [2]–[4]. In

particular, when graphs are drawn from a latent space random
graph model [5], spectral GNNs with polynomial filters [3],
[6], as well as some message-passing GNNs [7] are known
to converge toward some limit architectures as the size of the
input graphs tends to infinity. These limit architectures are
known as continuous graph neural networks (cGNNs), they
are the “continuous counterparts” of discrete GNNs. While
GNNs process graph signals, cGNNs process functions defined
on the latent space.

In the literature, limits of GNNs on large random graphs are
used to gain insight on generalisation [8], transferability [2],
[6], as well as expressivity capabilities of GNNs Keriven et al.
[9], Keriven and Vaiter [10], and Böker et al. [11]. Here, we
focus on expressivity aspects. Previous work from Keriven and
Vaiter [10] explore the range of output functions that a cGNN
can compute for a predetermined input signal, while Böker et al.
[11] extend the WL test to the continuous setting. In this paper,
we propose to consider the limit cGNN as a non-linear operator
between functional spaces, and explore the range of non-linear
operator that cGNNs can approximate. This is reminiscent of
another branch of machine learning called operator learning
(OL), which will be the starting point of our theoretical analysis.
Technical proofs are available at Cordonnier [12].

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Latent position random graph model

The latent space is a probability space (X , P ), where X ⊂
Rd is assumed to be a compact subset of a potentially high-
dimensional real vector space. The latent space model is a triplet
(X , P,W ) where W : X 2 → [0, 1] is a connectivity kernel. A
random graph drawn of size n from the model has unobserved
random latent positions X1, . . . , Xn ∈ X as vertices, and a
random adjacency matrix A = (ai,j). The random variables
Xi and ai,j are distributed according to:

X1, . . . , Xn
i.i.d.∼ P and ai,j

i.i.d.∼ Ber (W (Xi, Xj)) .

The latent position model encompasses many important model
such as the stochastic block model [13], as well as Erdös-Rényi,
and geometric random graph models [14], [15]. Notice that,



by definition, the latent positions of the node are unobserved
and that the latent space is inaccessible.

B. Graph neural network and graph neural network limits

1) Graph neural networks: GNNs are based on the message
passing [16] paradigm in which the features of each node
are sequentially updated by aggregating the features of its
neighbours. Classically, this is implemented using a matrix
representative of the graph [17], such as the adjacency matrix
or the graph Laplacian, with various normalizations. Let Gn

be a graph of size n and S be a graph matrix representative,
and Z = Z(0) ∈ Rn×d0 be an input graph signal. A traditional
GNN sequentially update the graph signal as follows:

Z(l+1) = ρ

(
Z(l)θ

(l)
0 + SZ(l)θ

(l)
1 + 1n

(
b(l)

)⊤
)

, (1)

where ρ is a point-wise activation function such as ReLU, 1n
is the all-ones vector, and the θ

(l)
i ∈ Rdl×dl+1 , b(l) ∈ Rdl

are the learnable parameters. The output of the GNN is
Φ(S,Z) = Z(L) ∈ Rn×dL . Additionally, we assume that
GNNs can compute global pooled quantity for the graph:
A(l) = 1⊤nZ

(l)/n, that can be transmitted as a new node
feature (equal for all nodes) in subsequent layers.

2) Limits of graph neural networks on large random graphs:
When graphs are drawn from a latent space model (X , P,W ),
there are several cases where a matrix representative S is
known to converge to an operator S [10]. For example, S can
be the normalized random adjacency matrix A/n and S the
integral operator

TW : L2(X , P ) −→ L2(X , P )
f 7−→

∫
W (x, ·)f(x) dP (x) .

(2)

Consequently, it is natural to define a continuous counterpart
of the GNN Φ(S, ·). We call it a continuous GNN (cGNN) and
denote it by Φ(S, ·). Rather that processing discrete signals on
a random graph, the cGNN processes functions on the latent
space X . The continuous counterpart of Φ(S, ·) shares the
same set of learnable parameters from Equation (1). Starting
from an input function f = f (0) ∈ L2(X , P ), the layer-wise
update rule is

f (l+1) = ρ

((
θ
(l)
0

)⊤
f (l) +

(
θ
(l)
1

)⊤
Sf (l) + b(l)

)
, (3)

where ρ, the θ
(l)
i , and the b(l), are the same as in Equation (1).

The output is then f (L). Finally, global pooling here correspond
to the integral: A(l) =

∫
f (l)dP .

Several authors [3], [4], [7] have shown that, in many cases,
the discrete GNN Φ(S, ·) on random growing graphs converges
to its continuous cGNN counterpart Φ(S, ·). This convergence
is described through a sampling procedure. Let ιX denote
the sampling operator at the random latent positions X =
(X1, . . . , Xn), that is

ιXf = (f(X1), . . . , f(Xn)) .

Then, Φ(S, ·) is said to converge to Φ(S, ·) if

∥Φ(S, ιXf)− ιXΦ(S, f)∥ −→
n→∞

0 (4)

in probability for a certain class of functions f in L2(X , P )
and a certain norm ∥ · ∥.

C. Expressivity of continuous graph neural networks as non-
linear operators.

A GNN is a non-linear operator which inputs a signal
on a graph and outputs another signal on the same graph.
Therefore, a natural notion of expressive power can be the
following: what is the range of non-linear transformations
between graph signals that can be approximated by GNN? This
is difficult to define because the graph – and consequently the
signal – can be of any size. Hence, instead of considering the
discrete GNN directly, we are going to focus on its continuous
counterpart, the cGNN. We will consider expressivity based on
usual universal approximation property, adapted to our context,
which definition is given below.

Definition 1 (Universal Approximation (UA) Property.). Let
H be a Hilbert space, and G ⊂ C(H,H) be a family of
continuous maps from H to itself. We say that G has the
universal approximation (UA) property if the following is
satisfied. For any K ⊂ H compact, for any T ∈ C(H,H),
for any ε > 0, there exists a Ψ ∈ G such that

sup
f∈K
∥Ψ(f)− T (f)∥H ⩽ ε . (5)

In the case where Φ(S, ·) is a GNN which tends to a
continuous counterpart Φ(S, ·) as in Equation (4), we have the
approximation Φ(S, ·) ◦ ιX ≈ ιX ◦ Φ(S, ·) for large random
graphs. Hence, we expect that the expressivity of Φ(S, ·) will
be a good estimation of the one of Φ(S, ·).

III. OPERATOR LEARNING

A. A brief review of operator learning

The branch of machine learning devoted to learn unknown
operators between infinite dimensional function spaces is
known as operator learning. It is a recent and active topic
which aims to extend deep learning methods from finite to
infinite dimensional settings. Given a dataset of pairs (f, g),
where f ∈ U and g ∈ V belong to some function space, the
goal is to learn a non-linear operator T : U → V such that
T (f) = g. This is especially relevant in the context partial
differential equations (PDE), for learning the operator that gives
the solutions of a PDE. Can we, in a deep learning fashion,
learn the non-linear operator that inputs coefficients (usually
non constant, therefore functions) and outputs a solution of a
PDE? The modern types of deep learning architectures used in
this context are called neural operators (NOs) [18]. Our interest
into NO lies in the fact that universal approximation theorems
do exist for them. Hence, we will try to adapt the methods for
proving UA from the context of NO to our problem of cGNN.

B. Universal neural operators

Neural operators’ power strongly rely on the universality of
MLP between finite dimensional vector spaces. Therefore, the
design of universal NO architecture are based on an encoder-
decoder decomposition through finite dimensional spaces. Let



H be a Hilbert space and T ∈ C(H,H), Kovachki et al. [18]
proves that T can be approximately factorised via the following
encoder/decoder method. Let ε > 0 and K ⊂ H compact,
there is n ∈ N∗ and three continuous maps E : H → Rn ,
h : Rn → Rn and D : Rn → H such that :

sup
f∈K
∥T (f)−D ◦ h ◦ E(f)∥B < ε . (6)

Let (φi) be an orthonormal basis of H. It turns out that the
encoder E and the decoder D can be chosen as the projection
on the truncated basis

E : H −→ Rn

f 7−→ (⟨f, φ1⟩, . . . , ⟨f, φn⟩) ,
and the expansion

D : Rn −→ H
x 7−→

∑n
i=1 xiφi .

Moreover, since h is a continuous map between finite dimen-
sional spaces, it can be approximated by a MLP hMLP ≈ h.

Equation (6) can be summed up using the following
approximately commutative diagram, where the dashed path
in an approximation of the plain path.

K ⊂ H H

K ⊂ Rn Rn

K′ ⊂ H H

T

(⟨·,φi⟩)ni=1

idH

∑n
i=1 xiφi

h

∑n
i=1 xiφi

T

(⟨·,φi⟩)ni=1

idH (7)

This decomposition can be extended to more general Banach
spaces having the so-called approximation property, that is,
in which the identity map can be approximated by finite rank
linear operators on compact subsets.

Overall, the following family has the UA property from Def-
inition 1: {

f 7→
n∑

i=1

hMLP ([⟨f, φi⟩]ni=1)φi

}
, (8)

where n ranges over N∗ and hMLP ranges over MLPs from Rn

into itself. This is actually not a difficult problem. Considering
that an orthonormal basis is usually unknown, the last step
to get universal NOs is to learn the φi. This is not difficult,
since the φi are simply some function on the domain of a
PDE, which is known, one can replace them by MLPs directly
parametrized on the domain.

This last point is important because, until then, everything
was transportable to our cGNN approximation setting. However,
replacing the φi by MLPs is not possible in our cGNN settings,
because the counterpart of the domain of the PDE is the
latent space X . The latent space X is by essence unknown

inaccessible, it is impossible to train any MLP defined on X .
Instead, cGNNs only have access to the operator S. However,
if S is full-rank, its basis of eigenvectors is indeed a basis for
L2. This is the strategy we exploit in the rest of the paper.

IV. HILBERT SPACE AND SELF-ADJOINT KERNEL AND
CONTINUOUS GRAPH NEURAL NETWORKS

Back to our setting, H = L2(X , P ). We suppose that the
operator S is self-adjoint and compact, for example when S =
TW for W ∈ L2(X 2, P ⊗P ) and symmetrical. In this section,
(φi)i⩽0 is an orthonormal Hilbert basis or eigenfunctions of
S with regard to the eigenvalues (λi)i⩾0. We assume that the
eigenvalues are all non-zero and have no multiplicity greater
than one.

Our goal is to adapt the universal family from Equation (8)
to get a family of cGNNs. However, the eigenfunctions φi are
unknown, and the question is to know if cGNNs can recover
them, or at least approximate them, without knowledge of the
latent space X ? Recall that among cGNNs’ operation there are
filtering, composition by a MLP, global pooling, and so on.

A. Ambiguity of sign and orthant assumption

Observing Equation (8), notice that this universal family
depends on the choice of an orthonormal eigenbasis of S.
Indeed, under our assumptions, the eigenbasis of S is defined
up to sign flip of each eigenfunctions. In other words, when
diagonalizing S, one gets the {ϕi} with random sign flips
that might change each time, which prevent generalization. In
particular, the expression

n∑
i=1

hMLP ([⟨f, φi⟩]ni=1)φi ,

is not invariant to sign flip of the φi, due to the composition by
the MLP hMLP. Remark that, in contrast, usual linear filtering
is always independent from any choice of the eigenbasis, since
f 7→ Sf =

∑n
i=1⟨f, φi⟩φi is naturally invariant to sign flip of

the φi. But here we are indeed aiming to perform non-linear
filtering.

To resolve this fundamental problem of sign ambiguity, we
make the strong assumption to restrict our input compact set to
an orthant of the basis {ϕi}. Without lost of generality, since
the ϕi are defined up their signs, we consider the positive
orthant:

O+ = {f ∈ H | ⟨f, φi⟩ > 0 ∀i ∈ N∗} . (9)

We will then assume that K ⊂ O+.

B. Approximation of the eigenfunctions by filtering

From now, we restrict to compact sets K ⊂ O+. For all
eigenvalue of S, denote 1λi the indicator function of λi. It is
the function that maps λi to 1 and λj to 0 if i ̸= j. Notice
that, in virtue of the continuous functional calculus of compact
self-adjoint operator, the filtering 1λi

(S) is the orthoprojector
on the eigenspace ker(S− λi id). Hence since we assume this
eigenspace to be one-dimensional, this yields

1λi(S)f = ⟨f, φi⟩φi . (10)



Moreover, since φi is unitary, and from Equation (9), for any
f ∈ K ⊂ O+,

∥1λi(S)(f)∥ = |⟨f, φi⟩| = ⟨f, φi⟩ > 0 . (11)

As a consequence, we can define on K ⊂ O+:

1λi(S)(f)

∥1λi
(S)(f)∥

= sgn (⟨f, φi⟩)φi = φi . (12)

1) Perfect eigenprojector filters: As a result from Equa-
tions (10) to (12), the following family is universal on compacts
K ⊂ O+.{

f 7→
n∑

i=1

hMLP
(
[∥1λi(S)f∥]ni=1

) 1λi(S)f

∥1λi
(S)f∥

}
.

In addition, the indicator functions 1λi
can be replaced by

triangles function such as in Figure 1. In fact, as long as a
real map Fi matches with 1λi

on all the eigenvalues of S,
we have the equality 1λi

(S) = Fi (S). Since the spectrum of
S in discrete, functions Fi as defined in Figure 1 are valid
candidates for that.

x

Fi(x)

−1 1λi

1

0

Fig. 1. The function Fi is defined as a triangle function whose angle at the
peak is tight enough to match with 1λi

on the spectrum of S.

These functions Fi can be easily parametrised using two
parameters: the position and the angle of the peak. Moreover,
they do not rely on the knowledge of the eigenvalues λi. As a
consequence, the following family is also universal on compacts
K ⊂ O+:{

f 7→
n∑

i=1

hMLP
(
[∥Fi(S)f∥]ni=1

) Fi(S)f

∥Fi(S)f∥

}
.

Remark 1. Let F ∈ C(σ(S),R), since

F (S) : f 7→
∞∑
i=1

F (λi)⟨f, φi⟩φi ,

we have that for all f ∈ O+, F (S)(f) = 0 if and only
if F (λi) = 0 for all i, that is, F (S) is the identically null
operator. Therefore, in the sequel, we adopt the notational
convention that, for f ∈ O+,

F (S)(f)

∥F (S)(f)∥
= 0

if F (S) = 0L(H).

2) Polynomial filter approximation: In practice, polynomial
filters are used for convolutional neural networks. In this section,
we replace the indicators from Equation (10) by polynomial
approximations, as a consequence of Stone-Weierstrass theorem.
Our result rely on the following lemmas.

Lemma 1. Let i ⩾ 0, for any compact K ⊂ H, for any ε > 0,
there is a polynomial Q such that

sup
f∈K
∥Q(S)(f)− 1λi

(S)(f)∥ ⩽ ε . (13)

Lemma 2. Let i ⩾ 0, for any compact K ⊂ O+, for any
ε > 0, there is a polynomial R such that

sup
f∈K

∥∥∥∥ R(S)(f)

∥R(S)(f)∥
− φi

∥∥∥∥ ⩽ ε . (14)

From these lemmas, we obtain that the following family is
universal for K ⊂ O+:{

f 7→
n∑

i=1

hMLP
(
[∥Qi(S)f∥]ni=1

) Ri(S)f

∥Ri(S)f∥

}
. (15)

Finally, remark that this last family can be considered as a
family of cGNNs (3): they can perform polynomial filtering
by several rounds of message-passing, and all operations
required to compute continuous transformations such as the
inner product, the L2 norm, multiplication, square root, and
so on, can be approximated by MLPs and global pooling
to integrate. At the end of the day, we obtain the following
theorem.

Theorem 1. Assume that S is compact, full-rank, with simple
eigenvalues. Then, cGNNs are universal for K ⊂ O+.

V. CONCLUSION AND DISCUSSION

In this work, we proposed a notion of universality for cGNNs
based on the capability to approximate non-linear continuous
operators between function spaces. Since the limits of GNNs
on large random graphs are instances of such operators, in their
equivariant form, where both the input and the output spaces
are function spaces, we investigated the possibility to build
universal cGNN families. Eventually, we obtained a family of
this kind in Theorem 1. Yet, we acknowledge that our result
necessitate strong assumptions as of now, and opens many
paths for future investigations. Let us describe some of them.

In Equation (8), we faced the issue of sign ambiguity of
the eigenvectors as well possible null components on some
eigenspaces. We circumvented this difficulty by defining the
set O+ and deciding to restrict to compact subsets of L2(X , P )
contained in O+. This is quite a strong assumption. A possible
solution to circumvent this could be to use what is known as
positional encoding. Positional encoding is a method that aims
to enhance the expressive power by preprocessing. The idea
is that instead of feeding a model with raw data, we feed a
version of this data that has been judiciously transformed, in
the hope that it would help the model in its decision process.
In the context of graph learning a popular positional encoding
is to make use of the eigenvectors of the Laplacian (or another



suitable representative operator at hand). In practice, one has
to be careful to the bias induced when making an arbitrary
choice for the eigenbasis of the Laplacian. In the case of
single-dimensional eigenspace, as we have assumed here, this
bias is precisely a sign ambiguity. The authors in Lim et al.
[19] proposed to alleviate this issue with an architecture that is
invariant to sign flip of eigenvector. See also Keriven and Vaiter
[10] for a highlight of positional encoding influence in terms
of expressiveness. For example, we could try to replace the
eigenfunctions from Equation (8) by a sign invariant version

φi ← hMLP
i ◦ φi + hMLP

i ◦ (−φi)

where, hMLP
i are arbitrary MLPs. The problem will be to

determine the approximation power of such operators.
Another unexplored path relates to the use of other message

passing operations, such as graph attention [20] (GAT), which
are known to produce converging GNNs on random graphs [7].
We restricted to graph filtering in this study, where S is a
linear operator. On the contrary, continuous GAT generalizes
to non-linear operators [7], which may solve some of the issues
we encountered in our studies.
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