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signatures in females with early-stage
Parkinson’s disease
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S. L. Schaffner 1,2,3,10, W. Casazza 2,4,10, F. Artaud5, C. Konwar2, S. M. Merrill2, C. Domenighetti 5,
J. M. Schulze-Hentrich6, S. Lesage 7, A. Brice7, J. C. Corvol 7,8, S. Mostafavi2,3,4,9, J. K. Dennis1,2,3,4,11,
A. Elbaz 5,11, M. S. Kobor 1,2,3,11 & DIGPD Study Group*

Although sex, genetics, and exposures can individually influence risk for sporadic Parkinson’s disease
(PD), the joint contributions of these factors to the epigenetic etiology of PD have not been
comprehensively assessed.Here,weprofiled sex-stratifiedgenome-wide bloodDNAmpatterns, SNP
genotype, and pesticide exposure in agricultural workers (71 early-stage PD cases, 147 controls) and
explored replication in three independent samples of varying demographics (n = 218, 222, and 872).
Using a region-based approach, we found more associations of blood DNAm with PD in females (69
regions) than inmales (2 regions,Δβadj| ≥0.03, padj ≤ 0.05). For 48 regions in females, models including
genotype or genotype and pesticide exposure substantially improved in explaining interindividual
variation in DNAm (padj ≤ 0.05), and accounting for these variables decreased the estimated effect of
PD on DNAm. The results suggested that genotype, and to a lesser degree, genotype-exposure
interactions contributed to variation in PD-associated DNAm. Our findings should be further explored
in larger study populations and in experimental systems, preferably with precise measures of
exposure.

Parkinson’s disease (PD) is a neurodegenerative disorder, the prevalence of
which is increasingworldwide, affecting an estimated9.4million individuals
as of 20201,2. PD is associated with aggregations in the brain known as Lewy
bodies, composed primarily of α-synuclein protein, which are confirmed
upon post-mortem examination and begin accumulating years to decades
prior to the onset of motor symptoms and clinical diagnosis3. Beyond the
brain, inflammatory changes are also associated with PD, as reduced lym-
phocyte levels can be detected prior to motor symptom onset4. As clinical

PD progresses over an approximately 14-year period from diagnosis to the
most advanced disease stage (Hoehn and Yahr stage V), studying living
individuals at the earliest stage of the disease may provide insight into its
molecular etiology at a time when sufficient symptoms have appeared for
diagnosis and similar pathology to the pre-symptomatic stage is assumed to
be present5. While approximately 10% of PD cases show monogenic
inheritance, the remaining 90% are considered “sporadic,” with common
genetic variations and environment/lifestyle factors influencing the
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etiology6. The complex etiology, late-life, gradual onset of symptoms, and
the presence of inflammatory changes and Lewy bodies prior to clinical
diagnosis of sporadic PD highlights the need for a heightened under-
standing of early-stage disease pathogenesis, using peripheral tissue samples
such as blood, saliva, and cerebrospinal fluid (CSF) that can be obtained in a
minimally invasive manner in living patients7. Improving our under-
standing of molecular changes associated with early PD could also present
new opportunities for early interventions, that ideallymight slow the course
of disease progression8.

DNA methylation (DNAm), the most commonly studied epigenetic
mark in human populations, may embed genetic and environmental con-
tributions to PD risk, and when measured in blood, it can also reflect
immune-based changes observed in early PDpathogenesis4,9. BloodDNAm
changes have been detected in prodromal PD and in patients with a disease
duration of 4 years or less (Hoehn and Yahr stage ≤3), suggesting that
DNAm could be used to assess molecular changes in patients with early- to
mid-stage PD10,11. However, although several studies reported PD-
associated changes in blood DNAm at site-specific and regional levels, the
number of associations replicated between studies decreased as sample size
increased, with the largest blood-based PD epigenome-wide association
study (EWAS) to date reporting that only two cytosine-guanine (CpG) sites
remained after a meta-analysis consisting of over 2000 individuals of Eur-
opean descent (1132 cases, 999 controls)10,12–15. This resembles the “Win-
ner’s Curse” effect commonly discussed in genetic analysis, where genome-
wide association (GWAS) studies show low replication across independent
studies16. The “Winner’s Curse” in PD EWAS may be explained by con-
siderable heterogeneity in study design, population structure, disease pre-
sentation, pathology, genome, individual lifestyle factors, and exposure
history across individuals diagnosed with PD. As such, a balance between
achieving sufficient power for detection of possible PD-associated DNAm
differences while addressing the wide range of variation in PD and its risk
factors is desirable for the next generation of PD EWAS studies.

In addition, most PD EWAS to date have been performed in patients
with advanced PD, and themajority used single-CpG approaches, whichdo
not easily capture the spatially correlated nature of DNAm. A few studies
applied region-based approaches including comb-p, DMRcate, and Bum-
pHunter, which can address this spatial correlation and reduce themultiple
test correction burden in high-dimensional EWAS; however, replication of
results between these studies was limited10,17,18. Other region-based
approaches such as the recently developed CoMeBack have built upon
DMRcate by identifying correlatedDNAmpatternswithin individuals in an
unsupervised manner, which has the potential to improve reproducibility
between studies19. Taken together, the extent to which regional changes in
DNAm early in the course of PD progression can be consistently detected
across different populations remains to be elucidated.

At a conceptual level, DNAmpatterns are associated with many of the
samegenetic and environmental factorswhichunderpinPDrisk, presenting
additional challenges in epigenetic studies of PD. For instance, single
nucleotide polymorphisms (SNPs) contribute to approximately 20% of
variation in population blood DNAm levels20,21. Sporadic PD also has a
genetic component, as evidenced by twin studies indicating an overall
heritability rate of 27%, with 90 common genetic variants accounting for
roughly 22%of this risk22–29. In attempts to explain the substantial remainder
of PD risk not attributed to genetic variation, a number of environmental
and lifestyle-related factorshave alsobeen showntobe associatedwith either
increased (e.g., pesticides, dairy intake, solvents, head trauma) or decreased
(e.g., smoking, caffeine intake, physical activity, ibuprofen use) risk of PD at
a population level8,30. Among these, pesticide exposure is one of the most
well studied environmental risk factors for the development of PD, with
support from both epidemiological and experimental research. Case-
control and cohort studies in different countries have shown replicable
associations between occupational or environmental exposure to pesticides
and PD incidence31,32. Early- and mid-life exposure to environmental tox-
icants has been hypothesized to initiate the abnormal accumulation of α-
synuclein in some individuals, possibly to a different extent in those with

genetic risk factors for sporadic PD8,29. Occupational and ambient pesticide
exposure also influence blood DNAm levels in PD patients and in adults
without PD, possibly in a sex-specific manner33–35. However, the mechan-
isms by which these environmental insults interact with the genome are not
well understood.

The joint impacts of SNP genotype and exposure on DNAm patterns
represent one potential mechanism for the contribution of such gene-
exposure interactions to PD risk, highlighting the importance of obtaining
genotyping and DNAm data from the same individuals for surveying gene
(G) × exposure (E) effects in PD epigenomics36,37. While a small number of
studies have separately assessed impacts of genotype or pesticide exposure
on DNAm patterns in PD patients, further research is needed to replicate
these associations and assess G × E interactions. To the best of our knowl-
edge, only two studies examinedDNAmpatterns in blood fromPDpatients
with regard to genotype, neither of which used genetic data from the same
individuals, and instead used publicly available GWAS data to investigate
associations between DNAm and genotype in PD12,38. With respect to
pesticides, whether exposure impacts the association between PD and
altered DNAm levels is not yet fully understood39. However, exposure to
organophosphate (a widely used insecticide) affected DNAm patterns dif-
ferently inPDpatients andhealthy controls, suggestingpossible interactions
between exposure, DNAm, and disease34. A recent small EWAS in 20
individuals with PD also reported blood DNAm differences between
patients who were or were not exposed to organochlorine insecticides,
though, studies with larger sample sizes are required to validate these
findings40.

Finally, biological sex also affects PD incidence, onset, and presenta-
tion, as well as influencing variation in DNAm41–44. For example, the inci-
dence of PD is 1.5–2-fold higher in males than in females, and the origin of
this difference largely remains to be elucidated42,43,45. Males with PD are also
more likely to experience cognitive decline and faster progression of diffi-
culties with activities of daily living, while females are more likely to
experience dyskinesia42. Understanding the impact of PD in each sex is
important, particularly as females are more likely to experience side effects
of current PD treatments43. In addition, the prevalence of several of the
exposures associated with PD risk (e.g., smoking, pesticides) is considerably
different in men and women41. Lastly, sex differences in routes of exposure
(e.g., household vs. occupational pesticide use) andmechanismsof exposure
(e.g., bio-accumulation in adipose tissue) are often present andmay ormay
not be reflected in exposure measurement46–48. However, most genetic and
epigenetic studies of PD to date have opted to control for sex as a covariate
rather than examining sex-specific aspects of PD etiology, with the excep-
tion of a recent sex-stratified EWAS in post-mortem brain10,12,14,15,24,25,29,49.

Overall, the gaps in existing research highlight the opportunity for
determining thedegree towhichfindings fromDNAmstudies inPDmaybe
influenced by differences in sex, genetic background, and/or exposure his-
tory, and further research in patients in the early stages of the disease is
required to better understand the underlying biology at a time when some
interventionsmight bemost impactful. In this study, we leveraged a unique
sample of French agricultural workers with early-stage sporadic PD
(TERRE) for whom detailed pesticide exposure history, whole-blood
DNAm, and genotype data were available to identify possible region-based
blood DNAm changes associated with early-stage PD. Individuals from
TERRE were stratified by sex due to sex differences in PD, autosomal
DNAm, and rates of pesticide exposure41–45,50. DNAmsignatures of PDwere
subsequently replicated in three independent samples, and tested for their
sensitivity to individual genotype and exposure to pesticides.

Results
Predicted immune cell type composition was largely unaltered
between PD cases and controls in TERRE
As immune cell type differences have been reported in PD, we first used
DNAm profiles to bioinformatically derive blood cell type proportions in
TERREand test forpossible case-control shifts4,10,12. For comparison,we also
predicted cell type composition from DNAm profiles in three independent
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samples with differing demographics (Parkinson’s Environment andGenes
study, wave 1 (PEG1), including individuals with disease duration ≤3 years
recruited from agricultural regions in California, n = 539; Drug Interaction
With Genes in Parkinson’s Disease (DIGPD), including individuals with
disease duration ≤2 years recruited from clinics in France, n = 222; and
System Genomics of Parkinson’s Disease (SGPD), including individuals of
varying disease duration recruited from clinics in Australia and New
Zealand, n = 1751), two of which (PEG1 and SGPD) were previously
published by others12,15 (Fig. 1).

Female PD cases from TERRE showed nonsignificant trends
(padj > 0.05) toward lower neutrophil proportion and higher natural killer
(NK) cell proportion, in contrast to the decreased NK cells and elevated
neutrophils reported previously with PD status and recapitulated in our
analysis of DIGPD, PEG1, and SGPD (Fig. 2a, Supplementary Fig. 1A)4,10,12.
Conversely, males with PD had nonsignificant trends (padj > 0.05) toward

decreased CD8+ and CD4+ naive T cell proportions and decreases in other
lymphocytes and increases in neutrophils, more consistent with previously
reported immune cell type changes inPDandwith the cell type composition
profiles we calculated in the three independent samples (Fig. 2b, Supple-
mentary Fig. 1B)4,10,12. To reduce the influence of these cell type proportions
on DNAm in TERRE, robust principal components (PCs) of cell type
composition were included as covariates in all downstream analyses.

Sex-specific differential DNA methylation was associated with
early-stage PD in TERRE in region-based epigenome-wide
association analysis
Adopting a reference co-methylated region (CMR)-based method, which
candetect regionalDNAmpatterns correlatedwithin andacross individuals,
we performed differential DNAm analysis between PD cases and controls
on whole-blood reference CMRs with stratification by sex (n = 100 females

Fig. 1 | Overview of discovery and replication samples assessed in this study.
a Discovery sample (TERRE). b Replication samples (PEG1, DIGPD, and SGPD).
The final numbers of individuals retained after propensitymatching on the indicated

variables 1) between cases and controls, within each sample, followed by 2) with
TERRE are shown.
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and 118 males) (Fig. 3a). 83% of the 42,776 reference CMRs covered in
TERRE (35,561 CMRs) had one or more probes that overlapped with cus-
tom CMRs called directly in TERRE using a minimum Spearman correla-
tion of 0.3 and maximum distance cutoff of 1 kb, indicating good
correspondence between the reference and our dataset19.

With an adjusted p value cutoff of 0.05 and an absolute median CMR
Δβadj (PD case-control DNAm difference) cutoff of 0.03, 69 CMRs were
differentially methylated in the females-only analysis (median |Δβadj|0.044,
IQR 0.035–0.056) (Fig. 4a, Table 1, Supplementary Table 1), and twoCMRs
were differentially methylated in the males-only analysis (median Δβadj

0.047 and 0.038) (Fig. 4b, Table 2), all of which had variable DNAm (range
>0.05 between the 10th and 90th percentiles of median β values for each
CMR) in both sexes except for two CMRs from the females-only analysis
(VSIG1 and chrX:145509155–145509522). Simulations using the pwrE-
WAS tool indicated approximately 80% power to detect this number of
associations in females and 85%power to detect this number of associations
in males, using our significance and effect size thresholds (see Methods)51.
The total number of differentially methylated CMRs passing these thresh-
olds in each sex was higher than expected by chance (female enrichment
padj = 0.006, male enrichment padj = 0.022, 1000 permutations).

Fig. 2 | Predicted immune cell composition in PD cases and controls from
TERRE, stratified by sex. a Predicted cell type proportions in females from TERRE
(n = 100). Dark pink: PD cases; bright pink: controls. b Predicted cell type propor-
tions in males from TERRE (n = 118). Dark blue: PD cases; light blue: controls.

padj > 0.05 for all case-control comparisons (t test with Benjamini–Hochberg
adjustment). Centre line: median; box limits: 25th and 75th percentiles; whiskers:
1.5 × interquartile range.
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In the analysis in females only, CMR size ranged from 7–2606 base
pairs (bp), covering 2–13 EPIC probes (average 368 bp in length, 3 probes
per CMR) (Table 1, Supplementary Table 1). Differentially methylated
CMRs in femalesmapped to 50 genes, including cell signaling proteins (e.g.,
ARAF, ST5,DLGAP1), transcription and translation regulators (e.g., FRX2,
NFATC1, CRTC1), and ion and nucleotide transporters (CACNA1H,
SLC35A1, SLC1A7, and SLC25A18) (Table 1, Supplementary Table 1). In
the analysis in males only, CMRs were 495 and 760 bp in length, covering 2
and5probes, respectively (Table 2).Oneof the twodifferentiallymethylated
CMRs in males mapped to the ANO8 (Cl− transport) and DDA1 (poly-
ubiquitination) genes, while the otherwas annotated toC6orf10 (encoding a
multifunctional, ubiquitously expressedprotein) (Table 2). No differentially
methylated CMRs overlapped between the female- and male-specific ana-
lyses, and all CMRs differentially methylated by PD status in females except
for three (chr3:137228231–137228637, SPO11, and ASRGL1) had little or
no effect in the opposite sex (Supplementary Fig. 2). When males and
females were combined in an additive model, adjusting for the same cov-
ariates as well as for sex, only the chr3:137228231–137228637 CMR met
significance and effect size thresholds; other CMRs had correlated DNAm
patterns between sexes, with median Δβadj < 0.03 (Supplementary Fig. 3).
Overall, these results indicated thatmore PD-associated differential DNAm
was detectable in females from TERRE than in males.

A subset of PD-associated differentially methylated CMRs in
females from TERRE replicated in independent populations
In order to explore the underpinnings of variance in DNAm at PD-
associated differentially methylated CMRs, we conducted replication ana-
lyses in three independent samples with differing demographics (PEG1,
DIGPD, and SGPD). To test for replication and to examine overall con-
cordance in the magnitude of PD-associated DNAm differences at a larger
number of regions, we assessed whether median Δβadj values for CMRs
meetingpadj ≤ 0.05 inTERRE(508CMRs in females, 7CMRs inmales)were
correlated across samples without imposing an effect size cutoff52,53. As the
PEG1 study wasmost similar to TERRE, including individuals with shorter
disease duration living in agricultural regions, we expected DNAmpatterns

in this sample would have the strongest correlation with DNAm patterns
observed in TERRE. CMR Δβadj values were weakly correlated between
TERRE and PEG1 females (r = 0.14, p = 0.075), and uncorrelated between
TERRE and SGPD females (r =−0.096, p = 0.24) (Supplementary Fig. 4).

As overall covariate balance (age, predicted smoking, and predicted
neutrophil proportion) differed between the PD cases and controls in each
replication sample (standardized mean difference (SMD) 0.57–0.86) and
between each replication sample and TERRE (SMD 0.79–2.37), we next
assessed the effects of propensity matching in order to reduce potential bias
related to this imbalance (final n = 218 matched individuals in PEG1,
n = 872 SGPD; SMD 0.54–1.15; Supplementary Table 2). In matched
females, Δβadj values were positively correlated between TERRE and PEG1
(r = 0.23, p = 0.0048) and between TERRE and DIGPD (r = 0.097,
p = 0.029) and showed no correlation between TERRE and SGPD
(r =−0.13, p = 0.11) (Fig. 5a). Of the 69 CMRs differentially methylated at
|Δβadj | ≥ 0.03 in TERRE, 62% of those also covered by the Illumina 450 K
array (26/42) had the same effect direction inPEG1, higher than expected by
chance (padj = 0.014, 1000permutations), as comparedwith 55%and46%of
CMRs with the same effect direction in either SGPD or DIGPD, no greater
than expected by chance (padj > 0.41, 1000 permutations).

Finally, we considered individual CMRs as replicated if they were
differentiallymethylated in the samedirection and at a similarmagnitude to
TERRE (|Δβadj| ≥ 0.03) in at least one other replication sample. Two of the
26 CMRs with the same effect direction in PEG1 had |Δβadj| ≥ 0.03
(NFATC1, chr6:27569167–27570549), as did five of the 32 CMRs with the
same effect direction in DIGPD, including three EPIC array-specific CMRs
(EPIC/450 K shared: MPDU1, chr5:2334885–2335317; EPIC-specific:
DLGAP1, chr5:120966065–120966289, chr13:112860420–112862113;
Fig. 5a, Supplementary Table 3). In males, Δβadj values were uncorrelated
between TERRE and all three matched replication samples
(r =−0.48–0.012, p = 0.52–0.98), no CMRs had |Δβadj| ≥ 0.03 in the same
direction as TERRE, and either one or neither CMR with |Δβadj| ≥ 0.03 in
TERREhad the same sign in TERRE and the replication samples, no greater
than expected by chance (Fig. 5b, Supplementary Table 4, padj > 0.72, 1000
permutations).

Fig. 3 | Overview of pesticide exposure, DNA methylation, and genotype data
generation and analysis in TERRE. a Pipeline for collection of pesticide exposure
history, identification of differentially methylated regions, and SNP genotyping.
b Overview of quantification of G, E, and G × E effects using AIC to rank variance

explained by G, E, G+ E, and G × E models at each co-methylated region (CMR).
Pesticide icon created by Iconjam—Flaticon. Notepad icon created by Freepik—
Flaticon. DNA helix icon created by ranksol graphics—Flaticon.
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Genetic variation explained more variation in DNAm at PD-
associated CMRs than exposure to pesticides
To assess additional sources of variation in DNAm at PD-associated CMRs
and elucidate potential reasons for the varying concordance of changes in

DNAm at CMRs across data sets, we next determined whether adding addi-
tional covariates to the models could better explain DNAm at PD-associated
CMRs in TERRE. We focused on PD-associated CMRs from the female-
stratifiedanalysis, highlightingCMRs that replicated inat least oneother study.

Fig. 4 | PD-associated differentially methylated CMRs identified with sex stra-
tification. a Volcano plot: adjusted PD case-control DNAm differences in females
fromTERRE (n = 100). Colored points pass thresholds ofmedianCMR |Δβadj| ≥ 0.03
and padj ≤ 0.05. Inset: theACTC1CMR is shown as a representative example. y axis: β
value (level of DNAm) in female subjects from TERRE. Dark pink: PD cases; bright

pink: controls. bVolcano plot: Adjusted PD case-control DNAmdifferences inmales
fromTERRE (n = 118). Colored points pass thresholds ofmedianCMR |Δβadj| ≥ 0.03
and padj ≤ 0.05. Inset: the ANO8/DDA1 3′UTR CMR is shown as a representative
example. y axis: β value (level of DNAm) in female subjects from TERRE. Dark blue:
PD cases; light blue: controls.
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Noting that both PD and variation in DNAm are affected by genetics
and environment, we explored how accounting for genotype (G), expo-
sure to pesticides (E), their additive effect (G+ E), and their interaction
(G×E) could explain variation in DNAm at PD-associated CMRs in
TERRE, correcting for multiple testing accordingly (Fig. 3b). This can be
ascertained by ranking the relative fit of models including G, E, G+ E, or
G × E terms as covariates explaining variance in DNAm at each CpG or
region36,37. Of note, this approach is distinct from exploring the overall
contributions of genotype and exposure to genome-wide DNAmpatterns
in TERRE, which can be ascertained by examining each covariate as a
main effect and considering all CMRs and/or CpGs passing quality con-
trol (QC) as opposed to only PD-associated CMRs (Supplementary
Table 5).

For G, we considered each SNP within 75 kb of each PD-associated
CMR, and for E, we considered each available pesticide with at least 10% of
individuals exposed on average across imputations within each sex. This
included insecticides, fungicides, and overall exposure to pesticides during
gardening in females (SupplementaryTable 6). For eachCMR,we rankedall
models (baseline, baseline + G, baseline + E, baseline+G+ E, or base-
line+G+ E+G:E) by their Akaike Information Criterion (AIC) value,
which explained the goodness offit for eachmodel adjusting for the number
of covariates included in each model (Fig. 6a, b; Table 3; Supplementary
Table 7). Of the seven replicated CMRs in females, six showed significant
improvement over the baseline, four of which were best explained by a
G-only model (NFATC1, DLGAP, chr13:112860420–112862113,
chr5:2334885–2335317) and the two of which were explained by a G × E

Table 1 | Top 25 differentially methylated CMRs in females from TERRE (ranked by adjusted p value)

CMR coordinates CMR
length (bp)

Number of EPIC probes
in CMR

Gene(s) Gene
feature(s)

p value BH-adjusted
p value

Adjusted Δβ

chr15:100913934–100913949 15 2 4.02 × 10−7 0.003 −0.031

chr13:25506131–25506384 253 4 TPTE2P1,
LOC646405

Body 1.36 × 10−6 0.003 −0.071

chr16:1217652–1217858 206 2 CACNA1H Body 1.51 × 10−6 0.003 0.047

chr11:22454152–22454662 510 6 6.46 × 10−6 0.007 0.039

chr11:19529541–19530094 553 2 NAV2,
NAV2–AS5

TSS1500,
Body

5.97 × 10−6 0.007 0.031

chr20:62865953–62866093 140 3 MYT1 Body 6.44 × 10−6 0.007 0.034

chrX:47419673–47419691 18 2 ARAF TSS1500 6.83 × 10−6 0.007 0.048

chr7:25608634–25608674 40 2 1.03 × 10−5 0.009 0.046

chr10:3282437–3282651 214 3 1.42 × 10−5 0.010 0.093

chr18:77280264–77280587 323 3 NFATC1 Body 1.89 × 10−5 0.010 0.064

chr19:57630202–57630662 460 10 USP29 TSS1500 2.34 × 10−5 0.011 0.054

chr19:57630691–57630711 20 2 USP29 TSS1500 3.12 × 10−5 0.013 0.049

chr3:137228231–137228637 406 3 3.47 × 10−5 0.013 0.046

chr14:99641017–99641152 135 2 BCL11B Body 3.94 × 10−5 0.014 0.078

chr6:160023581–160024145 564 6 4.11 × 10−5 0.014 0.107

chr16:80351660–80351734 74 2 LOC102724084 Body 4.13 × 10−5 0.014 0.061

chrX:145509155–145509522 367 2 4.24 × 10−5 0.014 0.035

chr7:100701511–100701518 7 2 MUC17 3’UTR 4.90 × 10−5 0.015 0.072

chr10:1531243–1531530 287 4 ADARB2 Body 5.73 × 10−5 0.016 0.034

chr5:34494278–34494484 206 2 5.81 × 10−5 0.016 0.038

chr11:75142012–75142450 438 2 KLHL35 TSS1500 7.51 × 10−5 0.018 0.038

chr12:95226786–95226994 208 2 MIR492 TSS1500 9.03 × 10−5 0.019 −0.082

chr15:33023237–33023587 350 2 GREM1 Body 9.60 × 10−5 0.019 0.067

chr19:18888081–18889004 923 3 CRTC1 Body 1.03 × 10−4 0.019 0.094

chrX:107306969–107307863 894 3 VSIG1 Body 1.20 × 10−4 0.021 0.034

n = 33 cases, 67 controls.
BH Benjamini–Hochberg; bp, base pairs,CMR comethylated region, adjustedΔβ difference in DNAm between PD cases and controls, adjusted for age, head trauma, alcohol consumption, smoking, cell
type PCs 1–6, and genotype PCs 1–3.

Table 2 | Differentially methylated CMRs in males from TERRE

CMR coordinates CM
length (bp)

Number of EPIC probes
in CMR

Gene(s) Gene feature(s) p value BH-adjusted
p value

Adjusted Δβ

chr19:17433773–17434268 495 2 ANO8,DDA1 3’UTR 1.17 × 10−6 0.019 0.047

chr6:32294470–32295230 760 5 C6orf10 Body 6.04 × 10−6 0.039 0.038

n = 38 cases, 80 controls.
BH Benjamini–Hochberg, bp base pairs, CMR comethylated region, adjusted Δβ difference in DNAm between PD cases and controls, adjusted for age, head trauma, alcohol consumption, smoking, cell
type PCs 1–6, and genotype PCs 1–3.
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model with respect to exposure to fungicides (DLGAP1,
chr18:77280264–77280587) (Table 3). Across all CMRs differentially
methylated in females, 48 CMRs (70%) showed significant improvement
over the baseline, and were best explained by models including G either
alone (36 CMRs, 52%) or including G in an additive or interaction model
with pesticide exposure (12 CMRs, 17%; Supplementary Table 7). SNP
genotype at the RARS2, LOC286083, LOC646588, ANKLE1, CACNA1H,
GRAMD2B, P2RX2, RPS3, and TPTE2P1 genes explained DNAm patterns
at three or more PD-associated CMRs each in females (Supplementary
Table 7). Of the 12 CMRs influenced by an exposure in females, two were
best explained by a G+ E model (CRTC1 and chr2:10,637,974–10,638,073
influenced by overall gardening-level exposure; Supplementary Table 7),
and ten were best explained by a G×Emodel with either overall gardening-
level exposure (six CMRs), exposure to fungicides (three CMRs), or expo-
sure to insecticides (oneCMR) (Supplementary Table 7). To distinguish the
overall associations of pesticide exposure with DNAm in TERRE from the
contributions of pesticide exposure to PD-associated CMR model fit in
TERRE, we also ran sex-stratified EWAS with overall pesticide exposure as
the main effect; as expected, more associations of pesticide exposure with
DNAm in males than in females were uncovered when considering CMRs

and CpGs regardless of their association with PD status (Supplementary
Table 5).

Next, we assessed how the observed contribution of PD status to
DNAm level at each CMR changed when this effect was considered inde-
pendently of underlyingG,G+ E, orG × E effects. To do so, we selected the
modelwith theminimumAIC for eachCMRand assessed the change inPD
effect on DNAm when accounting for the SNP or SNP−exposure pair
underpinning the model (Fig. 6c; Table 3; Supplementary Table 7). In
replicated CMRs, the magnitude of the |Δβadj| with respect to PD status
increased for two CMRs (chr5:2334885–2335317, a change of 0.004, and
chr6:27569167–27570549, a change of 0.002; Table 3). The remaining five
replicated CMRs showed a decrease in |Δβadj|, ranging from 0.002–0.033
(Table 3). Considering all CMRs differentially methylated in females from
TERRE, we observed a similar change in |Δβadj| with respect to PD status:
this was decreased for the majority of CMRs (30 of 48 CMRs (63%)), albeit
with generally larger changes in |Δβadj| (between 0.0004–0.1481 change,
average 0.0211 change). Of the CMRs showing an increased |Δβadj| for PD
status the increase was modest, with maximum increases of 0.0287 at
MUC17 accounting for a G × E model with the SNP rs112404953 and
gardening-level exposure, 0.0163 at SLITRK5 accounting for theGmodel of

Fig. 5 | Correlation of PD-associated bloodDNAmethylation patterns in TERRE
and other populations after propensity matching. CMRs that passed padj ≤ 0.05 in
TERRE epigenome-wide association analyses in each sex are shown (508 total in
females: 155/508 covered in PEG1 and SGPD 450 K array datasets, 506/508 covered
in DIGPD; 7 in males: 4/7 covered in PEG1 and SGPD, 7/7 in DIGPD). x axis:
median CMR |Δβadj| in individuals from TERRE; y axis: median CMR |Δβadj| in

individuals from PEG1 (matched for age, predicted smoking, and predicted neu-
trophil proportion), DIGPD, or SGPD (matched for age, predicted smoking, and
predicted neutrophil proportion). Pearson’s correlation coefficients (r) and p values
are shown. a Left to right: Δβadj correlations in females from PEG1, DIGPD, and
SGPD. b Left to right: Δβadj correlations in males from PEG1, DIGPD, and SGPD.
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rs954384, 0.0114 at BBOX1 accounting for a G × E model with the SNP
rs10742165 and gardening-level exposure, and 0.0104 at MIR7-3HG
accounting for a G × E model with the SNP rs7257678 and gardening-
level exposure; the remainder of increases were less than 0.01 (Supple-
mentary Table 7). Therefore, G effects generally explained part of the
variation in DNAm at CMRs previously attributed to PD, suggesting
that these factors contributed to the association between PD andDNAm.
Moreover, no SNPs within a 1-Mb window of each of these CMRs
showed evidence of association with PD in an independent GWAS,

indicating that it is unlikely the genetic effects found here were simply
explaining PD status29.

CMRDNAmwas not associatedwith levodopa dosage in female
PD patients but showed inconsistent sensitivity to lag time
between pesticide exposure and sample collection
To rule out further potential sources of confounding, we performed sensi-
tivity analysis for female PD-associated CMRs in TERRE regarding levo-
dopadaily dosage (LED) and time sincepesticide exposure. Twenty-three of

Fig. 6 | Sensitivity of PD CMR DNAm to genetic and exposure variables. CMRs
that passed padj ≤ 0.05 and median CMR |Δβadj| ≥ 0.03 in TERRE epigenome-wide
association analyses in females were fit to an exposure (E), genetic (G), additive
(G+ E), or interactive (G×E) model. a Number of CMRs with a minimum AIC
corresponding to each model. bMinimum AIC value corresponding to the

minimum AIC model for each CMR. c Changes in effect of PD on DNAm (Δβadj)
corresponding to theminimumAICmodel for eachCMR, relative to the basemodel.
Arrows show the direction of change for each PD effect, and CMRs with a PD effect
that changed by ≥0.03 are labeled.

Table 3 | Summary statistics of the minimum AIC G × E models for PD-associated CMRs replicated in females

CMR coordinates CMR
gene (s)

SNP Nearest gene
to SNP

Exposure Δβ (E) Δβ (G) Δβ (G × E) AIC ΔAIC vs.
base
model

Change in
|Δβadj|(PD)
vs.
base model

Adjusted p
value (F test)

chr18:3624189–3624430 DLGAP1 rs12604364 DLGAP1-AS2 n/a n/a 0.10 n/a −300 −110 −0.033 1.41 × 10−15

chr18:7728026–77280587 NFATC1 rs79426764 DLGAP1−AS2 Fungicide 1.27 −0.14 −0.63 −164 −50 −0.018 1.22 × 10−7

chr6:27569167–27570549 n/a rs10807026 RARS2 Fungicide 0.09 −0.03 −0.14 −261 −29 0.002 6.57 × 10−6

chr5:2334885–2335317 n/a rs2628156 GRAMD2B n/a n/a −0.04 n/a −244 −15 0.004 2.65 × 10−3

chr13:112860420–112862113 n/a rs200658161 TPTE2P1 n/a n/a −0.06 n/a −200 −12 −0.010 2.61 × 10−2

chr5:120966065–120966289 n/a rs72793312 GRAMD2B n/a n/a 0.03 n/a −334 −10 −0.002 4.30 × 10−2

n/a an effect not estimated in theminimumAICmodel for a givenCMR,Δβ (E) coefficient for E (pesticide exposure) term,Δβ (G) coefficient for G (SNP genotype) term,Δβ (G×E) coefficient for the interaction
between G (SNP genotype) and E (pesticide exposure).
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33 female PD patients (70%) were receiving levodopa, and of these, 22
patients had LED information available. For each of the 69 PD-associated
CMRs in females, the model CMR median β ~ LED + age + plate + cell
type PC1 was run, using data from the 22 patients (Supplementary Meth-
ods). No CMRs had a median β associated with LED (all padj > 0.4).

We also assessedwhether accounting for the lag timebetweenpesticide
exposure and blood sample collection affected which model best explained
variation in DNAm for PD-associated CMRs in females. We assessed the
effect of exposures less than the median lag time across samples (i.e., recent
exposure) along with the effect of exposures greater than or equal to the
median lag time across all samples (i.e., past exposure, Supplementary
Methods). G models were still top-ranked for explaining CMR DNAm
when accounting for lag time in themajority of cases (31 of 36CMRswhere
G was originally top-ranked, or 86%). The five remaining CMRs that ori-
ginally had a top-ranked G model were better explained by G × E
(chr10:1531243–1531530, chr13:88328009–88330615, gardening, with
respect to different SNPs than in their top G model;
chr13:25506131–25506384, chr15:35086890–35086986, fungicide, both
with respect to the SNP in their previous top G model) or G+ E models
(chr6:160023581–160024145, fungicide, with respect to the same SNP in its
previous top G model; Supplementary Tables 7 and 8). This likely resulted
from better fits of recent or past pesticide exposure with these models.
Neither lag time was consistently better at predicting changes in DNAm
(Supplementary Table 8).

Of the ten CMRs originally best explained by a G × Emodel, five were
recovered when accounting for lag time, two were better explained by a G
only model (chr18:77280264–77280587, rs2330761 and
chr7:54955929–54956420, rs2330761), and the remainder no longer sig-
nificantly improvedover thebaselinemodel.Of the recoveredG × Emodels,
two were better explained by a different exposure and SNP than in the
original analysis (chr11:22454152–22454662, fungicide, rs201451547 and
chr11:27076803–27076820, fungicide, rs11499776), and two were better
explained by the same exposure and a different SNP than in the original
analysis (chr19:57630691–57630711, fungicide, rs28416079, and
chr5:34494278–34494484, gardening, rs10051815). Only the
chrX:47419673–47419691CMRremainedbest explainedby the sameG × E
model as in the original analysis (insecticides and rs3748517). One G+ E
model, at chr19:18888081–18889004, remained best explained by
gardening-level exposure and genotype, but with respect to rs117360667.

Discussion
The discovery of molecular signatures of early-stage PD is important in
order to elucidate interindividual etiology, and to inform prevention and
intervention strategies to slow PD onset and/or progression. Our under-
standing of blood DNAm changes associated with PD is still unclear, as
variation in DNAm can be highly population-specific. In this study, we
determined regional, sex-specific bloodDNAmsignatures of early-stage PD
in TERRE, and assessed the influences of genotype and pesticide exposure
on these PD-associated molecular signatures. We demonstrated a subset of
differentiallymethylatedCMRs in females that were robust when examined
in demographically matched populations. Additionally, genetic variation in
cis explained part of the association between DNAm and PD, with some
potential contribution of pesticide exposure to this relationship. Collec-
tively, our results illustrate the complexnature ofDNAmchanges associated
with PD, and emphasize the importance of taking genetic variation into
consideration in future PD EWAS.

In addition to neurological changes, PD and pesticide exposure are
related to changes in immune cell composition and inflammation, which
can be observed in blood4,54. Therefore, blood-based DNAm alterations in
early-stage PD could partially reflect immune-based processes associated
with disease pathogenesis. However, as predicted immune cell composition
was unaltered between cases and controls in TERRE, lifestyle factors or
exposures unique to the sample may have also influenced blood cell type
composition. Along these lines, one of the CMRs which replicated only in
the pesticide-exposed sample, PEG1, mapped to the NFATC1 gene, which

encodes a transcription factor controlling cytokine expression in T cells
during immune activation55. A second CMR that replicated in DIGPD was
annotated to theDLGAP1 gene, which encodes an adaptor protein found at
glutamatergic synapses and may also be of interest for follow-up experi-
ments. Aside from the replicated CMR genes, the full list of PD-associated
CMRs in females from TERRE included additional genes which could have
relevance for PD: CRTC1, which has been reported as differentially
methylated in prefrontal cortex (PFC) neurons fromPDpatients andwhose
protein product is involved inmitochondrial biogenesis; SLC1A7, encoding
a glutamate transporter; FXR2, whose protein product is involved in DNA
damage response; and ST5, SNPs of which are associated with PD pro-
gression, and whose protein product is involved in endosomal
trafficking56–59. We note these potential links to PD will require further
experimental work to validate, as our study was not designed to causally
assess disease mechanisms.

In order to increase the chances of discovering biologically relevant
changes inDNAmin this study,we chose to examinePD-associatedDNAm
patterns at blood-specific reference CMRs, which have spatially correlated
DNAm patterns that are consistent within individuals19. Focusing on
reference CMRs allowed us to assess DNAmpatterns at regions that are co-
methylated in blood across different populations; however, it should also be
noted that the reference CMRs captured only 35% of the total CMRs called
uniquely in TERRE (35,907 of 102,723 CMRs with 1 or more probes in a
referenceCMR). Similarly, the referenceCMRs covered approximately 30%
of the CpGs and regions previously identified as differentiallymethylated in
the blood of PD patients, none of which were differentially methylated in
TERRE10,12–15,18. This was not unexpected due to the reduced CMR testing
space, low levels of replication reported previously for PD EWAS, and
variations in disease duration, cell type composition, and demographics of
the samples compared in this study12. For instance, obtaining detailed
information on demographic variables affecting both bloodDNAmandPD
risk such as head trauma and alcohol consumption and accounting for these
variables in PD epigenetics studies may improve reproducibility. Along
these lines, our comparison of CMR effect sizes between samples indicated
that similar PD-associated DNAm trends were observed for some regions
when these effects were accounted for and when study populations were
more closely matched (i.e., PEG1, including early- to mid-stage patients
exposed to pesticides, and DIGPD, including early-stage patients also
recruited in France). Despite the lack of overlap with previous EWAS in the
blood of PD patients, several CMRs differentially methylated in the females
analysismapped to genes previously reported as differentiallymethylated in
PFC neurons from PD patients (NAV2, CRTC1,NTSR1,ADARB2), and/or
in brain tissue from PD patients (CACNA1H, differentially methylated in
cingulate gyrus)17,56. Of note, both brain-based studies employed region-
based approaches to differential methylation analysis, which also may have
influenced reproducibility of the findings. Overall, our results and replica-
tion analyses indicated that whether specific CpGs and regions are called as
differentially methylated in each study is dependent on a variety of factors,
including demographics, sample size, statistical model, and approach to
differential DNAm analysis (including site-specific vs. regional, and criteria
used to define regions).

Sex and gender also influence DNAm patterns and may impact find-
ings of PD-associated DNAm changes, through biological and/or socio-
cultural mechanisms44,60–63. Considering that the incidence of PD in men is
nearly twice that in women, it was unexpected that more DNAm changes
were found in the blood of female patients (69 CMRs) thanmale patients (2
CMRs) and at similar magnitudes in the TERRE sample64. However, this
was consistentwith a recent sex-stratifiedEWAS in the parietal cortex of PD
patients where 3 PD-associated CpGs were reported in men, and 87 in
women49. Similarly, it was somewhat surprising that pesticide exposure, and
in particular low-dose exposure, contributed to CMR model fit in females,
considering that male TERRE subjects had higher levels of pesticide expo-
sure (i.e., occupational). This canpartly be explainedbyour restrictionof the
G × Eanalysis to onlyPD-associatedCMRs, a greaternumber ofwhichwere
observed in females.WhenPD status and genotypewere not considered, i.e.
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when pesticide exposure was used as the variable of interest in a separate
EWAS, exposure effects were indeed detected in males, suggesting that the
effects of pesticide exposure as a whole and the effects of exposure con-
verging with PD and genotype were distinct. The three-category pesticide
exposure variable also does not capture all routes of exposure that could be
common in females in this study, including exposures related to household
tasks (e.g. handling contaminated objects and clothes, inhalation through
dust), drift-related environmental exposure, and accumulation of prior
exposures in adipose tissue46–48. These routes of exposure are challenging to
quantify and often under-estimated. Along these lines, associations of low-
dose (ambient) pesticide exposure with blood DNAm levels have been
reported in PD patients and healthy controls, as well as female-specific
associations of overall pesticide exposure with blood DNAm levels in
women33–35. Taken together, a range of biological, lifestyle, and exposure
factors influence sex- and gender-related DNAm patterns and sex and
gender differences in PD susceptibility, presentation, and progression. Our
results supported existing calls to consider both biological underpinnings of
sex as well as the interactions between sex/gender and lifestyle/exposure in
epigenetic studies of PD and of other phenotypes44,65,66.

To better understand our ability to detect G × E effects in this study
regardless of sex, we looked to recent expression quantitative trait loci
(eQTL) literature, which would more accurately reflect the associations
we expected to find. Several eQTL studies have detected G × E effects
with sample sizes close to the number of female subjects in this study67–69.
Exposure to the specific pesticides underpinning the G × E effects
observed in TERRE (insecticides and fungicides) has also been asso-
ciated with PD risk in several epidemiological and experimental
studies50,70–74. Although our overall G × E results in females from TERRE
were consistent with these studies, our lag time sensitivity results alluded
to the importance of accurately measuring pesticide exposure with
respect to both recency of exposure and overall level of exposure in
future epigenetic studies of PD.

Finally, genetic variation was a major contributor to variation in
DNAm at PD-associated CMRs in this study, as G models frequently out-
ranked G+ E and G × Emodels, and no models including E alone showed
improvement over the baseline. This was consistent with previous G × E
studies in cord blood and cord tissue, where E effects were also observed
primarily when included with genotype in either additive or interaction
models, and with the reported contribution of SNP genotype to DNAm
(estimated to influence 20–80%of overall DNAmvariation)20,36,37,75,76. In the
specific context of pesticides, impacts of common genetic variation (GSTP1,
ABCB1) and PD-associated mutations (LRRK2 G2019S) on response to
herbicide, organochlorine, and paraquat exposure have been identified in
both human and model organism studies77–80. While we identified different
SNPs associated with pesticide exposure in this study, it is still possible they
may have influenced response to exposure, which could be resolved with
more precise accounting of exposure and supported by experimental
studies73. On the whole, the lack of association between SNPs explaining
DNAmatPD-associatedCMRs inTERREandSNPsassociatedwithgenetic
risk for PD in populations of European ancestry suggested that SNP gen-
otype may impact DNAm levels at the given CMRs independently of PD
status (for instance, if PD cases and controls had different genotypes by
chance), and/or that genotype and PD could both be associated with
additional unmeasured factors, such as population-specific G ×G or G × E
interactions29,76. This is important to consider when designing and inter-
preting genetic and epigenetic association studies for PD, as common
genetic variation may confound associations between disease status and
DNAm. Genetic variation can be incorporated into EWAS of PD through
several approaches, such as examining whether CpGs differentially
methylated inPDpatients have associatedmethylationquantitative trait loci
(mQTL), conducting Mendelian randomization analysis on candidate
CpGs to assess potential causal relationships between DNAm and pheno-
typic outcomes mediated by genetic variation, or quantifying the con-
tribution of genotype to PD-associated DNAm patterns when matched
genetic and epigenetic data is available12,24,81. Obtaining detailed

measurements of environments, lifestyle factors, and exposures influencing
DNAm and PD risk, ideally in a quantitative manner, will also facilitate
exploration ofG × E effects onDNAmandPD, an areawhichwould benefit
from further methodological development.

In this study, we showed that DNAm changeswere detectable in early-
stage PD, and were largely influenced by demographics and in cis genetic
variation. As epigenetic associations were seen so early in disease progres-
sion, blood DNAm could potentially reflect residual immune cell compo-
sition changes remaining after adjustment, and/or be one mechanism
relating common genetic variation to early molecular changes associated
with sporadic PD82. Despite these insights, several limitations of our study
should be taken into consideration. First, while the sample sizewas small for
detecting G × E interactions, the TERRE sample presented a unique
opportunity to assess the effects of genotype and pesticide exposure on
DNAm in the same individuals83. Second, the level of exposure andmanner
in which it was measured differed between TERRE and PEG1. Published
studies assessing the effects of pesticide exposure on DNAm in PEG1
focused on ambient exposures (organophosphate, pyrethroid) assessed via
geographic information systems, which were not measured here, and could
have a different impact onDNAm than gardening or occupational pesticide
exposure34,35. Additionally, recall bias may have affected pesticide exposure
ascertainment in TERRE and the comparisonwith PEG1, as household and
occupational exposures were self-reported in both samples70. However, our
study adds to the literature on how pesticide exposure impacts DNAm,
whether this differs by sex, and the degree to which it is associated with PD.
Third, due to the differences in exposures between males and females in
TERRE and since all individuals were cisgender, we cannot conclude defi-
nitively whether the sex-specific DNAm patterns observed in this study
were due to biological sex differences or were related to exposure history or
other sociodemographic discrepancies. Finally, we were unable to test the
joint impacts of genotype and pesticide exposure on DNAm in the repli-
cation samples, as none had detailed information on both of these variables
collected for cases and controls. Despite this, we observed improved repli-
cation of results upon propensity matching, illuminating the population
specificity of PD-associated regional DNAm changes.

The results presented here support an association of genetic variation
with DNAm patterns in early-stage sporadic PD in a unique agricultural
population with detailed pesticide exposure history. By characterizing
relevant genetic and exposure-related sources of variation in PD-associated
blood DNAm, we highlighted the population specificity of PD-related
DNAm patterns and the need for careful consideration of confounders in
PDEWAS.On thewhole, our results emphasize the importance of assessing
epigenetic variation in the context of genetic background in future
investigations.

Methods
Study samples and design
Identification of sex-specific DNAm signatures of PDwas performed in the
TERRE case-control study consisting of individuals enrolled in the
Mutualité Sociale Agricole (MSA) health insurance system for French
agricultural workers and their spouses, as described previously50,84 (Figs.
1 and3).Caseswere selected fromMSA-enrolled individualswhodeveloped
PD. Controls were selected from individuals free of parkinsonism and
enrolled in the MSA who applied for healthcare reimbursements between
February 1998 and 2000. A maximum of three controls per patient were
selected randomly from groups of the same sex, age (±2 years), and MSA
affiliation office. Of a total of 224 PD patients and 557 controls, 71 patients
with a short PD duration (≤1.5 years) and 147 controls for whom both
genotyping and whole blood DNAmdata were available and passed quality
control checks were included in this study (n = 33 female PD cases, 67
female controls; 38 male PD cases, 80 male controls; 99% (215 of 218
participants) self-reported White; 1% (3 participants) self-reported North
African) (Fig. 1, Supplementary Table 9). This represented a sample of
patients with very short disease duration, as the median survival in PD is
estimated to be of 13.4 years85.
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A replication of sex-stratified differential DNAm analysis in whole
blood was conducted in DIGPD, a longitudinal sample of 411 French
patients with PD (duration ≤5 years at baseline) followed up annually for
7 years (Fig. 1)28,86,87. To examine the replicability of DNAm changes asso-
ciated with early-stage PD identified in the TERRE sample in patients with
the earliest stages of PD from DIGPD, individuals with disease duration
≤2 years at baseline and age- and sex-matched PD-free controls were
selected forDNAmprofiling on the EPICBeadChip array86. After excluding
individuals with monogenic PDmutations (5 with GBA E326K and 2 with
LRRK2 G2019S), a total of 110 patients were included in the analysis (94%
(104 of 110 patients) self-reported White; 3% (3 patients) self-reported
North African; 3% (3 patients) self-reported Black, Asian, or Latino). These
patients were compared to 112 controls, for whom extended demographic
information beyond age and sex was not available. Considering PDpatients
only, the male:female ratio, proportion of smokers, and self-reported race
distribution was similar between TERRE and DIGPD (Supplementary
Table 10). However, PD patients from DIGPD had less pesticide exposure,
fewer individuals on levodopa or dopamine agonist medications, andmore
education on average compared to PD patients from TERRE (Supple-
mentary Table 11). Detailed information on levodopa and dopamine ago-
nist treatment for PD patients from DIGPD was previously published87.

Additional replication analysis was conducted with publicly available
whole blood DNAm data from PEG1, a population-based study of PD
patients (n = 335) and controls (n = 237) recruited fromagricultural areas in
central California between 2000 and 2007 (89% (508 participants) self-
reported White; 11% (64 participants) self-reported Hispanic; Fig. 1)15,88

(GSE111629). Participants were recruited by neurologists, public service
announcements, and localmedical centers, andhad lived inCalifornia for at
least 5 years prior to recruitment. Only PD patients with a disease duration
of 3 years or less were included. The PEG1 study had a higher proportion of
smokers, and a similar male:female ratio and pesticide exposure level to
TERRE (Supplementary Table 10).

Replication was also assessed using publicly available whole blood
DNAm data from the SGPD sample (n = 1292 cases, 1041 controls),
composedof participants of Europeandescent from three studies conducted
in Australia and New Zealand: the Queensland Parkinson’s Project (QPP),
the New Zealand Brain Research Institute PD case-control study (NZBRI),
and the Sydney PD case-control study (SYD) (Fig. 1)12. These studies
recruited PD patients of variable disease duration (2–40+ years), with
community-based volunteers as controls. The GEO data set consists of 959
PD patients and 930 controls, excluding subjects that failed QC
(GSE145361). Thefinal subset has a similarmale:female ratio, lower average
pesticide exposure, and higher average smoking duration than TERRE
(Supplementary Table 10).

Measures
In the TERRE sample, PD was diagnosed by a neurologist specializing in
movement disorders, andwas defined as the presence of parkinsonismwith
exclusion of drug-induced phenotypes or further nervous system
involvement89. No PD patients had known monogenic mutations.

In the DIGPD sample, patients were diagnosed bymovement disorder
neurologists according to the UK Parkinson’s Disease Society Brain Bank
criteria90. In PEG1, PD was diagnosed using the UK Brain Bank and Gelb
diagnostic criteria, while in SPGD, PD was diagnosed with the Calne
criteria91–93.

Occupational pesticide exposure in TERRE was assessed with a two-
phase procedure, including a self-report questionnaire designed for this
study, followedbyoccupational health interviews conducted at the homesof
individuals exposed to pesticides via their profession to obtain detailed
information on history of pesticide exposure, including the number and
type of farms where the individuals had worked; which pesticides they had
personally sprayed; the frequency, duration, and method of spraying; and
number of years that they were exposed50,94,95. An overall pesticide exposure
variable with 3 levels (never exposed, gardening/household exposure, or
occupational exposure) was created based on self-reports and interviews

with occupational health physicians. Binary (never/ever) occupational
exposure variables for individual pesticides were created based on the
occupational health interviews during site visits by physicians. Chemical
compositionwas determined and coded using a pesticide dictionary (http://
www.alanwood.net/pesticides). Missing values for individuals exposed to
pesticides were imputed as described previously, using models including
crop/animal, time period, disease status, sex, age, and mini-mental state
examination (MMSE) as covariates50. Missingness across the 781 TERRE
subjects originally analyzed ranged from 0–16% across all exposures. The
average rate of exposure across these imputations in the subset of TERRE
subjects with shared DNAm and genotyping measures is presented in
SupplementaryTable 6 (3 exposures in females: insecticides, fungicides, and
gardening-level exposure).

In the TERRE sample, each participant was interviewed by a physician
to record demographic data and administer the MMSE (Supplementary
Table 9)96. Data was collected for cases and controls via questionnaires on
education level, self-reported race, smoking, head trauma, and alcohol
consumption, and for medication use and disease duration for PD cases. In
the DIGPD sample, the above information was recorded for PD cases, and
was unavailable for controls86. In thePEG1 sample, only participant age, sex,
and ethnicity were publicly available, while in SGPD, only age and sex were
available. Smoking scores were estimated in DIGPD, PEG1, and SGPD
using the SSc method in the EpiSmokEr package97,98. For comparison,
smoking scores were also estimated in TERRE with this approach, with
current and former self-reported smokers scoring higher than never-
smokers (Supplementary Fig. 5).

Biological sample and data processing
Here, we conducted region-based epigenome-wide association analysis
using new EPIC array whole blood DNAm data from the TERRE sample,
focusing on whole blood reference CMRs discovered with the CoMeBack
approach, which have correlated DNAmpatterns in blood both within and
across individuals19. To further test the replicability of CMRs showing dif-
ferential DNAm between cases and controls in TERRE, we also assessed
whole blood DNAm patterns in new EPIC array data from the DIGPD
sample, and downloaded raw idatfiles for the PEG1 and SGPDwhole blood
DNAm data sets from GEO12,15.

Whole blood was collected in tubes containing ethylenediaminete-
traacetic acid (EDTA), and DNAwas extracted using a saline (Qiagen® kit)
or phenol (LockGel® tube)-based protocol in accordancewith the respective
manufacturer’s recommendations. DNA was then precipitated with etha-
nol, washed, and resuspended in Tris-EDTA buffer. The concentration and
purity were determined spectrophotometrically, and after adjusting to a
concentration of 200 ng/μl the DNA was stored at−20 °C.

For the TERRE and DIGPD samples, DNAm was assessed at 853,307
CpGs using the Illumina HumanMethylationEPIC BeadChip array. The
PEG1 and SGPD data sets from GEO each included DNAm data from the
Illumina HumanMethylation450 BeadChip array at 482,421 CpGs
(GSE111629, GSE145361).

Quality control and preprocessing of DNAm data was conducted
separately in each sample assessed in this study (TERRE, DIGPD, PEG1,
and SGPD). Raw idat files for all individuals in each samplewere read intoR
3.6 fordataanalysisusing theminfipackage99.Aspart of subject-level quality
control, we confirmed clinically reported sex using principal component
analysis (PCA) onX chromosome β values, percentage ofmissing values on
the Y chromosome, and the getSex function from the minfi package (Sup-
plementary Fig. 6, Supplementary Table 12)99. For subjects flagged for
potential sexmismatches after these checks,X/Y chromosomecopynumber
was additionally confirmed using the conumee package, and any subjects
with copy number mismatches were removed (3–6 individuals per sample;
Supplementary Fig. 6, Supplementary Table 12)100. After applying addi-
tional subject filtering procedures (summarized in Supplementary Table
12), 34 subjects were removed from TERRE (231 remaining), 64 subjects
were removed from the first time point of DIGPD (278 remaining),
28 subjects were removed from PEG1 (539 remaining), and 138 subjects
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were removed from SGPD (1751 remaining) (Supplementary Table 12)101.
The TERRE and DIGPD data sets were later subset to individuals with
complete self-reported smoking data in TERRE, matched genotyping data,
individuals from the first study time point of DIGPD (PD duration
≤2 years), and individualswithout familialmutations (71 cases, 147 controls
in TERRE; 110 cases, 112 controls in DIGPD; after normalization and prior
to epigenome-wide association analysis) (Fig. 1). To reduce effects of
unwanted sources of technical variation, functional normalization was
performed in each study using adjustedFunnorm from the wateRmelon
package102.

Afternormalization, low-quality probes, cross-hybridizing probes, and
polymorphic probes were removed separately from each sample to ensure
quality control at the individual CpG level (summarized in Supplementary
Table 13)103. X and Y chromosome probes were retained to allow for the
possibility of assessing sex chromosome DNAm in sex-stratified analysis.
This left 803,777 probes in TERRE, 803,734 probes in DIGPD, 424,263
probes in PEG1, and 424,699 probes in SGPD.

In the TERRE andDIGPDsamples, subjects were initially randomized
on the EPIC BeadChip arrays by disease status but not by sex. Batch vari-
ables (plate, chip, and sample position on the chip) were correlated with sex
in TERRE and DIGPD, and were thus accounted for as covariates in
downstream linear regressionanalysis rather thanadjusting theDNAmdata
during preprocessing, so as not to remove sex-associated variation during
batch correction (Supplementary Figs. 7 and 8). For the PEG1 and SGPD
samples, these batch variables could be adjusted for prior to replication
analysis using the ComBat function from the sva package104. In PEG1,
ComBatwas applied to remove chip position effects; chip was not corrected
for as samples were not balanced by disease status across chips. In SGPD,
ComBatwasused to correct chip andchipposition effects. Plate information
was not publicly available for PEG1 and SGPD.

Full details of genotyping data preprocessing are included in the
SupplementaryMethods. Briefly, the IlluminaNeuroChip arraywas used to
profile cases and controls. PLINK was used for preimputation QC105. The
following preimputation steps were applied: removal of strand-ambiguous
SNPs, mismatch between recorded sex and sex chromosome complement
as determined on the array, a 0.05 call rate filter for SNPs, an individual
missingness filter of 0.02, a minor allele frequency (MAF) filter of 0.01, and
finally a heterozygosity filter removing individuals with Fhet > 0.2

106. At this
stage, we computed genotype PCs, noting that 240 of 245 (98%) individuals
with genotyping data were self-reported as White (Supplementary Fig. 9,
SupplementaryMethods). The first three PCs explained 16% of variation in
total. Variants with Hardy–Weinberg equilibrium p < 1 × 10−10 were then
removed. We included the X chromosome using the default PLINK
encoding for X chromosome genotypes in males75. SNPs were imputed to
the 1000 Genomes Phase 3 European reference panel using the Michigan
imputation server (Supplementary Fig. 10).We kept SNPs with imputation
quality R2 > 0.3, resulting in 8,354,189 SNPs for analysis.

Statistical analysis
To assess and account for the effects of differing immune cell propor-
tions on DNAm levels in the TERRE sample for region-based EWAS,
cell type proportions were predicted in raw DNAm data using the
extended EPIC array blood cell type reference, which can be used to
predict proportions of 12 immune cell types (as comparedwith the 6 cell
types included in the original IDOL library)107. Robust PCs of cell type
were generated with the pcaCoDa function from the robCompositions
package to create non-compositional variables for use in downstream
linear regression108. The first six PCs of cell type explained 89% of the
variance in cell type proportions in TERRE and were uncorrelated with
PD status (p > 0.05, ANOVA; Supplementary Fig. 11). Due to legal
requirements, the DIGPD data were analyzed on a different server
without licensing to use the extended IDOL library. Therefore, for
comparison between the discovery and replication samples, the original
IDOL library including 6 immune cell types was used to predict cell type
proportions in TERRE, DIGPD, PEG1, and SGPD109.

We selected covariates for EWAS in TERRE using a combination
of data-driven and literature-informed approaches. In order to evaluate
potential contributors to variance in DNAm in TERRE, we applied
PCA to pre-processed DNAm data and assessed the correlation of
demographic variables, predicted cell type proportions, genotype PCs,
and batch variables (plate, chip, and position) with the first 10 DNAm
PCs (Supplementary Fig. 12). Age, smoking, head trauma, alcohol
consumption, overall pesticide exposure, cell type proportions, and
batch variables were each associated with the first 2 DNAm PCs, while
genotype PCs 1–3 were associated with DNAm PCs 6 and 10
(padj ≤ 0.05, ANOVA).We considered age, cell type PCs 1–6, plate, chip
position, and genotype PCs 1–3 as core covariates for differential
methylation analysis due their contribution to variance in the TERRE
data as well as known contributions of these factors to DNAm variance
in general, based on literature30,110,111. As the second stage of our analysis
was focused on contributions of pesticide exposure to model fit at PD-
associated CMRs, we adjusted CMR regression models for additional
non-exposure variables in our PD EWAS. The fits of models also
including smoking, head trauma, and alcohol consumption were
evaluated in a stepwise manner within each sex using the variance
inflation factor (VIF), AIC, p-value histograms, and quantile-quantile
(Q-Q) plots (Supplementary Figs. 13 and 14, Supplementary Tables
14,15). For comparison, we additionally ran sex-stratified EWASwhere
pesticide exposure was the main effect, evaluating covariates via the
same metrics (VIF, AIC, p-value histograms, and Q-Q plots; Supple-
mentary Table 5).

Due to known sex-related differences in PD, autosomal DNAm,
and PD-associated exposures betweenmales and females, we employed
a sex-stratified approach for differential DNAm analysis. Regional
DNAm levels were calculated separately in each sex using the median β
value across 42,776 reference autosomal CMRs for whole blood from
the 450 K and EPIC arrays (excluding 881 reference CMRs where one
or more probes did not pass quality control)19. Prior to differential
DNAm analysis, a variability filter was applied to select reference
CMRs with a range of >0.05 between the 10th and 90th percentiles of
median β values for each CMR103, which yielded 29,363 variable
reference CMRs in females, 29,190 variable reference CMRs in males,
and 29,708 variable reference CMRs in the sex-combined sample
(Supplementary Fig. 15). For comparison, CMRs were also called using
the “cmr” function in CoMeBack, with cell-type-corrected β values as
input, and employing the same parameters used to construct the
reference (minimum Spearman correlation of 0.3, maximum dis-
tance 1 kb)19.

Propensity matching with the “full”method as implemented in the
MatchIt package was used to calculate sample weights for regression, in
order to improve covariate balance between PD cases and controls and
to achieve more accurate effect estimations112. Weights were calculated
separately in each sex based on smoking history, alcohol consumption,
head trauma, and age with generalized linear regression and a probit
link function, using a caliper width of 0.2 (Supplementary Fig. 16)112.
We additionally adjusted formatching covariates in regression analysis,
as this can reduce residual confounding and limit estimation bias113.
Robust linear regression was performed with the model CMR median
β ~ PD+ age+ smoking+ alcohol consumption+ head trauma+ cell
type PCs 1–6+ genotyping PCs 1–3+ plate+ row, separately in each
sex. Chip was not included, as TERRE subjects were not balanced by sex
across chips, and some chips had few individuals from TERRE because
TERRE and DIGPD samples were run together. CMRs were considered
statistically significant at a minimum padj ≤ 0.05 and absolute median
Δβadj ≥ 0.03 (β coefficient for PD from linear regression analysis
adjusted for all above covariates). This effect size threshold was chosen
to exceed the root mean square error (RMSE) between technical
replicates (maximum 0.024 in TERRE).

Power calculations for sex-stratified EWAS were implemented using
the pwrEWAS R package51. For females, we performed 1000 simulations
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with the following input parameters: 100 individuals (33% cases, 67%
controls); targetΔβ 0.03; 29,363CpGs tested for differentialmethylation; 69
differentially methylated CpGs; detection β limit 0.03; “limma” method;
FDR critical value 0.05; and adult blood tissue. For males, we performed
1000 simulations with the same parameters using 118 individuals (32%
cases, 68% controls); 29,190 CpGs tested for differential methylation; and 2
differentially methylated CpGs. We also simulated the number of differ-
entially methylated CMRs (padj ≤ 0.05, |median Δβadj | ≥0.03) in each sex
under the null by shuffling PD case-control labels and repeating EWAS
using the shuffled disease status, for a total of 1000 permutations. Adjusted
p-values were calculated based on how many simulations had a larger or
small number of differentially methylated CMRs than the real number
under the null, divided by the number of permutations.

Propensity matching can improve effect estimation when com-
paring studies, and covariate adjustment following this matching
reduces residual confounding and minimizes bias113,114. In order to
assess the influence of demographic differences on replicability of PD-
associatedDNAmpatterns across populations, wematched TERRE and
the larger replication samples (PEG1, SGPD) on age, predicted smok-
ing, and predicted neutrophil proportion prior to replication analysis,
and adjusted all effect sizes for these factors (Fig. 1b, Supplementary
Figs. 17, 18, Supplementary Methods)19,115,116. As DIGPD was of a
similar size to TERRE (n = 222 after QC), this sample was not subset for
replication analysis; however, effect sizes were adjusted for relevant
covariates (Supplementary Methods).

The median CMR Δβadj was compared between TERRE and each
replication sample for CMRs differentially methylated in TERRE at
padj ≤ 0.05 (508 in females, 7 in males) and also covered in each data set,
which varied according to array platform (EPIC versus 450 K) and
probes removed during data quality control (506 female CMRs covered
in DIGPD; 7 male CMRs covered in DIGPD; 155 female CMRs covered
in PEG1 and SGPD; 4 male CMRs covered in PEG1 and SGPD).
Pearson’s correlations were computed between TERRE case-control
Δβadj values and DIGPD, PEG1, or SGPD case-control Δβadj values

52,53.
CMRs were considered replicable at median |Δβadj| ≥0.03 in the same
direction as in TERRE.

For each CMRmedian β found to be significantly associated with PD
(padj ≤ 0.05, |Δβadj| ≥0.03) in female subjects in TERRE, we performed
sensitivity analysis to test the fit of a genotype (G) model, exposure (E)
model, an additive genotype plus exposure (G+ E)model, and a genotype-
by-exposure (G × E)model (Fig. 3b), accounting for both PD status and the
covariates included in our region-based EWAS. For G, we considered SNPs
within a 75-kb window centered on each median CMR β associated with
PD. For E, we considered pesticideswith at least 10% of subjects exposed on
average across imputations (3 in females; Supplementary Table 6, Supple-
mentary Fig. 19); these included an overall exposure variable (never/gar-
dening use) and exposure variables for occupational use of fungicides and
insecticides (never/ever exposed). The E model results were combined
across 10 imputations of pesticide exposure using the mice package,
accounting for intersample differences byweighted regression (as described
in EWAS section)112,117. Models were fit using “rlm” from the MASS pack-
age, Huber M-estimator, 150 iterations in R version 3.6.2118.

The full set of covariates for each model was as follows:
• G: CMR median β ~ genotype+ PD+ age+ smoking+ alcohol

consumption+ head trauma+ cell type PCs 1–6+ genotype PCs
1–3+ plate+ row, for all SNPs within 75 kb of each CMR

• E: CMR median β ~ pesticide exposure status+ PD+ age+
smoking+ alcohol consumption+ head trauma+ cell type PCs
1–6+ genotype PCs 1–3+ plate+ row, for each pesticide

• G+ E: CMR median β ~ genotype+ pesticide exposure status+
PD+ age+ smoking+ alcohol consumption+ head trauma+ cell
type PCs 1–6+ genotype PCs 1–3+ plate+ row, for each pesticide
and all SNPs within 75 kb of each CMR

• G× E: CMR median β ~ genotype+ pesticide exposure status+
genotype:pesticide exposure status+ PD+ age+ smoking+

alcohol consumption+ head trauma+ cell type PCs 1–6+ genotype
PCs 1–3+ plate+ row, for each pesticide and all SNPs within 75 kb of
each CMR

In thefirst stageof our analysis,we computed the change inAICof each
model relative to abasemodelwithoutG, E, orG × E terms, and assessed the
significance of this change in model fit using the F-test, accounting for
multiple testing within each pesticide exposure (Fig. 3b)119. Of the four
tested, the model with the lowest AIC for each CpG was selected as best
explaining DNAm36,37,111. In the second stage, we quantified the extent to
which G, E, andG × E terms impacted the contribution of PD to changes in
DNAmat eachCMR. To do so, we fit the bestmodel for eachPD-associated
CMR, and compared the relative change in effect of PD on DNAm. In
addition, we examined whether genetic variants associated with DNAm at
each CMR were within 1Mb of any of those associated with PD status in a
large independent GWAS29.

Ethics and inclusion statement
This study was co-lead by researchers based in France, the country of
recruitment for the TERRE and DIGPD samples. The French team was
responsible for the studydesign, implementation, andmolecular profilingof
samples and was collaboratively involved in data analysis and manuscript
writing, as agreed among study authors ahead of the research. The research
protocol of the TERRE study was approved by the ethics committee of
Hôpital du Kremlin-Bicêtre, and all subjects provided written informed
consent. The research protocol of the DIGPD study was approved by the
ethics committee of the University of Paris VI, and all subjects provided
written informed consent. All data storage and analysis was conducted on
French servers with the exception of some calculations using TERRE DNA
methylation data, where a legal agreement was in place to transfer this data
to Canada. The results are relevant for studying epigenetic patterns in the
specific population of French agricultural workers focused on in this work,
and similar epidemiological and genetic studies conducted in French PD
patients, including the specific samples used in this work, are cited
throughout.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The TERRE and DIGPD DNAm and genotyping data analyzed in the
present study are subject to access restrictions via the European Union
General Data Protection Regulation (GDPR) and to maintain participant
privacy. Requests for access can be directed to alexis.elbaz@inserm.fr,
including the proposed purpose for data use, and are subject to governance
constraints and privacy restrictions. The PEG1 and SGPD DNAm data
analyzed in this study are available on GEO (GSE111629, GSE145361).

Code availability
The code used in this manuscript is publicly available at github.com/
samschaf/TERRE_GxE.
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