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Impact of tracheostomy tube modalities 
on ventilatory mechanics: a bench study
Yann Combret1,2,3, Margaux Machefert1,4, Guillaume Prieur1,2,3, Emeline Fresnel5, Elise Artaud‑Macari6,7, 
Bouchra Lamia6,8, Marius Lebret5 and Clément Medrinal2,3,6* 

Abstract 

Purpose Tracheostomized patients often present with muscle weakness, altered consciousness, or swallowing 
difficulties. Hence, the literature is scarce regarding the challenging management of tracheostomy weaning. There 
is a need to strengthen the understanding of respiratory mechanisms with the different tracheostomy tube modali‑
ties that compose this weaning pathway. We aimed to evaluate the impact of these modalities on the work of breath‑
ing (WOB), total positive end‑expiratory pressure (PEEPtot), and tidal volume (VT).

Methods With a three‑dimensional (3D) printed head mimicking human upper airways, we added a tracheal exten‑
sion, and pierced to allow insertion of a size 7.0 tracheostomy cannula. The whole was connected to an artificial lung. 
Three lung mechanics were simulated (normal, obstructive and restrictive). We compared five different tracheostomy 
tube modalities to a control scenario in which the tube was capped and the cuff was deflated.

Results A marginal difference was observed on the WOB within conditions with a slight increase + 0.004 [95% 
CI (0.003–0.004); p < 0.001] when the cuff was inflated in the normal and restrictive models and a slight decrease 
in the obstructive model. The highest PEEPtot that was reached was + 1  cmH2O [95% CI (1–1.1); p < 0.001] with high‑
flow therapy (HFT) with the cuff inflated in the obstructive model. We observed a statistically significant reduction 
in VT [up to − 57 mL 95% CI (− 60 to − 54); p < 0.001] when the cuff was inflated, in both the normal and obstructive 
models.

Conclusions Our results support the use of conditions that involve cuff deflation. Intermediate modalities 
with the cuff deflated produced similar results than cannula capping.
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Background
Ventilatory weaning via tracheostomy is a common prac-
tice in intensive care units (ICU) for patients undergo-
ing invasive mechanical ventilation [1–3]. This decision 
typically arises from challenging or prolonged ventilatory 
weaning scenarios. In France, tracheostomy weaning is 
recommended after two extubation failures or in cases 
of prolonged weaning [4]. Patients often present with 
muscle weakness, altered consciousness, or swallowing 
difficulties under such circumstances [5]. Despite well-
described extubation criteria, literature on the manage-
ment of ventilatory weaning in tracheostomized patients 
and decannulation criteria remains scarce and of low 
quality evidence [6–8].

On the pathway for tracheostomy weaning, tracheos-
tomy tube modalities depend on the clinician’s judgment, 
which can also be influenced by institutional practices, 
the absence of tools for objective patient evaluation, and 
the limited understanding of the physiological impact of 
these modalities. Recent data advocate for cuff deflation 
and promotion of phonation to enhance patient com-
munication, swallowing abilities, and shorten the time 
to decannulation [7, 9, 10]. Nevertheless, many trache-
ostomized patients will remain with the cuff inflated 
and an artificial nose for up to 18 days or more [9, 11]. 
Primary concerns raised by physicians are that cuff 
deflation would induce a loss of positive end-expiratory 
pressure (PEEP) that will reduce lung volume because of 
alveolar collapse, or that the use of a speaking valve could 
increase upper airway resistance and work of breathing, 
consequently increasing the risk of aspiration [10, 12]. 
To optimize ICU practices to promote cuff deflation and 
facilitate patient phonation, there is a need to enhance 
our understanding of respiratory mechanisms based on 
tracheostomy tube modalities. Hence, we aimed to evalu-
ate the impact of different tracheostomy tube application 
methods on ventilatory mechanics and properties using 
an experimental bench mode. We hypothesized that the 
work of breathing (WOB), total positive end-expiratory 
pressure (PEEPtot), and tidal volume (VT) may vary 
depending on the modality of tracheostomy tube usage. 
Furthermore, we evaluated the airway’s relative humidity 
(RH) and the fraction of inspired oxygen (FiO2).

Methods
We used a three-dimensional (3D) printed head mim-
icking human upper airways down to the trachea (Ker-
Nel Biomedical, France). The head model included a 
mouth with a seal, pliable components for the phar-
ynx and trachea, and was enveloped in silicone skin, 
all mounted on a stable base. The airways had a dead 
space of 152 mL and a resistance of 2.4  cmH2O.s/L. The 

model’s validity was established in a prior study [13]. 
A tracheal extension was added to the manikin head, 
pierced to allow insertion of a size 7.0 (inner diameter 
7.0 mm, outer diameter 9.6 mm, length 80 mm) trache-
ostomy cannula (Portex Bivona Tracheostomy Tube, 
Smiths Medical, UK). The trachea was connected to an 
artificial lung (ASL 5000, IngMar Medical, USA) via a 
22  mm diameter breathing circuit. To reproduce the 
hygrometric conditions typical of the lower airways, a 
heated humidifier (MR810, Fisher & Paykel Healthcare, 
New Zealand), was inserted in the circuit. The setup 
was finalized by adding a protective balloon (AGEC, 
IngMar Medical) to prevent contact between humidity 
and the internal parts of the mechanical lung. The total 
length of the breathing circuit sections between the 
manikin head and the artificial lung was 150 cm; com-
pensation parameters were input into the ASL 5000 
software (version 3.6) accordingly. Our experimental 
setup is presented in the Fig. 1.

Three lung mechanics were simulated on the artificial 
lung, by setting the airway resistance and thoraco-pul-
monary compliance parameters according to data from 
the literature [14] as presented below. For each lung 
mechanics scenario, we calibrated the breathing dynam-
ics to maintain a respiratory rate of 22 breaths per minute 
and a baseline tidal volume of 400 mL by modulating the 
strength of inspiratory effort for each lung condition. We 
simulated the three scenarios successively, producing 100 
respiratory cycles in total for each lung mechanic.

Resistance and compliance were as follows:
Normal Model: 5  cmH2O.s/L and 60 mL/cmH2O.
Obstructive Model: 25  cmH2O.s/L and 60 mL/cmH2O.
Parieto-restrictive: 5  cmH2O.s/L and 30 mL/cmH2O.

Experimental procedure
We evaluated five distinct tracheostomy setups against 
a baseline scenario where the tube was capped, and the 
cuff deflated. This baseline was deemed the control con-
dition, as it is presumed to represent the most challeng-
ing phase for patients prior to decannulation.

These different configurations included the use of an 
artificial nose with both an inflated cuff and a deflated 
cuff, the application of a speaking valve with a deflated 
cuff, and the addition of high-flow therapy (HFT) with 
both inflated and deflated cuff conditions. HFT was 
administered through an Airvo2 (Fisher & Paykel Health-
care) device at 50 L/min, 37 °C and 21% oxygen fraction. 
Supplementary oxygen was delivered at a rate of 2 L/min 
with both artificial nose and speaking valve configura-
tions, leading to three additional conditions tested. Each 
configuration was evaluated using the three simulated 
lung models.
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Data acquisition and statistical analysis
Pressure and flow data were acquired directly from the 
ASL 5000 software, at a sampling rate of 512 Hz. A cal-
culation code (KerNel Biomedical, France) was then used 
to compute the following indicators on a cycle-by-cycle 
basis: WOB, in J/L, over the inspiratory phase, PEEPtot 
(in  cmH2O), effective VT (in mL). A hygrometry sensor 
(HMP110, Vaisala, Finland) and an oxygen sensor (PSR-
11-917, Analytical Industries Inc., USA) were added at 
the distal end of the trachea. Temperature (in °C), relative 
(in %) and absolute (in  mgH2O/L) humidity in the tra-
chea and inspired oxygen fraction (in %) were measured 
and averaged over the duration of each simulation.

Quantitative data were expressed as mean (standard 
deviation) or median (interquartile range) depending on 
whether the distribution was normal or not. Normality 

of the distribution was assessed using Shapiro–Wilk test. 
We use the one-way ANOVA with Bonferroni correc-
tion. Comparisons were established to the Capping Con-
dition, and expressed as mean differences and standard 
deviations or 95% confidence interval (CI). Tests were 
two-tailed and a value of p < 0.05 was considered statisti-
cally significant. Statistical analysis was performed using 
GraphPad X.

Results
Work of breathing
In the normal lung model, the mean WOB was 
0.660 ± 0.002  J/L in the control condition (i.e., cannula 
capping). The conditions with the cuff deflated did not 
result in a notable change in the WOB (see Table  1). 
Inflation of the tracheostomy cuff statistically increased 

Fig. 1 Experimental setup schematic (from left to right: realistic upper airway model head with tracheostomy module, heated humidifier, 
protective balloon (AGEC), ASL 5000 mechanical lung) and description of the experimental conditions. Red circles indicate the measurement sites 
of the main variables. AN: artificial nose, HFT: high flow therapy
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the WOB compared to the control condition but did not 
reach clinical relevance (see Table 1). For example, with 
the cuff inflated and HFT, the WOB was 0.664 ± 0.001 J/L, 
and with the cuff inflated alongside the use of an artificial 
nose, the WOB was 0.664 ± 0.002  J/L. In the restrictive 
lung model, deflating the cuff seemed to lead to a statisti-
cal decrease in WOB compared to the control condition, 
while inflating the cuff increased the WOB. The absolute 
values of WOB for the three models are presented in the 
Fig. 2.

Conversely, in the obstructive lung model, WOB 
decreased in the conditions where the cuff was inflated, 
with HFT and with an artificial nose, compared to the 
control condition. HFT and artificial nose with the cuff 
inflated led, respectively, to a WOB of 1.400 ± 0.001  J/L 
and 1.500 ± 0.001 J/L.

PEEPtot
Figure  3 shows PEEPtot values under different condi-
tions. HFT with cuff inflated significantly increased 

PEEPtot the most compared to capping for both the nor-
mal and obstructive models [respectively, + 1  cmH2O 95% 
CI (0.93–1.06); p < 0.001 and + 1  cmH2O 95% CI (1–1.10); 
p < 0.001]. For the restrictive model, cuff inflated with 
HFT increases PEEPtot by + 0.55   cmH2O 95% CI (0.37–
0.76) (p < 0.001) compared to capping (see Table 1).

Tidal volume
We observed a significant reduction in VT when the cuff 
was inflated, i.e., with HFT and with an artificial nose, 
across all three models (see Table 1). The decrease in VT 
could reach − 57  mL 95% CI (− 60 to − 54) (p < 0.001) 
with HFT with cuff inflated compared to the cannula 
capping condition. The evolution of VT according to the 
tracheostomy tube modalities is represented in Fig. 4.

Relative humidity and oxygen supplementation
We observed in the Fig. 5 panel A that relative humidity 
was maintained with the use of an artificial nose, with a 
percentage ranging from 90% to 99%, depending on the 

Table 1 Mean differences and 95% confidence interval compared to the “canula capping” control condition for each experimental 
condition tested

HFT: high flow therapy; mL: milliliter;  cmH2O: centime of water; PEEPtot: positive end expiratory pressure; J: joules

Lung models Compared to the 
‘Cannula Capping’ 
condition

HFT with cuff 
inflated

HFT with cuff 
deflated

Artificial nose with 
cuff inflated

Artificial nose with 
cuff deflated

One way speaking 
valve

Normal Work of breathing 
(J/L)

0.004 (0.003 to 0.004) 0 (− 0.001 to 0.001) 0.004 (0.003 to 0.004) − 0.001 (0.001 to 0) 0 (− 0.001 to 0.001)

PEEPtot  (cmH2O) 1 (0.93 to 1.06) 0.10 (0.03 to 0.16) 0.23 (0.17 to 0.28) − 0.08 (− 0.10 
to − 0.02)

− 0.08 (− 0.10 
to − 0.02)

Tidal volume (mL) − 57 (− 60 to − 54) 1 (− 1 to 4) − 46 (− 49 to − 43) 8 (5 to 11) 7 (4 to 10)

Obstructive Work of breathing 
(J/L)

− 0.009 (− 0.009 
to − 0.008)

0.001 (0.001 to 0.001) − 0.006 (− 0.006 
to − 0.005)

0.001 (0.001 
to 0.001)

0 (0 to 0)

PEEPtot  (cmH2O) 1 (1 to 1.10) 0.14 (0.11 to 0.17) 0.30 (0.27 to 0.33) − 0.01 (− 0.03 
to 0.01)

− 0.04 (− 0.06 
to − 0.01)

Tidal volume (mL) − 43 (− 44 to − 43) − 0.4 (− 1 to − 0.3) − 35 (− 36 to − 35) 3 (2 to 4) 0.6 (− 0.0 to 1)

Restrictive Work of breathing 
(J/L)

0.040 (0.030 to 0.040) − 0.004 (− 0.005 
to − 0.003)

0.037 (0.036 to 0.038) − 0.007 (− 0.008 
to − 0.006)

− 0.005 (− 0.006 
to − 0.004)

PEEPtot  (cmH2O) 0.55 (0.37 to 0.73) 0.06 (0.12 to 0.24) − 0.20 (− 0.40 
to − 0.04)

− 0.20 (− 0.40 
to − 0.04)

− 0.40 (− 0.50 
to − 0.20)

Tidal volume (mL) − 8 (− 12 to − 3) 0.3 (4 to 5) − 2 (− 6 to − 2) 6 (1 to 10) 10 (6 to 14)

Fig. 2 Absolute values of work of breathing (WOB) (in J/L) according to the lung model and the tracheostomy tube modality. Values are 
represented as mean and standard deviation



Page 5 of 8Combret et al. Intensive Care Medicine Experimental           (2024) 12:63  

lung models. Relative humidity was impacted by the use 
of the one-way speaking valve with a percentage ranging 
from 79.5% to 92%. The cannula capping condition was 
excluded from this analysis, because the air could not be 
humidified through natural airways in this bench study.

Panel B of Fig.  5 illustrates the variations in relative 
humidity resulting from either incorporating or not 
incorporating an oxygen flow of 2 L/min. The use of the 
speaking valve significantly affected relative humidity, 
with respective decreases of 16% in normal lung condi-
tions, 25% in obstructive lung conditions, and 15% in 
restrictive lung conditions. The addition of 2  L/min of 
airflow further reduced the relative humidity.

The inspired oxygen fraction  (FiO2) generated by 
administering an external flow of 2L/min was statistically 
increased with the use of a one-way speaking valve com-
pared to the cuff inflated with an artificial nose condition 
[respectively, 46% 95% CI (42.5–49.5) vs. 26.7% 95% CI 
(22.9–30.5); p < 0.001]. Inflated or deflated cuff did not 
statistically influence  FiO2 with an artificial nose.

Discussion
This bench study provided the following observations: 
(i) in the normal and restrictive models, conditions with 
an inflated cuff led to a slight increase in ventilatory 
work compared to the capping condition which is the 
last step on the decannulation pathway [15]. However, in 
the obstructive model, ventilatory work was minimally 

increased by the cuff deflated conditions. (ii) Add-
ing HFT to a cuff-inflated tracheostomy tube increased 
PEEPtot by up to 1  cmH2O compared to the capping con-
dition. (iii) Across all pulmonary models, the inflated cuff 
resulted in a reduction in VT by up to − 57 mL per breath.

In our experimental conditions, the observed results 
strengthen the rationale for cuff deflation. The differ-
ences observed on the WOB compared to cannula cap-
ping, although sometimes statistically significant, appear 
clinically minimal and may not discourage cuff deflation 
considering the other benefits (e.g., improved swallowing 
or phonation) expected. The only exception was noted 
in the obstructive lung model, with an increase in WOB 
occurring with cuff deflation. One explanation could be 
that the decrease in expiratory resistance while the cuff 
is inflated in such circumstance might be beneficial for 
patients with obstructive diseases [16, 17]. However, it 
is important to note that our model does not replicate 
vocal cords and their physiological impact on patient res-
piratory mechanics. In addition, numerous clinical argu-
ments support cuff deflation and the use of the speaking 
valve to facilitate expectoration, swallowing, and lung 
recruitment [1, 2, 7, 9–12].

Interestingly, the use of HFT did not produce the 
expected effects on WOB or the generation of PEEPtot. 
The clinical hypotheses were that HFT could serve as a 
substitute for mechanical ventilation by reducing WOB, 
maintaining PEEP effects, and increasing VT [18, 19]. 

Fig. 3 Absolute values of the total positive end‑expiratory pressure (PEEPtot) (in  cmH2O) a according to the lung model and the tracheostomy tube 
modality. Values are represented as mean and standard deviation

Fig. 4 Absolute values of the effective tidal volume (VT) (in mL) according to the lung model and the tracheostomy tube modality. Values are 
represented as mean and standard deviation
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However, our results do not corroborate these hypoth-
eses, with minimal PEEP effects (+ 1  cmH2O at best) and 
decreased VT. Nevertheless, our results indicate that HFT 
provides the best humidification and the highest tem-
perature, while the speaking valve significantly reduces 
relative humidity. These findings are further accentuated 
when oxygen is added. Indeed, the mechanism of oxygen 
administration on the speaking valve traps oxygen behind 
the one-way membrane and exacerbates the drying of 
inspired gases. These results are confirmed by the differ-
ences in  FiO2 found for the same flow rate, with  FiO2 of 
46% 95% CI (42.5–49.5) for 2 L/min of  O2.

Our study had several limitations, including the lack 
of air warming and humidification typically provided 
by the upper airway mucosa, notably the nasal turbi-
nates. This could have potentially affected our findings 
related to relative humidity in conditions where the cuff 
was deflated. In addition, our model did not incorpo-
rate vocal cords, which precluded us from consider-
ing the permeability of a patient’s upper airways in our 
analysis. We also did not compare the different existing 

tracheostomy tube models or the possibility of incorpo-
rating fenestrated tubes to facilitate phonation. Given 
that our results indicated minimal clinical differences 
between the most challenging scenario (cannula cap-
ping) and the other conditions tested, we would expect 
that the subtle variations inherent to different trache-
ostomy tube models would likely have little impact on 
patient outcomes. Last, the minimal variability in the 
WOB across different tracheostomy modalities could 
be attributed to the inspiratory effort being specifi-
cally calibrated for each lung model. If the respiratory 
effort settings on our models were more adaptive, a 
greater variability in WOB might have been anticipated 
depending on the conditions. Although the controlled 
conditions of our experimental model enhance the reli-
ability of our findings, the lack of variability could limit 
how directly they can be applied to real-world clini-
cal settings. Notably, some statistical differences we 
observed, particularly in the WOB, are likely to have 
limited clinical significance. Hence, these results should 
be cautiously interpreted and may need adaptation 

Fig. 5 A Relative humidity resulting from tracheostomy tube modalities; B relative humidity resulting from either incorporating 
or not incorporating an oxygen flow of 2 L/min. Values are represented as mean
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for actual clinical environments, considering factors 
beyond our experimental scope.

Our results support the use of conditions that involve 
cuff deflation. We also noted that intermediate modali-
ties, such as using an artificial nose or a speaking valve 
with the cuff deflated, yielded results that were very close 
to, if not indistinguishable from, those observed with 
cannula capping. Considering the risk of airway dryness, 
the reduction in the number of days before decannula-
tion, and in the absence of contraindications (glottic con-
trol disorders and upper airway obstruction), the choice 
between capping and speaking valve may look trivial and 
should be more discussed among the healthcare staff.

In conclusion, our innovative model allows us to 
provide arguments for cuff deflation. The differences 
between intermediate conditions and capping are mini-
mal and encourage clinicians to reduce the number of 
steps before attempting capping. The results of this bench 
study need to be validated with clinical data.
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