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ALMOST AUTOMORPHIC AND BIJECTIVE FACTORS OF

SUBSTITUTION SHIFTS

ALVARO BUSTOS-GAJARDO, JOHANNES KELLENDONK, AND REEM YASSAWI

Abstract. In this article we completely characterise constant length substi-

tution shifts which have a proper almost automorphic factor, or which have a
bijective substitution factor such that the factor map is injective on at least

one point. Our approach is algebraic: we characterise these dynamical proper-

ties in terms of a finite semigroup defined by the substitution. We characterise
the existence of almost automorphic factors in terms of Green’s R-relation and

the existence of bijective factors in terms of Green’s L-relation. Our results

are constructive.

1. Introduction

We are interested in the existence of factors with specific properties for shifts
defined by substitutions of constant length. Here, by dynamical system (X,T ) we
mean a homeomorphism T acting on a compact metric space X. If (X,T ) and
(Y, S) are two dynamical systems and F : X → Y is a continuous surjective map
such that F ◦ T = S ◦ F then (Y, S) is called a factor of (X,T ), (X,T ) is called
an extension of (Y, T ), and F is called the factor map. The factor map is almost
one-to-one if Y has a dense orbit of points, each of which have a unique pre-image.
If the factor map is almost one-to-one we say that (X,T ) is an almost one-to-one
extension of (Y, S).1 (X,T ) is called almost automorphic if it is an almost one-to-one
extension of its maximal equicontinuous factor. If an almost automorphic system
is not equicontinuous we call it properly almost automorphic. We are interested in
characterising two different scenarios regarding a shift (Xθ, σ) of a constant length
substitution θ:

(1) (Xθ, σ) has a proper almost automorphic factor.
(2) (Xθ, σ) is almost bijective, by which we mean that it is an almost one-to-one

extension of a bijective substitution shift.

In the first scenario, looking for almost automorphic factors which are shift
factors already solves the problem. This is because the substitution systems we
consider have odometers as maximal equicontinuous factors, and a proper almost
one-to-one extension of an odometer is necessarily conjugate to a shift [8, Theo-
rem 6.4]. By [17, Theorem 22], these shift factors must be substitution shifts. So
the first scenario boils down to characterising aperiodic primitive substitutions of
constant length which have a factor given by a primitive aperiodic constant length
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substitution shift with a coincidence (in the sense of Dekking). We also mention
Martin’s Theorem [16, Thm.8.11] which implies that, if a dynamical system (X,T )
has a proper almost automorphic factor then it also has a proper almost automor-
phic factor which is an almost one-to-one extension of the maximal equicontinuous
factor of (X,T ).

Before we explain our methods let us indicate why the study of factors of the
type above is interesting beyond the pure interest in them. One reason is simply
that certain properties of dynamical systems–and here we think in particular of
spectral properties–pass over to their extensions. For instance, it is commonly
believed that bijective substitution shifts should have a singular component in their
maximal spectral type, and this property would then be true also for substitutions
which factor onto a bijective substitution. Another reason is Veech’s structure
theorem for point distal systems which applies to constant length substitutions.
This structure theorem says that any minimal system with a residual set of distal
points is an AI-flow, that is, it has an almost one-to-one extension which is itself
the top system of a tower of AI extensions of the trivial system (pt, id) containing
only one point. Here an AI extension is a composition of an almost one-to-one
extension with an isometric extension. In the light of that theorem one might ask
what this tower looks like for constant length substitutions. Our findings give a
partial answer to this question, namely, if the constant length substitution shift
(Xθ, σ) is an almost one-to-one extension of a bijective substitution shift (Xη, σ)
and this bijective substitution shift admits a proper almost automorphic factor
(Y, σ) then we have the chain of factors

(1.1) Xθ
F1→ Xη

F2→ Y
πY→ G O→ pt

where F1 and πY are almost one-to-one, and O isometric, and G is the maximal
equicontinuous factor of (Xθ, σ). If F2 is isometric, then (1.1) is a chain of AI-
extensions (also called a Veech tower) already for (Xθ, σ) and the latter is even
a strict AI-flow, as we do not have to go over to an almost one-to-one extension
(X ′, T ) to obtain a tower. Martin [16] provided a criterion for when this is the case,
see also Theorem 3.29. We find below a necessary and sufficient criterion for when
a general constant length substitution (Xθ, σ) admits a proper almost automorphic
factor (Y, σ). While the non-existence of a proper almost automorphic factor rules
out that Xθ is a strict AI-flow, its existence does not imply that the factor map
is isometric. We leave the question of when the factor map is isometric to future
work.

A third reason to study in particular shift factors associated with bijective sub-
stitutions is that the latter constitute one of the few families for which a fairly
explicit description of the Ellis semigroup exists [13] and since factor maps induce
epimorphisms of Ellis semigroups, we obtain information on the Ellis semigroup of
(Xθ, T ) in this way. This will be presented in future work.

We study both scenarios above using a combination of two sets of tools. The
first tool is algebraic, the semigroup Sθ of a substitution θ; see Definition 2.8. This
semigroup has been extensively used in the case when it is a group Gθ, i.e., when the
substitution is bijective. For example, Gθ is used to characterise the automorphism
group [14, 17], and, if it is commutative, then (Xθ, σ) has a singular component in
its maximal spectral type [2, 19]. Also, it is a fundamental building block of the
Ellis semigroup of a bijective substitution [13]. It is interesting that we use Green’s
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R relation to prove Theorem 1.1, and Green’s L relation to prove Theorems 1.2
and 1.3.

The second set of tools is classical and involves building topologically conjugate
versions of (Xθ, σ) using collaring and k-shifting (Definitions 2.1 and 2.2). In partic-
ular, collaring allows us to control the radius of a putative factor map F : Xθ → Y ,
and k-shifting allows us to compose F with a “translation”. We use both these con-
structions to limit and manipulate possible factor maps, and this results in theorem
statements that are constructive, i.e., given a length-ℓ substitution shift, one can
explicitly determine whether or not it has a proper almost automorphic or bijective
shift factor.

Let θ(−l,r) denote the (−l, r)-collaring of θ, which is the model of θ that we work
with if F : Xθ → Y has left and right radius l and r. To state our first result, we
distinguish between different families of factor maps. The simplest factor maps are
those induced by inner encodings. An inner encoding of θ is roughly speaking a
substitution η obtained by a code from θ; see Definition 2.3. The factor map induced
by the inner encoding is a factor map between the substitution shifts F : Xθ → Xη

which can be characterised by the fact that it has radius zero and sends fixed points
of the substitution θ to fixed points of η. Inner encodings arise whenever there is
an equivalence relation on the alphabet Aθ of the substitution θ such that if a ∼ b,
then as words, θ(a) ∼ θ(b). Thus inner encodings define partitions P of Aθ. Given
a substitution θ, there is a natural way to define a partition Pθ of its alphabet,
which we call the coincidence partition of θ (Definition 3.2), and which yields an
inner encoding of θ, called the canonical inner encoding of θ; its definition involves
Green’s R-relation on the kernel of Sθ. The shift of this inner encoding is almost
automorphic. However one cannot guarantee that the inner encoding is aperiodic
so that its shift space is infinite. Our first result, consisting of Theorem 3.21 and
Corollary 3.26, is

Theorem 1.1. Let θ be a primitive, constant length, aperiodic substitution, with
pure base θ̃. Then θ has a proper almost automorphic factor if and only if the
canonical inner encoding of θ̃(−1,1) is aperiodic.

The beauty of this result is that it is quite simple to verify its conditions for
a fixed substitution. Both Martin [16] and later Herning [11] have worked on this
question, but only in the case where θ is bijective; see below for a discussion of their
results. In particular, Martin was interested in finding almost automorphic factors
of which the original substitution shift is an isometric extension. This is not always
the case: in Example 3.30 we present a proper almost automorphic factor which is
not an isometric factor.

Note that as a corollary, we can show that there exist substitution shifts for
which the maximal tame factor, [9], equals the maximal equicontinuous factor.
For, a tame factor must be almost automorphic [12], and with Theorem 1.1, we
can give many examples of substitution shifts with no proper almost automorphic
factor.

Our second result characterises, in terms of the semigroup Sθ, when the sub-
stitution shift (Xθ, σ) is an almost one-to-one extension of a bijective substitution
shift. We make use of the fact that Sθ admits a kernel, i.e., a minimal bilateral
ideal, which is a union of minimal left ideals. The column rank of θ is the rank of
any element in the kernel of Sθ. We first show the following, which is Theorems 4.1
and 4.2 of this article.
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Theorem 1.2. Let θ be a constant length substitution with column rank c and
height h. Suppose that c > h. The following are equivalent.

(1) (Xθ, σ) is an almost one-to-one extension of a bijective substitution shift
(Xη, σ) where η is an inner encoding of θ with an alphabet of c letters.

(2) The semigroup Sθ of θ has a unique minimal left ideal.

Note that if (Xθ, σ) is an almost one-to-one extension of any constant length
substitution shift (Xη, σ) then η has to have the same column rank. So the re-
quirement that the alphabet of η has c letters in (1) comes for free. Therefore, if
θ is aperiodic and c = 1, there is no such factor as η must be aperiodic for the
factor map to be almost one-to-one. We also show that in the case that c = h, η is
periodic.

To drop the condition that the bijective factor comes from an inner encoding,
let θ(+k) be the k-shifted extension of θ. This version of θ is especially useful when
one considers factor maps F which do not map fixed points of θ to fixed points.
We show

Theorem 1.3. Let θ be an aperiodic primitive constant length-ℓ substitution with
column rank c and height h. Suppose that c > h. The following are equivalent:

(1) (Xθ, σ) is almost bijective.
(2) There exist 0 ≤ n, k ≤ C such that the semigroup S(θn)(+k) contains a

unique minimal left ideal.

Moreover, C can be explicitly obtained. However in general it is doubly expo-
nential in ℓ; see the statement of Theorem 4.19.

We discuss prior work concerning Theorem 1.1. In his work [16], Martin gives a
necessary and sufficient condition for a bijective substitution shift to be an isometric
extension of a proper almost automorphic factor in [16, Theorem 8.08], and his
condition (A) in fact translates to our condition that the minimal sets for the
collared θ(0,1) of the substitution form a partition; see Theorem 3.29. This then
guarantees that the factor map F2 in (1.1) is isometric. For more general constant
length substitutions, even apparently general bijective substitutions, factor maps
to proper almost automorphic factors need not be isometric, see Example 3.30, and
an interesting question that remains is what conditions guarantee that (Xθ, σ) is
an isometric extension of a proper almost automorphic factor. Later, in his thesis,
Herning [11] re-approaches the question of existence of a proper almost automorphic
factor; it seems he was unaware of Martin’s work. He answers this question in
the negative by finding bijective substitutions that do not have a proper almost
automorphic factor. In [11, Theorem 4.24], Herning characterises bijective length-
p substitutions of prime length that have a proper almost automorphic factor.
Once translated, his characterisation is very similar to ours and Martin’s. Our
Theorem 1.1 extends these results to characterise when any primitive constant
length substitution, not just bijective, has a proper almost automorphic factor.

We summarise the contents of this paper. In Section 2, we set the background,
fix notation, and define collared, shifted and inner encoded substitutions. We then
limit the radii of factor maps for a length-ℓ substitution, extending techniques that
exist in the literature for invertible factor maps. In Section 3, we set the stage to
prove Theorem 1.1. To do this, we define outer encodings of a substitution. These
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are substitutions whose semigroup is an epimorphic image of Sθ. As such, they do
not necessarily give rise to factor maps between substitution shifts. However, we
show in Proposition 3.18 that any inner encoding with column rank 1 must factor
through the canonical outer encoding; see Definition 3.1. This is the key tool to
prove Theorem 1.1, once we bound possible factor maps using the tools from Sec-
tion 2. In Section 4, we prove Theorem 1.3 in three successive steps. First we prove
Theorem 1.2, which characterises when a substitution has a bijective factor arising
from an inner encoding, i.e., a radius zero factor map which sends fixed points to
fixed points. Next, in Theorem 4.11, we give a characterisation while relaxing the
condition that the factor map has radius 0. Finally, in Theorem 4.19, we eliminate
the condition that the factor map send fixed points to fixed points. We strive to
isolate the requirements on the substitution, noting that generally, purely algebraic
results do not need the restriction to primitive aperiodic substitutions. We illus-
trate with examples throughout. In particular, we show in Examples 3.22 and 4.21
that the Rudin-Shapiro shift has a proper almost automorphic factor but is not
almost bijective. In Examples 3.15 and 3.23 we find an example with no almost
automorphic factors, and in Example 3.28 we illustrate the procedure for a substi-
tution with height. In Example 3.30 we distinguish our work from Martin’s, and
also give an example where the canonical outer encoding factors nontrivially onto a
nontrivial inner encoding. Example 4.9 consists of a substitution with uncountably
many singular fibres which is almost bijective. Finally in Examples 4.14 and 4.22
we have a substitution which factors onto a bijective substitution, indirectly, i.e.,
via a factor map which sends fixed points to non-fixed points.

2. Preliminaries

2.1. Constant length substitutions. A length-ℓ substitution θ is an ordered col-
lection of ℓ maps, the so-called column maps θm : A → A, m = 0, · · · , ℓ − 1,
on a finite set A (or Aθ if more precision is needed), its alphabet. The substitu-
tion θ can be understood as a map which associates to a letter a ∈ A the word
θ(a) := θ0(a) · · · θℓ−1(a) and to a word a1 · · · ak the word

(2.1) θ(a1 · · · ak) = θ(a1) · · · θ(ak),
of length kℓ, and to the bi-infinite sequences · · ·u−2u−1u0u1 · · · the bi-infinite se-
quence

θ(· · ·u−2u−1u0u1 · · · ) := · · · θ(u−2)θ(u−1)θ(u−1) · θ(u0)θ(u1) · · · .
Here the · indicates the position between the negative indices and the nonnegative
indices.

A bi-infinite sequence u is θ-periodic if θk(u) = u for some k ≥ 1. If k = 1 then
we say that u is a fixed point. By taking a power of θ if necessary, we will assume
that each θ-periodic point is θ-fixed. We say that a finite word is allowed for θ if
it appears somewhere in θk(a) for some a ∈ A and some k ∈ N. The substitution
shift (Xθ, σ) is the dynamical system where the space Xθ consists of all bi-infinite
sequences all of whose subwords are allowed for θ. We equip Xθ with the subspace
topology of the product topology on AZ, making the left shift map σ a continuous
Z-action.

In this article our techniques are a combination of algebraic arguments involv-
ing finite semigroups, and dynamical techniques applied to the dynamical system
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(Xθ, σ) generated by θ. For the algebraic arguments, very few constraints are im-
posed on θ. For the dynamical arguments, we collect the various properties of
substitutions which will play a role.

• Primitivity. We say that θ is primitive if there is some k ∈ N such that
for any a, a′ ∈ A, the word θk(a) contains at least one occurrence of a′.
For dynamical arguments, substitutions will mostly be assumed primitive.
Primitivity of θ implies that Xθ is the shift-orbit closure of any θ-periodic
point, and (Xθ, σ) is minimal. If θ is primitive, then Xθ = Xθn for each
n ∈ N. Thus, by considering a power of θ if necessary, we will assume that
all θ-periodic points are θ-fixed.
• Aperiodicity. We say that θ is aperiodic if Xθ does not contain any σ-
periodic sequences. This is the case if and only if Xθ is an infinite space.
• Bijectivity. We say that θ is bijective if all column maps θm : A → A are
bijective.

2.2. The maximal equicontinuous factor of a length-ℓ substitution. Let Zℓ

denote the ℓ-adic integers, i.e., the inverse limit of cyclic groups lim←−Z/ℓnZ. Let

Zℓ̄,h := lim←−Z/ℓnhZ and let 1 := (· · · , 0, 0, 1); addition in Zℓ̄,h is performed with

carry. If θ is primitive and aperiodic, then Dekking’s theorem [6] tells us that
(Zℓ,+1) is an equicontinuous factor of (Xθ, σ). Furthermore, there is an h, with
0 < h < ℓ, with h coprime to ℓ, such that (Zℓ̄,h,+1), is the maximal equicontinuous
factor of (Xθ, σ). The integer h is called the height of θ, and we say that θ has
trivial height if h = 1.

We fix the factor map π : Xθ → Zℓ from a primitive aperiodic length-ℓ substitu-
tion shift (Xθ, σ) to (Zℓ,+1) with which we work in this article. We will specify it
by requiring π(u) = 0 if and only if u is a θ-fixed point. We refer the reader to [6]
for details.

Given the substitution θ, the substitution θn is a length-ℓn substitution. If
0 ≤ j ≤ ℓn − 1, we use θnj to denote its j-th column map. The column rank of a
substitution θ is defined as the minimal number of distinct letters in the image of
a column map of θn, for some n. In other words,

(2.2) c = c(θ) := inf
j,n
{|θnj(A)| : 0 ≤ j < ℓn} .

We say that θ has a coincidence if c = h. In this case, (Xθ, σ) is almost automor-
phic, i.e., an almost one-to-one extension of its maximal equicontinuous factor. For
details, see [6]. We remark that our notion of column rank agrees with Dekking’s
original definition of column number when h = 1; however it is in this paper more
useful to use the present definition, as it is also in [15], where Lemanczyk and
Müllner show that h divides c, and that (Xθ, σ) is a somewhere c-to-one extension
of (Zℓ,+1).

2.3. Collared and shifted substitutions. It will be necessary to consider col-
lared substitutions and k-shifted substitutions of the substitution θ, which yield
shifts that are topologically conjugate to (Xθ, σ). The notation we use in the fol-
lowing definition will be useful when we consider recasting factor maps of left radius
l ≥ 0 and right radius r ≥ 0 as codings.

Definition 2.1. Let n = (−l, r) where l, r ≥ 0. The n-collared extension of θ
is the substitution θ(n) of the same length whose alphabet consists of the allowed
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r + 1 + l-letter words of θ and which is given as follows. Given an allowed word
a−l . . . ar compute a′−ℓl . . . a

′
ℓ(r+1)−1 := θ(a−l . . . ar) and set

θ(n)m(a−l . . . ar) := a′m−l . . . a
′
m+r.

If we take l = r = 0 then we obtain θ(n) = θ. If l = 0 then θ(n) is the so-called
r-sliding block representation of θ; see [19, Section 5.4]. We denote by A(2) ⊂ A2

the set of allowed 2-letter words.

Definition 2.2. Let 0 ≤ k ≤ ℓ−1. The k-shifted extension of θ is the substitution
θ(+k) of the same length whose alphabet is A(2) and which is given as follows. Given
an allowed word a0a1, write θ(a0a1) = a′0 . . . a

′
2ℓ−1 and set

θ(+k)
m(a0a1) := a′m+ka

′
m+k+1.

Note that θ(+0) = θ(0,1).

2.4. Factors, codes and encoded substitutions. Recall that a factor map be-
tween two shifts, X ⊂ AZ, Y ⊂ BZ is a continuous surjective map F : X → Y
which intertwines the shifts, F ◦ σ = σ ◦ F . The Curtis-Hedlund-Lyndon theorem
states that such a factor map is defined by a local rule, that is, there are integers
l ≥ 0 and r ≥ 0 and a surjective map φ : Ar+1+l → B, so that

(F (x))n = φ(xn−l, . . . , xn+r)

for each n ∈ Z. The quantities l, r are called the left and right radius of F respec-
tively. If F is radius zero, i.e., l = r = 0, then the local rule φ : A → B of F is
called a code. We use uppercase letters to denote factor maps, and lowercase greek
letters to denote local rules. If we are given a local rule φ which defines a factor
map, we will denote it by Fφ.

Definition 2.3. Let η and θ be length-ℓ substitutions. We say that η is an inner
encoding of θ if there exists a surjective map β : Aθ → Aη which intertwines the
column maps of the substitutions, i.e.,

Aθ Aθ

Aη Aη

θm

β β

ηm

commutes.

If we need more precision then we denote the inner encoding also by the pair
(η, β). A diagram chase shows that if θ is primitive then also η is primitive. If
(η, β) is an inner encoding of θ, then β is the code of a factor map Fβ : Xθ → Xη.
However, given an arbitrary code β : Aθ → Aη for a factor map Fβ : Xθ → Xη, it
will in general not intertwine the substitutions as above. We will see an example
of this below.

Lemma 2.4. Consider a substitution θ with its n = (−l, r)-collaring θ(n). Let
ı : Aθ(n) → Aθ be given by

ı(a−l . . . ar) := a0.(2.3)

Then (θ, ı) is an inner encoding of θ(n), and the factor map Fı is injective.
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Proof. Clearly ı ◦ θ(n) = θ ◦ ı. To proceed we consider n = (0, 1) to not overburden
the notation. By definition, every 2-letter word of a sequence x ∈ Xθ(0,1) is allowed
for θ(0,1) and hence of the form · · · (aiai+1)(ai+1ai+2) · · · . Hence

· · · (aiai+1)(ai+1ai+2) · · · Fı7→ · · · aiai+1 · · ·
is injective. The argument for different n is similar. □

Corollary 2.5. The code Aθ(+k) ∋ a0a1
ı7→ a0 ∈ Aθ gives rise to an injective factor

map Fı : Xθ(+k) → Xθ (a conjugacy) which satisfies

σk ◦ θ ◦ Fı = Fı ◦ θ(+k).

Proof. All θ(+k) have the same alphabet, namely A(2), and the same shift space as
θ(0,1). Indeed, with the notation of Definition 2.2,

a0a1
θ(+k)

7→ (a′ka
′
k+1)(a

′
k+1a

′
k+2) · · · (a′ℓ+k−1a

′
ℓ+k)

and

a0a1
θ(0,1)

7→ (a′0a
′
1)(a

′
1a

′
2) · · · (a′ℓ−1aℓ)

so that as maps on that shift space we have

θ(+k) = σk ◦ θ(0,1).
Now the first statement is Lemma 2.4 for l = 0 and r = 1 and the equation follows
from Fı ◦ θ(0,1) = θ ◦ Fı. □

We say that a factor map F : Xθ → Xη between two substitution shifts of equal
length preserves the fixed point fibre if it maps the fixed points of any power of θ to
fixed points of any power of η.

Lemma 2.6. Let η and θ be length-ℓ substitutions and let β : Aθ → Aη be a code.
If (η, β) is an inner encoding of θ then the factor map Fβ preserves the fixed point
fibre. Hence if (η, β) is an aperiodic inner encoding of θ, then the equicontinuous
factor map π : (Xθ, σ) → Zℓ factors through Fβ. Conversely, if θ is primitive and
Fβ : Xθ → Xη preserves the fixed point fibre, then (η, β) is an inner encoding.

Proof. Recall that we can assume, by going over to a power of the substitution if
needed, that all θ-periodic points of θ are fixed. Let v.u be a fixed point of θ and
hence also of θm for any m ≥ 1. We denote by u = u0 . . . and . . . v−1 = v the right
and left infinite parts.

Suppose that η is inner encoded by β, that is, for each n and a, β(θn(a)) =
ηn(β(a)). Then

Fβ(v.u) = lim
n

βθn(v−1.u0) = lim
n

ηn(β(v−1).β(u0))

= η(lim
n

ηn(β(v−1).β(u0))) = η(Fβ(v.u)).

The assumption that η is aperiodic implies by Dekking’s theorem that both substi-
tution shifts have (Zℓ,+1) as an equicontinuous factor. Recall that we have fixed
these equicontinuous factor maps by requiring that they map the fixed point fibre
to 0 ∈ Zℓ. As F maps the fixed point fibre of θ to that of η we see that the equicon-
tinuous factor map π : Xθ → Zℓ factors through F at least for all points in the
orbit of a fixed point of θ, and then by minimality for all points of Xθ.

Finally we prove the converse. Suppose that Fβ sends fixed points to fixed points,
so that Fβ(v.u) is a fixed point of ηn for any n ≥ 1. If m < ℓn, then β maps the
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m-th letter of u, which is θnm(u0), to the mth letter of β(u), which is ηnm(β(u0)).
In particular, β maps θnm(θk(u0)) to ηnm(ηk(β(u0))) = ηnm(β(θk(u0))). If θ is
primitive all letters arise as θNk(u0) for some N and k showing that ηn(β(a)) =
β(θn(a)) for all a ∈ Aθ. □

Note that, if θ is aperiodic, then, for k > 0, θ(+k) cannot be an inner encoding.
Indeed, let u be a fixed point of θ(+k) and suppose that Fı maps u to a fixed point
v of θ. Applying the equation of Corollary 2.5 we get

v = Fı ◦ θ(+k)(u) = σk ◦ θ ◦ Fı(u) = σk(v)

a contradiction.
Any map β : A → B between sets defines a partition Pβ = {β−1(b) : b ∈ B}. We

call Pβ the partition associated to β.

Lemma 2.7. Let θ be a length-ℓ substitution on A.
(1) If (η, β) is an inner coding of θ then the partition Pβ associated to β satisfies

∀m ∀A ∈ Pβ ∃B ∈ Pβ such that θm(A) ⊂ B.

(2) Conversely, if there is a partition P of A such that

∀m ∀A ∈ P ∃B ∈ P such that θm(A) ⊂ B,

then the canonical projection β : A → P defines an inner coding (η, β) of θ
through ηm := βθmβ−1.

Proof. Suppose that (η, β) is an inner coding of θ. Then for all m we have ηm ◦β =
β ◦ θm. This implies that for all b ∈ B, βθm has the same value on all elements of
β−1(b). In other words for any A ∈ Pβ we have that βθm(A) is a singleton, and
this implies that θm(A) must be a subset of a member of Pβ .

As for the converse, if P is a partition with the required property then we can
define B := P, the code β : A → B to be the map that sends a ∈ A to the member
of P to which it belongs and for b ∈ B, ηm(b) is defined to be the member of P
which contains θm(b), i.e., ηm := βθmβ−1. □

If P satisfies (2) of Lemma 2.7, we call the associated inner encoding the inner
encoding defined by the partition P.

Although not all codes give rise directly to inner encoded substitutions, they
induce an inner encoded substitution in the following way: Let θ be a substitution
on the alphabet A and τ : A → B be a code. If Pτ does not satisfy Condition (2)

of Lemma 2.7, we can define a finer partition P̃τ which has this property, notably
through the equivalence relation a ∼ b if ∀n ≥ 0, 0 ≤ m < ℓn, τ(θnm(a)) =
τ(θnm(b)). We denote the associated inner encoded system by (ητ , βτ ) and call it
the inner encoding defined by τ . The alphabet of ητ is usually smaller than A and
usually larger than B. There is thus a code τ ′ : Aητ → B which comes with η and
satisfies τ = τ ′ ◦ βτ . This is summarised in the left hand side of Figure 1.

2.5. Factors of substitution shifts. Let F(X) denote the semigroup of maps
from X to itself. In this article we will be working extensively with the following
semigroup.

Definition 2.8. The semigroup Sθ of a length-ℓ substitution θ over the alphabet
A is the subsemigroup of F(A) generated by the column maps θi, i = 0, · · · , ℓ− 1.
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m-th letter of u, which is ✓n
m(u0), to the mth letter of �(u), which is ⌘n

m(�(u0)).
In particular, � maps ✓n

m(✓k(u0)) to ⌘n
m(⌘k(�(u0))) = ⌘n

m(�(✓k(u0))). If ✓ is
primitive all letters arise as ✓N

k(u0) for some N and k showing that ⌘n(�(a)) =
�(✓n(a)) for all a 2 A✓. ⇤

Note that, if ✓ is aperiodic, then, for k > 0, ✓(+k) cannot be an inner encoding.
Indeed, let u be a fixed point of ✓(+k) and suppose that Fı maps u to a fixed point
v of ✓. Applying the equation of Corollary 2.5 we get

v = Fı � ✓(+k)(u) = �k � ✓ � Fı(u) = �k(v)

a contradiction.
Any map � : A ! B between sets defines a partition P� = {��1(b) : b 2 B}. We

call P� the partition associated to �.

Lemma 2.7. Let ✓ be a length-` substitution on A.

(1) If (⌘, �) is an inner coding of ✓ then the partition P� associated to � satisfies

8m 8A 2 P� 9B 2 P� such that ✓m(A) ⇢ B.

(2) Conversely, if there is a partition P of A such that

8m 8A 2 P 9B 2 P such that ✓m(A) ⇢ B,

then the canonical projection � : A ! P defines an inner coding (⌘, �) of ✓
through ⌘m := �✓m��1.

Proof. Suppose that (⌘, �) is an inner coding of ✓. Then for all m we have ⌘m �� =
� � ✓m. This implies that for all b 2 B, �✓m has the same value on all elements of
��1(b). In other words for any A 2 P� we have that �✓m(A) is a singleton, and
this implies that ✓m(A) must be a subset of a member of P� .

As for the converse, if P is a partition with the required property then we can
define B := P, the code � : A ! B to be the map that sends a 2 A to the member
of P to which it belongs and for b 2 B, ⌘m(b) is defined to be the member of P
which contains ✓m(b), i.e., ⌘m := �✓m��1. ⇤

If P satisfies (2) of Lemma 2.7, we call the associated inner encoding the inner
encoding defined by the partition P.

Although not all codes give rise directly to inner encoded substitutions, they
induce an inner encoded substitution in the following way: Let ✓ be a substitution
on the alphabet A and ⌧ : A ! B be a code. If P⌧ does not satisfy Condition (2)

of Lemma 2.7, we can define a finer partition P̃⌧ which has this property, notably
through the equivalence relation a ⇠ b if 8n � 0, 0  m < `n, ⌧(✓n

m(a)) =
⌧(✓n

m(b)). We denote the associated inner encoded system by (⌘⌧ , �⌧ ) and call
it the inner encoding defined by ⌧ . The alphabet of ⌘⌧ is usually smaller than
A and usually larger than B. There is thus a code ⌧ 0 : A⌘⌧ ! B which comes
with ⌘ and satisfies ⌧ = ⌧ 0 � �⌧ . This is summarised in the commuting Figure ??.
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A✓ A⌘⌧

B

�⌧

⌧
⌧ 0

Figure 1. The commuting diagram of codes defined by a code ⌧
and its inner encoding (⌘⌧ , �⌧ ) .

X✓ X⌘⌧

Y

F�⌧

F⌧
F⌧0

Figure 2. The commutative diagram of factor maps induced by
Figure 1. Under its assumptions Theorem 2.9 implies that F⌧ 0 is
a conjugacy.

In this section our aim is to show that, up to conjugacy, any dynamical factor of a
primitive, aperiodic, constant length substitution ✓ of trivial height is an inner

encoding of a collaring ✓(n) of ✓, where n = (�l, r) with l, r  1. Later we will see
using the suspension construction how the result transposes to the case of any

height. As the proofs of many of the results in this section are gentle
modifications of previously established results, we include them in Appendix 5.
We first state in this context Theorem 2.9, which is a slight modification of [16,

Theorem 22] when the substitution is assumed of trivial height, and which we use
extensively. It focuses on shift factors which are given by a code. Such shift

factors are also called `-automatic. While the statement of [16, Theorem 22] does
not mention inner encoded substitutions, a look at its proof shows that the

substitution referred to in that theorem is exactly the inner encoded substitution
defined by the code. In the original statement of Theorem 2.9 the substitution is
assumed pair aperiodic. This was not a restriction as there is always a power of ✓
which is pair aperiodic. Here we assume that S✓ ⇢ S✓2 , and show in Lemma 5.1
that this is also not a restriction as there is always a power of ✓ which satisfies

this condition. The proof of Theorem 2.9, that we provide in Appendix 5, is new.

Theorem 2.9. Let ✓ be a primitive aperiodic length-` substitution. Suppose that
S✓ ⇢ S✓2 . Let F⌧ : X✓ ! Y ⇢ BZ be a factor which is induced by a code ⌧ : A✓ !
B. Then there exists (⌘, �) which is inner encoded by ✓ and surjective code map
⌧ 0 : A⌘ ! B such that ⌧ = ⌧ 0 � � and the induced map F⌧ 0 : X⌘ ! BZ is injective
and has image Y = F⌧ 0(X⌘). In other words F⌧ 0 is a conjugacy between X⌘ and Y .

We have summarised the statement in Figure 2.4. The diagram follows from
Figure 1.

Proposition 2.10. Let ✓ be a primitive, aperiodic length-` substitution, and let
F : X✓ ! Y ⇢ BZ be a factor map. There exists an n = (�l, r)-collaring ✓(n) and
a code ⌧ : A✓(n) ! B such that F = F⌧ � F�1

ı . If, in addition, Y is an aperiodic
length-` substitution shift and F preserves the fixed point fibre, then l, r 6 1.
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We first state in this context Theorem 2.9, which is a slight modification of [16,

Theorem 22] when the substitution is assumed of trivial height, and which we use
extensively. It focuses on shift factors which are given by a code. Such shift

factors are also called `-automatic. While the statement of [16, Theorem 22] does
not mention inner encoded substitutions, a look at its proof shows that the

substitution referred to in that theorem is exactly the inner encoded substitution
defined by the code. In the original statement of Theorem 2.9 the substitution is
assumed pair aperiodic. This was not a restriction as there is always a power of ✓
which is pair aperiodic. Here we assume that S✓ ⇢ S✓2 , and show in Lemma 5.1
that this is also not a restriction as there is always a power of ✓ which satisfies

this condition. The proof of Theorem 2.9, that we provide in Appendix 5, is new.

Theorem 2.9. Let ✓ be a primitive aperiodic length-` substitution. Suppose that
S✓ ⇢ S✓2 . Let F⌧ : X✓ ! Y ⇢ BZ be a factor which is induced by a code ⌧ : A✓ !
B. Then there exists (⌘, �) which is inner encoded by ✓ and surjective code map
⌧ 0 : A⌘ ! B such that ⌧ = ⌧ 0 � � and the induced map F⌧ 0 : X⌘ ! BZ is injective
and has image Y = F⌧ 0(X⌘). In other words F⌧ 0 is a conjugacy between X⌘ and Y .

We have summarised the statement in Figure 2.4. The diagram follows from
Figure 1.

Proposition 2.10. Let ✓ be a primitive, aperiodic length-` substitution, and let
F : X✓ ! Y ⇢ BZ be a factor map. There exists an n = (�l, r)-collaring ✓(n) and
a code ⌧ : A✓(n) ! B such that F = F⌧ � F�1

ı . If, in addition, Y is an aperiodic
length-` substitution shift and F preserves the fixed point fibre, then l, r 6 1.

Figure 1. On the left: The commuting diagram of codes defined
by a code τ and its inner encoding (ητ , βτ ). On the right: The
commutative diagram of factor maps induced by the codes on the
left. Under its assumptions Theorem 2.9 implies that Fτ ′ is a
conjugacy.

In this section our aim is to show that, up to conjugacy, any dynamical factor
of a primitive, aperiodic, constant length substitution θ of trivial height is an inner
encoding of a collaring θ(n) of θ, where n = (−l, r) with l, r ≤ 1. Later we will
see using the suspension construction how the result transposes to the case of any
height. As the proofs of many of the results in this section are gentle modifications
of previously established results, we include them in Appendix A.

We first state in this context Theorem 2.9, which is a slight modification of
[17, Theorem 22] when the substitution is assumed of trivial height, and which
we use extensively. It focuses on shift factors which are given by a code. Such
shift factors are also called ℓ-automatic. While the statement of [17, Theorem 22]
does not mention inner encoded substitutions, a look at its proof shows that the
substitution referred to in that theorem is exactly the inner encoded substitution
defined by the code. In the original statement of Theorem 2.9 the substitution is
assumed pair aperiodic. This was not a restriction as there is always a power of θ
which is pair aperiodic. Here we assume that Sθ ⊂ Sθ2 , and show in Lemma A.1
that this is also not a restriction as there is always a power of θ which satisfies this
condition. The proof of Theorem 2.9, that we provide in Appendix A, is new.

Theorem 2.9. Let θ be a primitive aperiodic length-ℓ substitution. Suppose that
Sθ ⊂ Sθ2 . Let Fτ : Xθ → Y ⊂ BZ be a factor which is induced by a code τ : Aθ → B.
Then there exists (η, β) which is inner encoded by θ and surjective code τ ′ : Aη → B
such that τ = τ ′ ◦ β and the induced map Fτ ′ : Xη → BZ is injective and has image
Y = Fτ ′(Xη). In other words Fτ ′ is a conjugacy between Xη and Y .

We have summarised the statement in the second commuting diagram of Fig-
ure 1, which follows from the first commuting diagram.

Proposition 2.10. Let θ be a primitive, aperiodic length-ℓ substitution, and let
F : Xθ → Y ⊂ BZ be a factor map. There exists an n = (−l, r)-collaring θ(n) and
a code τ : Aθ(n) → B such that F = Fτ ◦ F−1

ı . If, in addition, Y is an aperiodic
length-ℓ substitution shift and F preserves the fixed point fibre, then l, r ⩽ 1.

The statement of Proposition 2.10 is summarised in Figure 2. Its proof is based
on that of [5, Proposition 3.19]; we provide it in Appendix A.

Corollary 2.11. Let θ be an aperiodic, primitive, length-ℓ substitution on Aθ.

(1) If Xθ has a proper almost automorphic factor then it has a shift factor which
is an almost one-to-one extension of the maximal equicontinuous factor of
Xθ.
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Xθ Xθ(n)

Y
F

Fι

Fτ

Figure 2. The commutative diagram for Prop. 2.10.

(2) If F : Xθ → Y ⊂ BZ is a shift factor then there exists an n = (−l, r)-
collaring θ(n) with l, r ≤ 1, a natural number p ≥ 1, a length-ℓp substitution
η and a code β : Aθ(n)p → Aη such that (η, β) is an inner encoding of θ(n)

p

and (Xη, σ) is conjugate to (Y, σ). Moreover, the conjugacy is given by a
code τ ′ : Aη → B.

Proof. If Xθ has a proper almost automorphic factor then we may assume, by
Theorem A.5, that this factor is a proper almost automorphic extension of the
maximal equicontinuous factor of Xθ. By [8, Theorem 6.4], this factor is a shift
factor.

As for the second statement, we apply Proposition 2.10 to obtain a code with
its factor map Fτ : Xθ(n) → Y for some collaring θ(n) of θ such that the diagram
in Figure 2 commutes. Let p be such that Sθp ⊂ Sθ2p . We apply Theorem 2.9 to
Fτ : Xθ(n)p → Y to obtain the inner encoding (ητ , βτ ) of θ(n)

p
. This situation is

summarised in the right half of the following diagram and its left half follows from
Lemma 2.4 as Xθ(n)p is equal to Xθ(n) .

Xθ Xθ(n)p Xητ

Y

F−1
ι

F
Fτ

Fβτ

Fτ′

If n = (−l, r) with l, r ≤ 1 then we are done, the factor Xθ → Y is conjugate to
the factor Fβτ

: Xθ(n)p → Xητ
where (ητ , βτ ) is an inner encoding.

If n = (−l, r) with l > 1 or r > 1 then we need one more step. As Fı and Fβτ
are

both obtained from inner encodings, they preserve the fixed point fibres. It follows
that the composition F̃ := Fβτ

◦ F−1
ı : Xθ → Xητ

preserves the fixed point fibre.
We repeat the whole argument above but with Xητ

in place of Y . We can apply
Proposition 2.10, to obtain the commutative diagram

Xθ Xθ(ñ)p̃ Xητ̃

Xητ

F̃

Fι

Fτ̃

Fβτ̃

Fτ̃′

however this time with ñ = (l̃, r̃) with l̃, r̃ ≤ 1, as Xητ
is a substitution shift.

This gives us a chain of conjugacies, namely between the factor F : Xθ → Y
and F̃ : Xθ → Xητ as we saw above, and then between F̃ : Xθ → Xητ and
Fβτ̃ : Xθ(ñ)p̃ → Xητ̃ .

□
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3. Almost automorphic factors

In this section we completely characterise when an aperiodic primitive substitu-
tion θ of constant length has a proper almost automorphic factor. Corollary 2.11
tells us that the existence of such a factor implies that there is an inner encoding of
a power of a collared version of θ whose associated substitution shift is an almost
one-to-one extension of the maximal equicontinuous factor of Xθ. Here we attack
the converse. We will find that there are always inner encodings of a collared ver-
sion of θ which have a coincidence, but the desired almost automorphic factor will
exist only if the relevant inner encoding is aperiodic. We first restrict to the case of
trivial height, leading to Theorem 3.21, and then treat the general case using the
pure base of θ in Corollary 3.26.

3.1. The semigroup of a length-ℓ substitution. We defined the semigroup Sθ

of a substitution of constant length θ to be the semigroup generated by the column
maps, see Definition 2.8. In Appendix A we privide statements and proofs of some

classical results from semigroup theory. We denote by S
(n)
θ the subset of maps of

Sθ which have rank (size of the image) smaller or equal n. If S
(n)
θ is not empty

then it is a two-sided ideal of S. Recall from (2.2) that the column rank of θ is the
smallest rank of a product of column maps. From Corollary A.8 of the appendix
we obtain the following.

Lemma 3.1. Let θ be a constant length substitution. The kernel of Sθ is S
(c)
θ ,

where c is the column rank of θ.

Definition 3.2. The minimal sets of the substitution θ are the images of the maps
of Sθ of minimal rank. We denote the family of minimal sets by Uθ, i.e.,

Uθ := {imf : f ∈ kerSθ}.
If Uθ is a cover of A, that is, A =

⋃
f∈kerSθ

imf , then we call the substitution
essentially surjective. Given Uθ we define a relation on the members by A ∼ B
if A ∩ B ̸= ∅. The transitive closure of this relation is an equivalence relation on⋃

f∈kerSθ
imf which defines a partition which we call the coincidence partition and

denote by Pθ.

Example 3.3. Consider the following substitution of length 4:

θ : a 7→ abcc b 7→ badd c 7→ cacd d 7→ dbdc.

We see that θ0 = 1, the identity map. One easily checks that any product of these
maps which contains at least one θi with 0 < i < 4 has rank 2 and hence the column

rank is 2 and Sθ = {1}∪S(2)
θ . S

(2)
θ is the kernel. It contains the following elements:

θ1θ2 : a 7→ a b 7→ b c 7→ a d 7→ b

θ1θ1 : a 7→ a b 7→ b c 7→ b d 7→ a

θ2 : a 7→ c b 7→ d c 7→ c d 7→ d

θ3θ3 : a 7→ d b 7→ c c 7→ c d 7→ d

θ1 : a 7→ b b 7→ a c 7→ a d 7→ b

θ1θ1θ2 : a 7→ b b 7→ a c 7→ b d 7→ a

θ3 : a 7→ c b 7→ d c 7→ d d 7→ c

θ3θ2 : a 7→ d b 7→ c c 7→ d d 7→ c
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S
(2)
θ has two right ideals, namely one generated by θ1 and the other by θ3. The

elements of the right ideal generated by θ1 have image {a, b} while those of the
right ideal generated by θ3 have image {c, d}. Thus Uθ = {{a, b}, {c, d}} and since

this is a partition we have Pθ = Uθ. For later use we also note that S
(2)
θ has two

left ideals, one generated by θ2 and the other by θ3.

Lemma 3.4. A primitive substitution is essentially surjective.

Proof. Suppose that θ is primitive. Let a ∈ A and b ∈ imf for some f ∈ kerSθ.
By primitivity a occurs in θN (b) for some N . Hence a ∈ imgf for some g ∈ Sθ.
Clearly gf ∈ kerSθ. Hence a ∈ ⋃

f∈kerSθ
imf . □

The condition of primitivity is sufficient but not necessary: the length 1 substi-
tution θ = id on any alphabet A is not primitive, but Uθ = {A} and therefore θ
essentially surjective. Not all substitutions are essentially surjective: the length 2
substitution on {a, b}, θ(a) = aa, θ(b) = ab is not primitive and b does not belong
to a minimal set.

Lemma 3.5. Let θ be an essentially surjective substitution. Then Pθ is a partition
of A which satisfies Condition (2) of Lemma 2.7. Its associated inner encoding
(ηPθ

, βPθ
) has column rank c = 1.

Proof. Let A ∈ Uθ, that is, A = img for some g ∈ kerSθ. Let f ∈ Sθ. Then
f(A) ∈ Uθ as fg ∈ kerSθ. Now if A∩A′ ̸= ∅ then also f(A)∩f(A′) ̸= ∅. Thus if two
members A,A′ of the cover Uθ belong to the same member of Pθ then also f(A) and
f(A′) belong to the same member of Pθ. This implies Condition (2) of Lemma 2.7
for Pθ. Furthermore, if f belongs to the kernel of Sθ then f(A) = imfg = imf and
so f(A) is the same for all A ∈ Uθ. Hence βPθ

fβ−1
Pθ

has rank 1, and so ηPθ
has

column rank 1. □
Definition 3.6. Let θ be an essentially surjective substitution with coincidence
partition Pθ. We call the inner encoding defined by Pθ the canonical inner encoding
of θ. We denote this inner encoding (ηPθ

, βPθ
) by (ηθ, βθ).

The next lemma tells in particular us how the canonical inner codings of θ and
its powers are related.

Lemma 3.7. Let θ be a substitution and N ≥ 1. Then kerSθN = kerSθ. In
particular Uθ and UθN coincide. Furthermore, if the substitution is essentially
surjective then the inner encodings (ηθN , βθN ) and (ηθ, βθ) associated to θN and
θ satisfy ηθN = ηθ

N and βθN = βθ.

Proof. By definition of the column rank, θ and θN have the same column rank.

Clearly S
(c)

θN ⊂ S
(c)
θ . To see that the inclusion is surjective, recall that any element

f of kerSθ is completely regular and hence we can factorise f = ff0N−1
, where we

recall that f0 is the idempotent generated by f . This shows that kerSθ = kerSθN

and immediately implies Uθ = UθN and, if Uθ is a cover, that βθ = βθN . Let
0 ≤ j ≤ ℓN − 1. There are j1, · · · , jN such that θNj = θj1 · · · θjN . Hence ηθN j =

βθθj1 · · · θjNβ−1
θ = ηθj1 · · · ηθjN . □

As ηθ has column rank c = 1 and h divides c, it has a coincidence and trivial
height. Its associated dynamical system is thus almost automorphic. However, it
need not be aperiodic, nor, if it is aperiodic, does it have to have the same maximal
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equicontinuous factor as θ. The latter happens always if θ has non-trivial height,
because then the maximal equicontinuous factor of ηθ is strictly smaller than that
of θ. In the rest of this section we will show two things: under the assumption
of trivial height, if ηθ(n) is periodic for all the collared versions of θ (we only need
n = (−l, r) with l, r ≤ 1) then Xθ does not admit a proper almost automorphic
factor, and if the height of θ is non-trivial we can reduce the task to working with
the pure base of θ.

We provide an algebraic property of Sθ characterising column rank 1. A semi-
group is left zero if every element acts as a zero element when multiplying from the
left, i.e. xy = x for all x, y ∈ S. If S is completely simple, then it is left zero if and
only if the R-relation is trivial (equal to the diagonal relation).

Lemma 3.8. A constant length substitution θ has column rank 1 if and only if
kerSθ is a left zero semigroup. If this is the case and if θ is essentially surjective
then kerSθ ∋ x 7→ imx ∈ A is a bijection.

Proof. θ has column rank 1 if and only if Sθ contains an element of rank 1 which
is equivalent to saying that kerSθ contains exactly the maps of rank 1 of Sθ. Any
collection of rank 1 maps from F(A) forms a left zero semigroup.

Now, suppose that the column rank is c > 1. If Sθ has more than one minimal
left ideal, then kerSθ is not a left zero semigroup. If Sθ has a unique minimal left
ideal, then, as we will see in Theorem 4.1, θ admits an inner encoding η such that
Sη is a non-trivial group. In particular kerSη = Sη and since an inner encoding
induces an epimorphism from kerSθ to kerSη, kerSθ cannot be left zero.

Any rank 1 map can be identified with the unique element in its image. Hence
kerSη ∋ x 7→ imx ∈ A is injective and, if Uθ is a cover, also surjective. □
3.2. The canonical outer encoding.

Definition 3.9. Let θ and η be length-ℓ substitutions. We say that η is outer
encoded by θ if there is an epimorphism Φ : Sθ → Sη such that ηm = Φ(θm) for
0 ≤ m ≤ ℓ− 1.

We may also say that (η,Φ) is outer encoded by θ, that η is an outer encoded
substitution of θ, or that η is an outer encoding of θ. Note that if (η, β) is an inner
encoding of θ, then η is outer encoded with epimorphism

Φβ(f) = βfβ−1.

However an outer encoding does not necessarily define an inner encoding or induces
a factor map; see Example 3.16.

Corollary 3.10. If (η,Φ) is outer encoded by θ, then the restriction of Φ to kerSθ

is an epimorphism onto kerSη.

Proof. This follows from Lemma A.10 as Sθ is finite and hence admits a kernel. □
Definition 3.11. Let θ be a length-ℓ substitution with column rank c. Let B =
ker(Sθ)/R, and cΦ : Sθ → F(B) be the morphism defined by

cΦ(f)([x]R) := [fx]R.(3.1)

The canonical outer encoding of θ is the substitution cθ : B → Bℓ defined by
cθm := cΦ(θm).(3.2)
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The semigroup of a bijective substitution is a group. Therefore Sθ = kerSθ and
Sθ/R consists of a single point. Hence the canonical outer encoding of θ is the one
letter periodic substitution, which is, of course, a trivial inner encoding.

Example 3.12. The canonical outer encoded substitution of the collared Thue-
Morse system θ(0,1) is the period doubling substitution, and it is also an inner
encoding, see Section 3.5. Note that we must take a collared version of θ, as the
canonical outer encoding of any bijective substitution is trivial.

We are interested in finding almost automorphic factors. The following lemma
explains our interest in canonical outer encodings. Note there is no need to assume
that θ is primitive.

Lemma 3.13. The canonical outer encoding (cθ, cΦ) of θ is primitive and has
column rank 1, i.e., has trivial height and a coincidence.

Proof. We will show that there is an element f ∈ Scθ whose image contains only one
letter; this implies that cθ has column rank 1 and therefore a coincidence and trivial
height. By Lemma A.10, cΦ restricts to an epimorphism from kerSθ to kerScθ.
Given f ∈ kerSθ and [y]R ∈ kerSθ/R we have cΦ(f)([y]R) = [fy]R = [f ]R. We
thus see that the image of cΦ(f) contains only the letter [f ]R. Hence the column
rank is 1.

To see that cθ is primitive, we need to show that for any two letters [x], [y] ∈
kerScθ/R, there is an f ∈ Scθ such that [fx] = [y]. As any left ideal of kerSθ

intersects any right ideal of kerSθ, any two classes [x], [y] ∈ kerScθ/R have repre-
sentatives x, y which belong to the same L-class. This means that there is f ∈ Scθ

such that y = fx. □

Proposition 3.14. Let θ be an essentially surjective substitution and (cθ, cΦ) be
the canonical outer encoding of θ. Then cθ is an inner encoding of θ if and only
if Uθ is a partition of A. In this case, and upon identifying kerSθ/R with Uθ, we
have cθ = ηθ, the canonical inner encoding of θ.

Proof. Recall that the alphabet of cθ is kerSθ/R. By Lemma A.7 the map kerSθ/R ∋
[x]R 7→ imx ∈ Uθ is a bijection.

If Uθ is a partition of A then it coincides with the coincidence partition Pθ

and hence we may identify βθ : A → Pθ with the code a 7→ [x]R where x is any
function from kerSθ which contains a in its image. Say a = x(b). We then have
cθm(βθ(a)) = [θmx]R while βθ(θm(a)) = βθ(θmx(b)) = [θmx]R. Hence cθ = ηθ.

Suppose that cθ is an inner encoding of θ, i.e. there is a code β : A → kerSθ/R
such that βθm = cθmβ. By Lemma 3.13, cθ has column rank 1 and so kerScθ

contains only rank 1 maps. Hence, for g1, g2 ∈ kerScθ the condition g1 ̸= g2 is
equivalent to img1 ∩ img2 = ∅. Let fi ∈ (cΦ)−1(gi) ∩ kerSθ. If imf1 ∩ imf2 ̸= ∅
then there are a1, a2 ∈ A such that f1(a1) = f2(a2). It follows that g1(β(a1)) =
βf(a1) = βf(a2) = g2(β(a2)), hence img1 ∩ img2 ̸= ∅, hence g1 = g2. Thus
imf1 ∩ imf2 ̸= ∅ implies cΦ(f1) = cΦ(f2) which means that f1 and f2 are R-
related. By Lemma A.6 they then have the same image. Thus the elements of Uθ

either coincide or do not intersect. As we assumed that UA covers A it is a partition
of A. □

Example 3.15. We return to Example 3.3 whose cover of minimal sets Uθ is a
partition and thus the canonical outer encoding is inner encoded. Setting A = {a, b}
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and C = {c, d} the inner encoded substitution is given by

ηθ : A 7→ AACC C 7→ CACC.

Clearly it is aperiodic, and hence Xηθ
a proper, almost automorphic factor of Xθ.

Example 3.16. Consider the substitution

θ : a 7→ acaef e 7→ egaef

b 7→ bdbde f 7→ dfbfg

c 7→ ceccg g 7→ cecge.

d 7→ dfbde

Its minimal sets are Uθ = {A = {a, b, c}, B = {c, d, e}, C = {e, f, g}}. The canonical
outer encoding is A 7→ ABABC,B 7→ BCABC,C 7→ BCACC. The cover Uθ does
not form a partition. It generates the partition Pθ = {{a, b, c, d, e, f, g}} which
leads to the periodic substitution

ηθ : D 7→ DDDDD

and thus we cannot conclude that Xθ has a proper almost automorphic factor.

Lemma 3.17. Any inner encoding of an essentially surjective substitution is es-
sentially surjective.

Proof. Let (η, β) be inner encoded by θ, β : A → B. Let b ∈ B. As Uθ covers A
there is a ∈ A and f ∈ kerSθ such that β(f(a)) = b. Hence βfβ−1(β(a)) = b.
Moreover, βfβ−1 ∈ kerSη. Hence b ∈ Uη. □
Proposition 3.18. Let θ be a substitution which is essentially surjective. Let cθ
be the canonical outer encoding of θ. If (η,Φ) is outer encoded by θ, and η is
essentially surjective and has column rank 1, then (η,Φ) is outer encoded by cθ.

Proof. Let (cη, cΦη) be the canonical outer encoding of η. We claim that there is a
morphism φ : Scθ → Scη such that the diagram

Sθ Scθ

Sη Scη

cΦ

Φ φ

cΦη

is commutative. By Lemma A.10 Φ(kerSθ) = kerSη and Φ preserves theR-relation.
Therefore, given t, s ∈ Sθ and x ∈ kerSθ, [tx]Rθ

= [sx]Rθ
implies [Φ(t)Φ(x)]Rη

=
[Φ(s)Φ(x)]Rη

(here Rθ is the R-relation on Sθ and Rη is the R-relation on Sη).
Also by Lemma A.10, any y ∈ kerSη has a pre-image under Φ in kerSθ, so we see
that cΦ(t) = cΦ(s), which is [tx]Rθ

= [sx]Rθ
for all x ∈ kerSθ, implies cΦη(Φ(t)) =

cΦη(Φ(s)), which is [Φ(t)y]Rη
= [Φ(s)y]Rη

for all y ∈ Sη. Thus φ is well defined
through the formula φ(cΦ(t)) = cΦη(Φ(t)).

As η has column rank 1 and is essentially surjective, kerSη can be identified
with the alphabet of η and therefore cΦη : Sη → F(kerSη) is injective. Hence
Φ(t) = (cΦη)

−1(φ(cΦ(t))) showing that it factors through cΦ. □
Definition 3.19. Let θ be an essentially surjective substitution. Its maximal inner
encoding with column rank 1 is an inner encoded substitution η of θ, such that any
other inner encoding of θ which has column rank 1 factors, via an inner encoding,
through η.
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We now show that maximal inner encodings with column rank 1 exist.

Theorem 3.20. Let θ be an essentially surjective substitution. Its maximal inner
encoding with column rank 1 is the canonical inner encoding ηθ of θ. In particular,
θ admits an aperiodic inner encoding with column rank 1 if and only if its canonical
inner encoding ηθ is aperiodic.

Proof. By Lemma 3.5 ηθ is an inner encoding with column rank 1. Suppose that
η is an inner encoding of θ with column rank 1. We saw in Proposition 3.18 that
it must be an outer encoding of the canonical outer encoding cθ. Furthermore the
epimorphism Φ : Scθ → Sη restricts to an epimorphism from kerScθ to kerSη.
Since both have column rank 1, this restriction of Φ is an epimorphism between
left zero semigroups, hence a surjective map from the alphabet of cθ, which is Uθ,
to the alphabet of η. On the other hand, the code from A to the alphabet of η is
given by a partition P. Any member of Uθ must therefore be a subset of an element
of P. Thus any element of Pθ is a subset of an element of P. It follows that η is
an inner encoding of the inner encoding defined by Pθ, which is the canonical inner
encoding ηθ. □

3.3. Trivial height. Recall that a substitution has a coincidence if and only if
its height coincides with its column rank. In this subsection we consider the case
in which θ has height 1. This allows us to exploit the above results about inner
encoded substitutions with column rank 1 for the analysis of almost automorphic
factors.

Theorem 3.21. Let θ be a primitive substitution of trivial height. Then Xθ has
a proper almost automorphic factor if and only if the canonical inner encoding
associated to θ(n), for some n = (−l, r), 0 ≤ l, r ≤ 1, is aperiodic.

We remark that it is sufficient to check whether the canonical inner encoding of
θ(−1,1) is aperiodic, as all other θ(n) are inner encodings of θ(−1,1). However if one
suspects that Xθ has a proper almost automorphic factor, in practice it is easier
to check whether Xθ or Xθ(0,1) give almost automorphic factors, especially if doing
these computations by hand.

Proof. Suppose that Xθ has a proper almost automorphic factor. By Cor. 2.11, we
may assume that this factor is a shift factor which is an almost one-to-one extension
of the maximal equicontinuous factor of Xθ, and furthermore, that it is given by
some inner encoding of θ(n)

p
for some |n| ≤ 1 and p ≥ 1. As the factor is properly

almost automorphic, this inner encoding must be aperiodic and have column rank
h, the height of θ. But by assumption, h = 1. It now follows from Theorem 3.20
that the canonical inner encoding η(θ(n))p is aperiodic and has column rank 1. By
Lemma 3.7 ηθ(n)p = ηθ(n)

p and so also ηθ(n) is aperiodic and has column rank 1.
Conversely, the substitution shift defined by the canonical inner encoding of a

collaring θ(n) with |n| ≤ 1 is an almost automorphic factor of Xθ, as canonical
inner encodings have column rank 1. This factor is equicontinuous if and only if
the substitution is periodic.

□
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Example 3.22. Consider the Rudin-Shapiro substitution, which is defined as

θ : a 7→ ac c 7→ ab

b 7→ dc d 7→ db.

It is known that this substitution has a proper almost automorphic factor, see for ex-
ample [1]; we redo the calculation in our setting. Its minimal sets are {{a, d}, {b, c}},
which form a partition but which yield a periodic substitution. The substitution
θ(0,1) is

θ(0,1) : A 7→ BF E 7→ AC

B 7→ BE F 7→ AD

C 7→ HE G 7→ GD

D 7→ HF H 7→ GC,

and the minimal sets are {{A,H}, {B,G}, {C,F}, {E,D}} = {p, q, r, s}, which
again form a partition, and whose associated substitution is

ηθ(0,1) : p 7→ qr r 7→ ps

q 7→ qs s 7→ pr,

which can be verified to be aperiodic.

Example 3.23. We return to Example 3.16 which has height 1. We saw that
the coincidence partition of θ contains only one element and so θ has no aperiodic
inner encoding with a coincidence. By the comment after Theorem 3.21, it is
enough to check whether the canonical inner encoding of θ(−1,1) is aperiodic. A
more elaborate calculation shows that the coincidence partition of θ(−1,1) has three
elements Pθ(−1,1) = {α, β, γ} and that the canonical inner encoded substitution is
given by

ηθ(−1,1) : α 7→ βγβαα

β 7→ βγβαα

γ 7→ βγβαα

which is periodic. We conclude that Xθ does not admit a proper almost automor-
phic factor.

3.4. Non-trivial height. One direction of Theorem 3.21 does not need the as-
sumption of trivial height. Indeed, if the canonical inner encoding ηθ of θ is aperi-
odic then Xηθ

is a proper almost automorphic factor of Xθ, though one with trivial
height. Using Theorem A.5 we can then even obtain a proper almost automorphic
factor which has the same maximal equicontinuous factor as Xθ. But, as will show
the next example, if the height is not trivial then the existence of a proper almost
automorphic factor does not imply that it is given by an inner encoding of θ(−1,1).

Example 3.24. The substitution

θ : a 7→ aba b 7→ bac c 7→ cab

has height 2 and column rank 2. So Xθ is almost automorphic. It thus has a
proper almost automorphic factor (namely itself). The cover of minimal sets is
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given by Uθ = {{a, b}, {a, c}} and so we see that the concidence partition has only
one element and the canonical inner encoding is periodic. The collared substitution

θ(−1,1) :A 7→ ADB B 7→ BEA C 7→ EAC D 7→ EAD E 7→ CAC

has minimal sets

Uθ(−1,1) = {{A,C}, {A,D}, {A,E}, {B,C}, {B,D}, {B,E}}.
Again the partition generated by Uθ(−1,1) contains only one element so that the
canonical inner encoding is periodic. This shows that the condition of trivial height
in Theorem 3.21 cannot be dropped.

To overcome the problem outlined in the last example we will work with the pure
base of θ. We recall from [6] the following results: If θ is primitive and has height
h, then there exists a σh-periodic clopen partition of Xθ, Xθ =

⊔
k∈Z/hZ X

k
θ , and

σ(Xk
θ ) = Xk+1

θ . Moreover, X0
θ is invariant under θ and there exists a subset A′ ⊂

Ah such that X0
θ consists precisely of the sequences x ∈ Xθ for which x0 . . . xh−1 ∈

A′. Define a substitution θ′ on A′ as follows: Given a0 . . . ah−1 ∈ A′ compute
θ(a0 . . . ah−1) = a′0 . . . a

′
hℓ−1 and set

θ′k(a0 . . . ah−1) = a′kh . . . a
′
(k+1)h−1.

θ′ is called the pure base of θ. It corresponds to the restriction of θ to X0
θ but

expressed in the alphabet A′.
The suspension of a Z-action (X,φ) with Z/hZ is the space X ×Z/hZ equipped

with the Z-action

(3.3) Tφ(x, i) :=

{
(x, i+ 1) if 0 ≤ i < h− 1

(φ(x), 0) if i = h− 1

The shift (Xθ, σ) is, for a substitution of height h, topologically conjugate to a
suspension of the substitution shift (Xθ′ , σ) with the finite group Z/hZ. Here we
have denoted the shift action on Xθ′ by σ′ in order to distinguish it from the shift
action σ on Xθ. The conjugacy is given by

Xθ′ × Z/hZ ∋ (x′, i) 7→ σi(x) ∈ Xθ,

where on the left hand side x′ is a sequence of letters from A′, that is, a sequence of
allowed (for θ) words of length h whereas on the right hand side x is the sequence
of letters from A that one obtains when one interprets x′ as a sequence of letters
in A. Note that (x′, i) 7→ (σ′(x′), i) on the left corresponds to σi(x) 7→ σh+i(x) on
the right. The suspension construction is functorial and immediately implies:

• If F : (Xθ′ , σ′)→ (Y, φ) is a factor map then F × 1 : (Xθ′ × Z/hZ, Tσ′)→
(Y × Z/hZ, Tφ) is a factor map and any factor map of (Xθ′ × Z/hZ, Tσ′),
up to a rotation, arises in this way. In particular the MEF of (Xθ, σ) is
conjugate to (Zℓ × Z/hZ, T+1).

• (Y, φ) is almost automorphic if and only if (Y × Z/hZ, Tφ) is almost auto-
morphic.

Recall that a topological dynamical system (X,T ) is a minimal nontrivial almost
automorphic extension of an odometer if and only if it is topologically conjugate
to a shift [8, Theorem 6.4]. Combining this with the remarks above, we obtain the
following.
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Proposition 3.25. Let θ be a primitive, aperiodic substitution of constant length,
with pure base θ′. Then (Xθ, σ) has a proper almost automorphic factor if and only
if (Xθ′ , σ′) has a proper almost automorphic factor.

Corollary 3.26. Let θ be a primitive, aperiodic substitution of constant length,
with pure base θ′. Then Xθ has a proper almost automorphic factor if and only if
the canonical inner encoding of θ′(−1,1) is aperiodic.

We describe how to construct the desired almost automorphic factor of Xθ when
Xθ′ has an aperiodic almost automorphic factor Xη′ via the map F ′ : Xθ′ → Xη′ .
η′ necessarily has height 1. Define a new length-ℓ substitution η with alphabet
Aη = {aj : a ∈ Aη′ , 1 ≤ j ≤ h} as follows. Define i : Aη′ → Ah

η by i(a) = a1 . . . ah.
Now let η be the unique length-ℓ substitution which satisfies η ◦ i = i ◦ η′. That is,
we “split” each a ∈ Aη′ into h different letters a1, . . . , ah in such a way that the
concatenation of the length ℓ words η(a1) · · · η(ah) is the word obtained from η′(a)
by splitting every letter. As defined, η has height h and pure base η′. Thus, Xη is
also a suspension of Xη′ over Z/hZ. It can be seen that Xη is almost automorphic
over (Zℓ̄,h,+1). See Example 3.28 for such a construction.

3.5. Two-letter collaring of bijective substitutions and their canonical
outer encodings. In this section we apply our results above to study when a
bijective substitution shift has a proper almost automorphic factor. This repro-
duces the results of Martin [16] and those of Herning [11] in our semigroup based
approach. In the process we revisit the work in [13, Section 4]. We start with
bijective substitutions of trivial height. Remember that for bijective substitutions,
Sθ is a group and so cθ is trivial, being defined on a one letter alphabet. This does
not mean that a bijective substitution shift does not admit a proper almost auto-
morphic substitutional factor, but only that these may only be seen when working
with the collared versions of the substitution. We consider here only the collaring
θ(0,1).

For θ a bijective substitution on A, let A(2) be the set of allowed two-letter
words for θ. Recall that the 2-collared substitution θ(0,1) associated to θ is the
substitution on A(2) of the same length given by

θ(0,1)m (a, b) = (θm(a), θm+1(a)), 0 ≤ m < ℓ− 1, θ
(0,1)
ℓ−1 (a, b) = (θℓ−1(a), θ0(b))

We assume that θ0 = θℓ−1 = 1 so that all θ-periodic points are fixed; thus all

maps θ
(0,1)
m with m < ℓ − 1 have rank c = |A| while θ

(0,1)
ℓ−1 is equal to the identity

on A(2) and hence has rank equal to |A(2)|. We know that the column rank of a
substitution is a conjugacy invariant and so the column rank of θ(0,1) must also
be c. The kernel of Sθ(0,1) is generated by θmpr1 × θm+1pr1, m < ℓ − 1, where
pr1 : A(2) → A is the projection onto the first factor. Recall that the right ideals
of kerSθ(0,1) are in one-to-one correspondence to the images of these maps. As θm
is bijective, the image of θmpr1× θm+1pr1 coincides with that of pr1× θm+1θ

−1
m pr1

and so uniquely is determined by the map θm+1θ
−1
m . We thus see that the set of

right ideals of kerSθ(0,1) is in one-to-one correspondence the set

Iθ := {θm+1θ
−1
m |m = 0, · · · , ℓ− 2}

which plays a prominent role in the description of the Ellis semigroup of the substi-
tution shift (Xθ, σ) and is also called the R-set of the substitution [13]. This gives
us the first part of
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Corollary 3.27. The alphabet of the canonical outer encoding cθ(0,1) of θ(0,1) can
be identified with Iθ. Under this identification it is given by

cθ(0,1)m(θiθ
−1
i−1) = θm+1θ

−1
m , 0 ≤ m < ℓ− 1, cθ(0,1)ℓ−1(θiθ

−1
i−1) = θiθ

−1
i−1

It is an aperiodic inner encoding of θ(0,1) if and only if for all f, g ∈ Iθ and ∀a ∈ A:
f(a) ̸= g(a). Thus the following is a necessary condition for cθ(0,1) to be an inner
encoding:

(3.4) |Iθ| × |A| = |A(2)|
and so the code of the inner encoding is a |A|-to-1 map.

Proof. Recall that the canonical outer encoding is an inner encoding if the images
of the maps θmpr1 × θm+1pr1, m < ℓ− 1, either coincide or do not overlap. As the
images of θmpr1×θm+1pr1 and θm′pr1×θm′+1pr1 coincide if and only if θmθ−1

m−1 =

θm′θ−1
m′−1 this is exactly the condition stated. If this is the case, then the number

of letters of θ(0,1) is equal to the maximal choice of distinct maps θmpr1× θm+1pr1,
1 ≤ m < ℓ− 1 (the size of Iθ) times the size of the image of one of them, which is
|A|. □

We go through some of the examples in [13]. The canonical outer encoding of any
aperiodic 2-letter bijective substitution is an inner encoded substitution, because
for those A(2) = A×A = {aa, ab, ba, bb}, Sθ = Z/2Z = {1, f} and Iθ = {1, f}, where
f interchanges a with b. Indeed, this implies that the inner encoding is given by the
partition {{aa, bb}, {ab, ba}}. The simplest example is the Thue-Morse substitution

θ : a 7→ abba b 7→ baab

and the inner encoded substitution associated to θ(0,1) is the well known period
doubling substitution

cθ(0,1) : A 7→ ABAA B 7→ ABAB

which has a coincidence.
Our next example, from [13, Section 6.3], is

θ : a 7→ abcca

b 7→ babab

c 7→ ccabc.

It does not satisfy (3.4), as A(2) has five letters and five is a prime number. Thus
the substitution shift does not have an aperiodic almost automorphic factor.

As our last example, from [13, Section 6.3] has nontrivial height, we go through
the required details carefully.

Example 3.28. The substitution

θ : a 7→ abadcba c 7→ cdcbadc

b 7→ badcbab d 7→ dcbadcd

has height 2. To find out whether the shift generated by this substitution has a
proper almost automorphic factor, then, as it has height 2, we move to its pure
base by Proposition 3.25. This is given by:
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θ̃ : 0 7→ 3010102 2 7→ 2102102

1 7→ 2101013 3 7→ 3013013

where each of the four symbols in the new substitution represents a two-letter-
word from the original (respectively, 0, 1, 2, 3 correspond to [ad], [cb], [cd], [ab]). By
inspection, we see that the minimal sets of this new substitution are disjoint, and
thus its coincidence partition is given by Pθ̃ = {{0, 1}, {2, 3}}, which means that

the map F̃ : Xθ̃ → Xη̃, whose local rule is a code and sends 0, 1 to A and 2, 3 to B,
is a factor map to the aperiodic, primitive, almost automorphic substitution shift
given by:

η̃ : A 7→ BAAAAAB B 7→ BAABAAB.

As in the construction description after Proposition 3.25, because the original
substitution θ has height 2, to find a proper almost automorphic factor of Xθ we
introduce a height-2 suspension η of η̃ by “splitting” each symbol into two, moving
from e.g. A 7→ BAAAAAB to Aa 7→ BbAaAaAaAaAaBb, which is a concatenation
of two length 7 words. The new substitution, almost automorphic by construction,
is

η : A 7→ BbAaAaA a 7→ aAaAaBb

B 7→ BbAaAaB b 7→ bAaAaBb.

The previously defined map F̃ induces a factor map F : Xθ → Xη. To define
it explicitly, we use the fact that each element of {0, 1, 2, 3} corresponds to a two-
letter word in Xθ and is mapped to either A or B, which also corresponds to the
two-letter words Aa or Bb in Xη, so we expect F to map any instance of, say, ad in
some x ∈ Xθ to the word Aa in the corresponding F (x) ∈ Xη. We can accomplish
this by giving F left- and right-radius 1; accordingly, its local rule will be:

aba 7→ b adc 7→ a

bab 7→ B bad 7→ A

cba 7→ a cdc 7→ b

dcb 7→ A dcd 7→ B.

3.6. Veech towers. Primitive constant length substitution shifts are point distal
dynamical systems and hence are AI-flows. The following questions arise naturally
in this context: When are they strict AI-flows? Can we exhibit in this case a
tower of AI-extensions for them? And if they are not strict AI-flows can we find
an almost one-to-one extension with its tower of AI-extensions? We do not answer
these questions completely, but explain how our results on the existence of certain
factors sheds light on them.

A factor map F : (X,T )→ (Y, S) is isometric if for each ϵ > 0, there exists δ > 0
such that whenever x1, x2 ∈ X are such that F (x1) = F (x2) and d(x1, x2) ≤ δ, then
d(Tn(x1), T

n(x2)) ≤ ϵ for each integer n (d is the metric on X). If Y is minimal,
F isometric and finite-to-one, then F is k-to-one for some k.

We say that (X,T ) is an almost isometric extension (AI-extension for short) of
(Z,R) if it has a factor F : (X,T ) → (Y, S) and (Y, S) has a factor π : (Y, S) →
(Z,R) such that F is isometric and π is almost one-to-one.
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We recall Martin’s characterisation of when (Xθ, σ) is an AI-extension of its
maximal equicontinuous factor. For ease of notation we state only the version for
trivial height; for details of the general case, see [16, Theorem 8.08].

Theorem 3.29. Let θ be a bijective, primitive aperiodic substitution of length ℓ
and of trivial height. The following are equivalent:

(1) The cover Uθ(0,1) is a partition.
(2) Xθ is an almost isometric extension of its maximal equicontinuous factor.

Note that by Proposition 3.14, the first condition of the theorem is equivalent
to the statement that the canonical outer encoding cθ(0,1) is an aperiodic inner
encoding.

Martin’s theorem is concerned with isometric extensions of almost automorphic
substitutions, and one must distinguish this from characterising when a substitution
has a proper almost automorphic factor. We give next an example of a bijective
substitution θ which has an aperiodic almost automorphic factor η, but where the
factor map F : Xθ → Xη is not an isometry.

Example 3.30. Consider the following bijective substitution

θ : a 7→ abbdb c 7→ cddbc

b 7→ baaca d 7→ dccad.

The collaring θ(0,1) is a substitution on a 14-letter alphabet whose minimal sets are

A := {(aa), (bb), (cc), (dd)}
B := {(ab), (ba), (cd), (dc)}
C := {(ac), (bd), (ca), (db)}
D := {(ad), (bc), (ca), (db)}
E := {(ab), (ba), (cc), (dd)}
F := {(aa), (bb), (cd), (dc)},

so that Uθ(0,1) is not a partition. We have

Pθ(0,1) = {{(aa), (ab), (ba), (bb), (cc), (cd), (dc), (dd)}, {(ac), (ad), (bc), (bd), (ca), (db)}}
consists of two sets, and the canonical inner encoding is

η : 0 7→ 00110 1 7→ 00111,

which is aperiodic. Furthermore the factor map from Xθ to Xη is not isometric,
sending eight θ-fixed points to one fixed point for η , and six to the other. Finally,
note that the canonical outer encoding

cθ(0,1) : A 7→ BACDE D 7→ BACDC

B 7→ BACDF E 7→ BACDA

C 7→ BACDD F 7→ BACDB

is not an inner encoding, but projects to the nontrivial inner encoding η via the
code A,B,E, F 7→ 0, C,D 7→ 1.
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Martin’s results implies that bijective substitutions of trivial height which satisfy
the condition of Theorem 3.29 are strict AI-flows having the following Veech tower
of AI extensions

Xθ

Fβθ→ Xcθ(0,1)
F→ Zℓ

O→ pt

Here Fβθ
and O are isometric while F is almost one-to-one. We do not know of

any result which is similar to Martin’s theorem but holds for non-bijective constant
length substitutions. Finding conditions which guarantee that Fβθ

is isometric for
non-bijective substitutions remains an open question. We can however say that,
if the inner encoded substitution associated to θ(0,1) is periodic, then Xθ is not a
strict AI-flow. This is a direct consequence of Martin’s Theorem A.5 which implies
that if Xθ is a strict AF-flow then it must be an AI extension of its maximal
equicontinuous factor.

Lemanczyk and Müllner [15] found an elegant construction of a substitution
ζ whose dynamical system (Xζ , σ) is an almost one-to-one extension of (Xθ, σ)
and which always factors onto the system (Xcθ, σ) defined by the outer encoded
substitution cθ. This system has the tower of extensions

Xζ
F1→ Xcθ

F2→ G O→ pt

and is therefore a Veech tower if F1 is isometric. As this is an interesting ansatz
we explain some details from [15] using our notation. Given a primitive length ℓ
substitution θ of trivial height, let Uθ be its collection of minimal sets. Define

C := {(a,M) : M ∈ Uθ, a ∈M},
and recall the canonical outer encoding cθ of θ. Define ζ : C → Cℓ by

ζi(a,M) = (θi(a),
cθi(M)).

In [15] the outer encoded substitution is directly defined (without reference to the
semigroup of the substitution) and called the synchronising substitution. Further-
more, ζ is what is called there the joining of θ with cθ.

Proposition 3.31 ([15]). (Xζ , σ) is an almost one-to-one extension of (Xθ, σ).

Proof. The code (a,M) 7→ a defines a factor F : Xζ → Xθ. We claim that if θ has
column rank c, so does ζ. For each i and each M ∈ Uθ, |θi(M)| = c. This implies
that |{ζi(a,M) : a ∈ M}| = c, so ζ has column rank at least c. Also, one can
assume, by moving to a power of θ is necessary, that there are i and M∗ ∈ Uθ such
that θi(A) = M∗ ∈ Uθ. This implies that {ζi(a,M) : a ∈M,M ∈ Uθ} = {(a,M∗) :
a ∈M∗}, so ζ has column rank at most c.

Furthermore if z ∈ Zℓ and π−1(z) = {x(1), . . . , x(c)} is a regular fibre in Xθ,

then for each x(i), (ϕ−1(x(i)))n = (x
(i)
n , {x(1)

n , . . . , x
(c)
n }). Thus Xζ is an almost

one-to-one extension of Xθ. □

In Section 6 of [15] one finds an example with a factor map F1 : Xζ → Xcθ which
is not isometric. This raises the following question which we leave for future work:
When is the factor map F1 isometric?

4. Factoring onto a bijective substitution

In this section, we characterise, using the semigroup Sθ, when a substitution shift
is almost bijective. First we restrict to the case where the factor map preserves the
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fixed point fibre. We state the two main theorems and prove them in the next
section.

Theorem 4.1. Let θ be a constant length substitution with column rank c. The
following are equivalent:

(1) Sθ has a unique minimal left ideal.
(2) There is a bijective substitution η on a c-letter alphabet which is an inner

encoding of θ.

If these conditions are satisfied then η is uniquely determined by θ.

As η is an inner encoding, it is always primitive. The following result shows that
η has to be aperiodic and that the associated factor map Fβ : Xθ → Xη has to be
almost one-to-one, except if θ has a coincidence.

Theorem 4.2. Let θ be a primitive, aperiodic length-ℓ substitution with column
rank c and height h. Suppose that there is a bijective substitution η on a c-letter
alphabet which is inner encoded by θ. Then η is periodic if and only if c = h.
Moreover, if c > h then the factor map Xθ → Xη induced by the inner encoding is
almost one-to-one.

In general, the existence of a bijective substitution factor for a substitution is
not linked to the existence of a bijective substitution factor for its pure base; see
Example 4.23. The issue here is that we characterise the existence of a bijective
factor in terms of the semigroup Sθ, and the relationship between this semigroup
and that of the pure base of θ is not clear.

4.1. More preliminaries from semigroup theory. In order to prove the above
theorems we need to further analyse sub-semigroups of the semigroup F(X) of
maps from X → X. Recall that the partition defined by a map f : X → Y is
Pf = {f−1(y)|y ∈ Y }.
Definition 4.3. We say that a map g : X → X preserves a partition P ⊂ P(X) if
g−1(P) ⊂ P.

Stated differently, let P = {Ai|i ∈ I}, then g preserves P if for all i ∈ I there is
a unique j ∈ I such that g−1(Ai) = Aj . Note that g does not necessarily preserve
Pg.

Lemma 4.4. Let g : X → X preserve a partition P. Then g−1
∣∣
P is injective and

hence bijective if P is finite.

Proof. Let A,B ∈ P. Suppose g−1(A) = g−1(B) which means A ∩ img = B ∩ img.
Since A and B are either equal or have empty intersection, A ∩ img = B ∩ img is
the case if A = B or A ∩ img = B ∩ img = ∅. But A ∩ img = ∅ means g−1(A) = ∅,
a possibility which is excluded, as a partition does not contain the empty set. □
Lemma 4.5. Let g : X → X and f : X → Y . If Pf = Pf◦g then g preserves Pf .

Proof. By assumption

{f−1(y)|y ∈ Y } = {g−1(f−1(y))|y ∈ Y }
which says exactly that g−1(Pf ) = Pf . □

A map p : X → X is an idempotent if and only if it preserves its partition and
maps each member A ∈ Pp to a single point in A.
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Lemma 4.6. Let p : X → X be an idempotent. If p preserves P and |P| = |Pp| <
+∞ then Pp = P.
Proof. As p maps each member A ∈ Pp to a single point in A, Pp is the finest
partition preserved by p. Hence if p preserves P then it preserves the partition
generated by P and Pp which can’t be finer than Pp. Therefore |P| = |Pp| < +∞
implies Pp = P. □
Lemma 4.7. Let p, q : X → X two idempotents. If p preserves Pq then qp = q.

Proof. Suppose p preserves Pq. Then it also preserves the partition generated by
Pp and Pq. As Pp is the finest partition preserved by p, Pq must be coarser than
Pp or Pq = Pp . It follows that p−1

∣∣
Pq

is the identity map from Pq to itself. This

implies q−1 = p−1q−1 hence qp = q. □
The condition of the following lemma is satisfied for all compact right topological

semigroups and so in particular for any finite semigroup.

Lemma 4.8. Let S be a sub-semigroup of F(X) which admits a kernel which
contains an idempotent. The following are equivalent.

(1) All elements of S preserve the partition defined by the idempotent.
(2) S has a unique minimal left ideal, i.e., the kernel is left simple.

Proof. 1 ⇒ 2. Let q ∈ S be a minimal idempotent such that all elements of S
preserve Pq. Let p ∈ S be another minimal idempotent. By assumption p preserves
Pq. By Lemma 4.7 we have qp = q. Hence q lies in the minimal left ideal generated
by p. Since all idempotents of a minimal left ideal generate the same left ideal,
therefore S has a unique minimal left ideal.

2 ⇒ 1. Let p be an idempotent in the unique minimal left ideal L. Let s ∈ S.
Then ps lies in the kernel of S which coincides with L. By Lemma A.6, Pps = Pp.
By Lemma 4.5, s preserves Pp. □
Proof of Theorem 4.1. Suppose first that Sθ contains a unique minimal left ideal.
By Lemma 4.8 all its elements preserve a partition B = {A1, · · · , Ak} defined by
any element of that ideal. Note that k must be the column rank c. Define the
length-ℓ substitution η on the alphabet B as that having column maps ηm such
that

η−1
m := θ−1

m

∣∣
B .

In other words, ηm(Ai) is the unique Aj which contains θm(ai) for some ai ∈ Ai.
This is well-defined as θm preserves the partition B. By Lemma 4.4 η is bijective.
The code β is given by a 7→ Ai for all a ∈ Ai.

To prove the converse of the statement, suppose now there is a bijective substi-
tution with column maps ηm on a c-letter alphabet B which is inner encoded by θ,
that is, there is a map β : A → B such that

ηm ◦ β = β ◦ θm
for all m = 0, · · · , ℓ − 1. Since η is bijective this implies that the partition Pβ

defined by β must be the same as that defined by each β ◦ θm and then also the
same as that defined by any β ◦ f for any f ∈ Sθ. By Lemma 4.5 all elements of Sθ

must preserve Pβ . Let p be a minimal idempotent of Sθ. By definition, its column
rank is c, which is also the rank of β. Lemma 4.6 implies therefore that Pp = Pβ .
Now, we conclude with Lemma 4.8 that Sθ has a unique minimal left ideal.



ALMOST AUTOMORPHIC AND BIJECTIVE FACTORS OF SUBSTITUTION SHIFTS 27

The uniqueness of the ηm follows from the fact that it is entirely determined by
the θm and the partition induced from any idempotent of Sθ. □

Proof of Theorem 4.2. Suppose that η is a bijective substitution on a c-letter al-
phabet which is inner encoded by θ. Clearly, if c = 1 then η is periodic. Now
suppose c > 1.

It is one of the properties of the height h that there is a code β : Aθ → Z/hZ
which induces a factor map Fβ : (Xθ, σ)→ (Z/hZ,+1) such that β(θ(a)) = β(θ(b))
if β(a) = β(b) [6]. In other words the partition induced by β satisfies the condition
(2) of Lemma 2.7 and so defines a substitution η′ which is inner encoded by θ. This
substitution is periodic, as its substitution space is finite. If c = h it satisfies the
properties of Theorem 4.1 and hence must be (up to a renaming of its alphabet)
equal to η.

Suppose now that η is h′-periodic. Hence (Xη, σ) ∼= (Z/h′Z,+1) and ηNnh′ = η0
for all n ∈ N and N such that ℓN > nh′. Taking a power we may assume that
η0 = 1. Clearly 1/h′ is an eigenvalue of (Xη, σ), hence also of (Xθ, σ). If 1/h

′ ∈ Zℓ

then there are n,N such that nh′ = ℓN . Hence, for all 0 ≤ k < ℓ

1 = ηN+1
kℓN = ηN 0ηk = ηk

which contradicts the primitivity of η, as c > 1. Hence h′ must divide the height h
of θ. As η is bijective we have c = |Aη| ≤ |Xη| = h′ ≤ h.

We show that the factor map F : Xθ → Xη induced by the inner encoding is
almost one-to-one provided η is aperiodic. πθ : Xθ → Zℓ and πη : Xη → Zℓ the
factor maps onto the equicontinuous factor Zℓ which map the fixed points of θ and
η, resp., to 0. Then πθ = πη ◦ F . The regular points for θ, are those z ∈ Zℓ which
have a fibre of size c, similarly for η. For both substitutions they are known to form
a residual set. Hence their intersection is not empty. Let z be regular for both θ
and η. Then F must restrict to a bijection on the corresponding fibre. Hence F is
almost one-to-one. □

Remark. It follows from Lemma 3.7 that our characterisation of when a sub-
stitution allows for an inner encoded bijective substitution is stable under taking
powers.

Example 4.9. Consider the primitive aperiodic substitution

θ : 0 7→ 021 2 7→ 201

1 7→ 130 3 7→ 310

which is easily checked to have column rank 2. The partition defined by the map
θ2 is

Pθ2 = {{0, 2}, {1, 3}}.
It is easily seen to be preserved by all products of θi’s. Hence Sθ has a unique
minimal left ideal. The code

β : 0, 2 7→ a 1, 3 7→ b

gives rise to the inner encoded bijective aperiodic substitution

η : a 7→ aab

b 7→ bba.
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As an aside we mention that the substitution shift defined by θ has uncountably
many irregular fibers and hence the factor map Fβ : Xθ → Xη is not one-to-one on
uncountably many points.

4.2. Factors which preserve the fixed point fibre. In Theorem 4.1, we char-
acterised the substitution shifts which admit a bijective inner encoding. In this
section, we extend this to characterising substitution shifts which admit a bijective
substitution shift as a factor via a factor map which preserves the fixed point fibre.

Lemma 4.10. Let n = (−l, r). If Sθ(n) has a unique minimal left ideal then Sθ

has a unique minimal left ideal.

Proof. As θ is an inner encoding of the collared substitution θ(n), the semigroup Sθ

is a homomorphic image of Sθ(n) . The result follows therefore from Lemma A.10.
□

Theorem 4.11. Let θ be a primitive aperiodic constant length substitution with
height h and column rank c > h. The following are equivalent.

(1) (Xθ, σ) is an almost one-to-one extension of a bijective substitution shift
(Xη, σ) via a factor map F which preserves the fixed point fibre.

(2) (Xθ, σ) factors onto a c-letter bijective substitution shift (Xη, σ) via a factor
map F which preserves the fixed point fibre.

(3) Sθ has a unique minimal left ideal.

Proof. To show that (1) implies (2), we only have to show that the bijective sub-
stitution η is on c letters. As F is almost one-to-one, Xθ and Xη must have the
same maximal equicontinuous factor, hence the same height and therefore also the
same column rank. For a bijective substitution the column rank equals the size of
its alphabet.

To see that (2) implies (3), suppose that F : Xθ → Xη is a factor map which
preserves the fixed point fibre and where η is a bijective substitution on c letters.
By Corollary 2.11(2) there exist n = (−l, r), l, r ≤ 1, p ≥ 1, an inner encoding

(η′, β) of θ(n)
p
, and a code τ ′ : Aη′ → Aη such that Fτ ′ : Xη′ → Xη is a conjugacy.

As each of F and Fβ preserve the fixed point fibres, Fτ ′ must also preserve the fixed
point fibre. By Lemma 2.6 (ηp, τ ′) is an inner encoding of η′. Hence (ηp, τ ′ ◦ β)
is an inner encoding of θ(n)

p
. By assumption η and also ηp is a substitution on c

letters. Now Theorem 4.1 implies that Sθ(n)p has a unique minimal left ideal. By
Lemmata 3.7 and 4.10, Sθ has a unique minimal left ideal.

Finally we come to (3) implies (1). Suppose that Sθ has a unique minimal left
ideal. By Theorem 4.1 there exists a bijective substitution on a c letter alphabet
which is an inner encoding of θ. By Lemma 2.6 the associated factor map preserves
the fixed point fibre. By Theorem 4.2 the factor map is almost one-to-one. □

We remark that Theorems 4.1 and 4.11 imply that all factor maps to a bijective
substitution which fix the fixed point fibre must have radius zero.

Example 4.12. The substitution shift Xθ of Example 3.3 does not admit a factor
map onto an aperiodic bijective substitution shift which fixes the fixed point fibre.
Indeed, any aperiodic bijective substitution shift which is a factor of Xθ must have
2 letters, as the column rank of θ is 2, and this is excluded as the semigroup Sθ has
two minimal left ideals.
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4.3. Bijective factors which do not preserve the fixed point fibre. In this
section we extend Theorem 4.11 to substitutions which have a bijective substitution
factor via a factor map which does not send fixed points to fixed points. To do this
we need to recall a little more information on the arithmetic properties of factor
maps between substitutions.

4.4. Factors of substitution shifts and their κ-values. Let (X,σ) and (Y, σ)
be infinite minimal shifts with a common equicontinuous factor (G, R) and fixed
equicontinuous factor maps πX : X → G and πY : Y → G. Let Fac(X,Y ) be the
collection of factor maps from (X,σ) to (Y, σ). Following [5] we define the map
κ : Fac(X,Y )→ G through

κ(F ) := πY (F (x))− πX(x).

κ(F ) is also called the κ-value of F . By minimality, it does not depend on x. But
is depends on the choice of πX and πY and in the framework of substitution shifts,
which we consider here, we continue to choose them in such a way that the fixed
points of the substitutions are mapped to 0. By [5, Theorem 3.3] the map κ satisfies

(1) if (Z, σ) is another shift with equicontinuous factor G and F ∈ Fac(X,Y ),
G ∈ Fac(Y, Z) then

κ(G ◦ F ) = κ(G) + κ(F ),

(2) if ming∈G |π−1
X (g)| = ming∈G |π−1

Y (g)| = c < ∞ then κ : Fac(X,Y ) → G is
at most c-to-one and

{g ∈ G : |π−1
Y (g)| > c} ⊂ {g ∈ G : |π−1

X (g)| > c}+ κ(F ),

for all F ∈ Fac(X,Y ).

If F : Xθ → Xη is a factor map between two length-ℓ substitution shifts, then
κ(F ) = 0 if and only if θ-fixed points are mapped to η-fixed points, i.e., if F
preserves the fixed point fibre. In what follows, we will take G = Zℓ, i.e.,

κ : Fac(Xθ, Xη)→ Zℓ,

even if θ has nontrivial height, so that the c in (2) above is the column rank of θ
and η.

The following adaptation of [5, Proposition 3.24] tells us that κ-values of factors
between two constant length substitution shifts cannot take any value. We say that
z ∈ Zℓ is rational if it is eventually periodic. This naming is motivated by the fact
that if z ∈ Zℓ is eventually periodic, then it is the ℓ-adic expansion of a rational
number.

Proposition 4.13. Let θ and θ′ be primitive, aperiodic length-ℓ substitutions and
F ∈ Fac(Xθ, Xθ′). Then κ(F ) is rational.

Proof. In the case where the factor map is a conjugacy, and the heights of θ and η
are trivial, the statement is [5, Proposition 3.24]. That proposition can be readily
modified to hold for the case in which the heights of θ and η are not necessarily
trivial, namely by taking for G not the maximal equicontinuous factor but Zℓ.

If the factor map F is not a conjugacy we apply Proposition 2.10 to Y = Xθ′

from which we deduce that κ(F ) = κ(Fτ ) as, by Lemma 2.6, Fı preserves the fixed
point fibre, c.f. Figure 2 with Y = Xθ′ . Going over to θ(n) if necessary we may thus
assume that F = Fτ for some code τ : Aθ → Aθ′ .
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By Theorem 2.9 applied to Y = Xθ′ there is an inner encoding (ητ , βτ ) of θ,
and a code τ ′ : Aητ → Aθ′ such that Fτ ′ : Xη → Xθ′ is a conjugacy, c.f. Figure 1
with Y = Xθ′ . As, by Lemma 2.6, Fβτ preserves the fixed point fibre, we have
κ(Fτ ) = κ(Fτ ′). Now we apply [5, Proposition 3.24] to the conjugacy Fτ ′ to obtain
that κ(Fτ ′) and hence κ(Fτ ) is rational. □

If F : Xθ → Xη is a factor map onto a bijective substitution shift with κ(F ) =

m ∈ Z, then F̃ := σ−m ◦ F : Xθ → Xη is also a factor map onto a bijective

substitution and, as κ(F̃ ) = 0, we can apply Theorem 4.11 to conclude that Sθ has
a unique left minimal ideal. In other words, Theorem 4.11 extends verbatim to the
case in which the kappa-value of the factor map is an integer.

However, the following example shows that there exist factor maps F : Xθ → Xη

where η is bijective, where κ(F ) ̸∈ Z, and where Sθ has more than one minimal left
ideal.

Example 4.14. Take the following two substitutions:

η : a 7→ abcba θ : 0 7→ 35203 3 7→ 41534

b 7→ bcacb 1 7→ 35214 4 7→ 02140

c 7→ cabac 2 7→ 41520 5 7→ 02153.

Clearly η is bijective. The words of length two in Lη are

{ab, ac, ba, bc, ca, cb},
and by mapping (ab), (ac), (ba), (bc), (ca), (cb) to 0, 1, 2, 3, 4, 5, respectively, it can
be verified that θ = η(+1). Thus Xθ factors onto the bijective substitution shift
Xη. However, Sθ does not have a unique minimal left ideal. Indeed, it has two
minimal left ideals, one associated to the partition {{0, 1}, {2, 3}, {4, 5}}, and the
other to the partition {{0, 5}, {1, 3}, {2, 4}}; see Lemma A.6 which shows how a the
L-class constituting a minimal left ideal is associated to a partition. This does not
contradict Theorem 4.11 because, as we will see below, the conjugacy Fτ : Xθ → Xη

which is given by the code

τ : 0, 1 7→ a

2, 3 7→ b

4, 5 7→ c

is a factor map with nonzero κ-value. In particular, Lemma 4.15 will tell us that
κ(Fτ ) = −1/4 = −1/(ℓ− 1).

We now show how to “correct” such factor maps to obtain factor maps with
κ-value 0. Recall the k-shifted extension of θ from Definition 2.2.

Lemma 4.15. Let θ : A → Aℓ be an aperiodic primitive length-ℓ substitution, and
let ζ := θ(+k) be its k-shifted extension, with 0 ⩽ k < ℓ. Then there is a conjugacy
F : Xζ → Xθ with κ(F ) = k

1−ℓ .

Proof. Recall from Corollary 2.5 that Fı : Xζ → Xθ is a conjugacy. We consider
its inverse F−1

ı . By iteration of the equation of Corollary 2.5 we obtain

ζn ◦ F−1 = F−1 ◦ (σk ◦ θ)n = F−1 ◦ σk 1−ℓn

1−ℓ ◦ θn.
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Let u be a fixed point of θ. Then v = limn→∞ ζn(F−1
ı u) is a fixed point of ζ (we

assume that the periodic points of ζ are fixed points). Then, by continuity of F−1
ı ,

v = F−1
ı ◦ lim

n→∞
σk 1−ℓn

1−ℓ (u),

so that κ(F−1
ı ) = −k

1−ℓ . The result follows. □

Corollary 4.16. Let θ : A → Aℓ be an aperiodic primitive length-ℓ substitution,
and let p

q ∈ Zℓ with p, q coprime. Then there exists some substitution ζ and a

conjugacy F : Xζ → Xθ that satisfies κ(F ) = p
q .

Proof. As shown in Lemma 4.15, if 0 ≤ k < ℓ and ζ = θ(+k), then κ(Fı) = k
1−ℓ .

Similarly, if we replace θ by θm for some value of m and take ζ = (θm)(+k), the
corresponding factor map has κ-value k

1−ℓm , where we can take k to be any value
between 0 and ℓm − 1.

To prove the general statement, suppose first that −q < p ⩽ 0, and that p and q
have no common divisors. As we assume that p/q ∈ Zℓ, then q and ℓ are coprime,
so that ℓφ(q) ≡ 1 (mod q), where φ is Euler’s totient function. Thus ℓφ(q) − 1 = hq
for some h > 0. Since −q < p ⩽ 0, we have 0 ⩽ −hp < hq < ℓφ(q), so we can take
ζ = (θφ(q))(+(−hp)), and the conjugacy Fı : Xζ → Xθ will satisfy:

κ(Fı) =
−hp

1− ℓφ(q)
=
−hp
−hq =

p

q
,

as desired.
For the general case, it is enough to note that p

q = M + p0

q for some integer

M and −q < p0 ⩽ 0, where p0 will also be coprime to q, so it suffices to take
ζ = (θφ(q))(+(−hp0)), as above, and σM ◦ Fı as the desired conjugacy. □

Define, for a substitution with column rank c,

Fθ := {w = wk . . . w1 ∈ (Z/ℓZ)+ : |θw1 ◦ . . . ◦ θwk
(A)| = c}.

Note that if Fθ contains a length k word, then θk has a column with c elements.

Lemma 4.17. Let θ be a constant length substitution. Let (η, β) be an inner
encoding of θ. The length j(η) of the shortest word in Fη is bounded by the length
j(θ) of the shortest word in Fθ.

Proof. Let Uθ = {imf : f ∈ kerSθ}. We first show that Uη = β(Uθ). Indeed, by
Lemma A.10 we have kerSη = β(kerSθ)β

−1 and hence

Uη = {imf : f ∈ kerSη} = {imβ ◦ g : g ∈ kerSθ}.
By definition, wk . . . w1 is a word in Fθ if and only if θw1

◦ . . . ◦ θwk
(A) ∈ Uθ. Now,

by the above,

ηw1
◦ . . . ◦ ηwk

(B) = β ◦ θw1
◦ . . . ◦ θwk

(A) ∈ β(Uθ) = Uη.

This implies Fθ ⊂ Fη and hence j(η) ≤ j(θ). □

Lemma 4.18. Let θ : A → Aℓ be an aperiodic primitive length-ℓ substitution, and
let F : Xθ → Xζ be a factor map. If Fθ contains a word of length j, then nκ(F ) ∈ Z
for some 0 ≤ n ≤ (ℓ− 1)(ℓj − 1).
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Proof. In the case where the factor map is a conjugacy, the statement is [5, Propo-
sition 3.24], with the appropriate modifications to account for height, as discussed
in the proof of Proposition 4.13. Otherwise we proceed as in the proof of Propo-
sition 4.13 and apply Proposition 2.10 to Y = Xθ′ . We may thus assume that
F = Fτ for some code τ : Aθ → Aζ .

Theorem 2.9 tells us that there is a pair (η, β) which is inner encoded by θ, and
a code τ ′ : Aη → Aζ such that Fτ ′ : Xη → Xζ is a conjugacy, and κ(Fτ ) = κ(Fτ ′).
Then again by [5, Proposition 3.24], the denominator of κ(Fτ ′) (always assuming
that it is coprime to the numerator) is at most (ℓ−1)(ℓj−1), where j = j(η) is the
length of the shortest word in Fη. Now by Lemma 4.17, we have that j(η) ≤ j(θ) .

Thus the denominator of κ(Fτ ′) is at most (ℓ− 1)(ℓj(θ)− 1). Since κ(Fτ ′) = κ(Fτ ),
the result follows. □

Theorem 4.19. Let θ be an aperiodic primitive constant length-ℓ substitution with
column rank c > 1. The following are equivalent:

(1) Xθ is an almost one-to-one extension of an aperiodic bijective length-ℓ sub-
stitution shift.

(2) There exists 0 ≤ n, k such that the semigroup S(θn)(+k) contains a unique
minimal left ideal.
Moreover, if j is the length of the shortest word in Fθ, then n ≤ (ℓ−1)(ℓj−1)
and 0 ≤ k ≤ ℓn − 1.

Proof. Let F : (Xθ, σ)→ (Xη, σ) where η is bijective, defined on a c-letter alphabet.
By Proposition 4.13, κ(F ) is rational, and by Lemma 4.18, κ(F ) = p/q where
1 ≤ q ≤ (ℓ − 1)(ℓj − 1), where j is the length of the shortest word in Fη. Using
φ(q) ≤ (ℓ−1)(ℓj−1), and taking a shift if necessary, Corollary 4.16 tells us that there

is n ≤ (ℓ− 1)(ℓj − 1) and 0 ≤ k ≤ ℓn, and a conjugacy F̃ : (X(θn)(+k) , σ)→ (Xθ, σ)

such that κ(F ) + κ(F̃ ) ∈ Z. As κ(F ◦ F̃ ) ∈ Z, then S(θn)(+k) must have a unique
minimal left ideal by Theorem 4.11.

For the converse, if S(θn)(+k) has a unique minimal left ideal, then by Theo-

rem 4.11, (X(θn)(+k) , σ) factors dynamically onto a bijective substitution shift. As

(X(θn)(+k) , σ) is conjugate to (Xθ, σ), the result follows. □

The following corollary follows from a straightforward application of the com-
ments in Section 3.5 and underlines the interest in finding bijective factors.

Corollary 4.20. Suppose that Xθ is almost bijective with corresponding bijective

substitution η such that Uη(0,1) is a partition of A(2)
η . Then Xη factors isometrically

onto a proper almost automorphic substitution shift Xζ and

Xθ
F1→ Xη

F2→ Xζ
F3→ Zℓ

O→ {pt}
is a Veech tower for Xθ, F1, F3 being almost one-to-one and F2, O isometric.

Example 4.21. We return to the Rudin Shapiro substitution θ, in Example 3.22.
One verifies that the length j of the shortest forbidden word in Fθ is j = 1, so by
Theorem 4.19, Xθ factors onto a bijective substitution shift if and only if Sθ(+k)

contains a unique minimal left ideal, where 0 ≤ k ≤ 1. One can verify that each of
Sθ(+0) and Sθ(+1) have two minimal left ideals. Therefore θ does not factor onto a
bijective substitution shift.
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We remark that if (ℓ− 1)(ℓj − 1) > 1, then by inspecting the proof of the second
part of Theorem 4.19, namely using φ(q) ≤ q − 1 if q > 1, we can improve the
bound to n ≤ (ℓ − 1)(ℓj − 1) − 1 and 0 ≤ k ≤ ℓn − 1. We will use this in the
examples below.

Example 4.22. We return to Example 4.14, with θ and η defined there. We take
ζ := θ(+3), and we claim that ζ has a unique minimal ideal. The reason why we
make this choice θ(+3) is that, by Lemma 4.15, the natural conjugacy G : Xζ → Xθ

satisfies κ(G) = −3/4. Then κ(σ ◦ F ) = 3/4, and F ◦ σ ◦G : Xζ → Xη has κ-value
zero. Note though that F ◦ σ ◦ G has right radius one, so we will need to work
with Xζ(2) . Theorem 4.11 guarantees that Sζ(2) has a unique minimal left ideal, and
Lemma 4.10 guarantees that so also does Sζ . Indeed, to define ζ, we simultaneously
list and code the words of length two in Lθ:

A = 02, B = 03, C = 14,

D = 15, E = 20, F = 21,

G = 34, H = 35, I = 40,

J = 41, K = 52, L = 53;

it then can be verified that the 3-shifted extension ζ := θ(+3) of θ has a unique min-
imal left ideal, generated by the partition {{A,B,K,L}, {C,D,G,H}{E,F, I, J}}.

We end with an example that shows that if a substitution shift has a bijective
substitution factor, this does not imply that its pure base has a bijective substitution
factor, illustrating that we cannot reduce to work with the pure base.

Example 4.23. Consider the following substitution on {a, ā, b, c, d, e, f}:

θ : a 7→ adc

ā 7→ ādc

b 7→ bea

c 7→ cfb

d 7→ dāe

e 7→ ebf

f 7→ fcd.

It is routine to check that this substitution is primitive and has height 2. We
can define a factor map Fτ : Xθ → Xη, which has local rule τ : {a, ā, b, c, d, e, f} →
{a, b, c, d, e, f}, with τ(a) = τ(ā), and τ is the identity otherwise; η is the resulting
inner encoding. It can be verified that η is bijective. As such, we can check that Sθ

has indeed a unique minimal left ideal, satisfying the conditions of Theorem 4.1.
Given that both θ and η have height 2, one may proceed as in the proof of

Proposition 3.25 and define a factor map between the pure bases θ̃ and η̃ of both
substitutions, but, in general, the property of being bijective is not a conjugacy
invariant. In fact, η̃ is not a bijective substitution. Furthermore, it cannot be taken
to be conjugate to one: it can be verified that the maximal equicontinuous factor
map of Xη̃ has two irregular fibres modulo Z, namely 0 and · · · 1, 1, 1 = −1/2, but
any subshift that is conjugate to one arising from a bijective substitution can only
have one irregular fibre modulo Z.
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Theorem 4.19 tells us that to decide whether θ̃ is almost bijective, we need to
compute the minimal left ideals of (θ̃n)(+k) with 1 ≤ n ≤ 3 and 0 ≤ k ≤ 27. Via

automated computation, we have verified that θ̃ has no bijective substitution shift
factors.

Appendices

A. Appendix R

We first prove Theorem 2.9. The following lemma tells us that the assumption
in Theorem 2.9, that Sθ ⊂ Sθ2 , is not a deal breaker.

Lemma A.1. Let Sθ be a sub-semigroup of F(A) which is generated by a family of
maps θ ⊂ F(A). If A is finite then there exists n ∈ N such that Sθn = Sθ2n where
θn is the set of maps which are n-fold products of elements of θ.

Proof. Clearly, Sθ2 ⊂ Sθ, and if Sθ = Sθ2 then also Sθ2 = Sθ4 . Hence, the infinite
chain

Sθ ⊃ Sθ2 ⊃ Sθ4 ⊃ · · ·
must stabilise, as Sθ is finite. □

We use the following results.

Theorem A.2. [17, Theorem 5] Let θ be a primitive aperiodic length-ℓ substitution
and πθ : Xθ → Zℓ the equicontinuous factor map which maps all fixed points (or
θ-periodic points) to 0. Let τ : Aθ → B be a code and Y = Fτ (Xθ). Then there is
a factor map πY → Zℓ such that πθ = πY ◦ Fτ .

The following proposition follows from the recognizability of constant length
substitutions, which was essentially shown by Dekking in [6].

Proposition A.3. Let θ be a primitive aperiodic length-ℓ substitution and πθ :
Xθ → Zℓ the equicontinuous factor map which maps all fixed points (or θ-periodic
points) to 0. If x, x′ ∈ Xθ satisfy πθ(x) = πθ(x

′) then, for all N ∈ N there exists
n ∈ Z such that σn(x) and σn(x′) belong to θN (Xθ). Here θ is viewed as a map on
Xθ where it is injective, but not surjective.

Recall that Sθ is the sub-semigroup of F(A) generated by the column maps of
the substitution. Recall that a partition P of A defines a code τ : A → B = P, τ(a)
is the member A ∈ P to which a belongs. If for each f ∈ Sθ and for each A ∈ P
there is A′ ∈ P with f(A) ⊂ A′, then the code defines an inner encoded substitution

(η, τ). If not, we can define a finer partition P̃ which has this property, notably
through the equivalence relation a ∼ b if for each f ∈ Sθ, τ(f(a)) = τ(f(b)). We
denote the associated inner encoded system by (η, β). The alphabet Aη = β(A) of
η sits in between A and B, because a ∼ b means that in particular τ(a) = τ(b).
Hence τ factorises τ = τ ′ ◦ β where τ ′ : β(A) → B is a code. In what follows we
use the fact that |A|(|A| − 1) is the number of unequal ordered pairs in A.
Lemma A.4. Let θ be a primitive aperiodic length-ℓ substitution over A. Let
N = |A|(|A| − 1). Suppose that Sθ ⊂ Sθ2 . Let a, b ∈ A. If τ(θN (a)) = τ(θN (b))
then ∀f ∈ Sθ we have τ(f(a)) = τ(f(b)).
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Proof. Any f ∈ Sθ has the form θin · · · θi1 for some n. Let, for j ≤ n, f (j) =
θij · · · θi1 and f (0) = 1. If f(a) ̸= f(b) then f (j)(a) ̸= f (j)(b) for all j ≤ n and so, if

n ≥ N then the sequence of unequal pairs (f (j)(a), f (j)(b))0≤j≤n ⊂ A2 hits at least

one point twice, say (f (j1)(a), f (j1)(b)) = (f (j2)(a), f (j2)(b)). Let

f̃ = θin · · · θj2θj1−1 · · · θi1
that is, leave out θi for i = j1, · · · j2−1 in the product for f). Iterating if necessary

f̃ ∈ Sθ has at most N factors θi. Furthemore, f̃(a) = f(a) and f̃(b) = f(b). Now

Sθ ⊂ Sθ2 implies that we can write f̃ as a product of N factors. Therefore there ism
such that f̃ = θNm. It follows that τ(θN (a)) = τ(θN (b)) implies τ(f̃(a)) = τ(f̃(b))
implies τ(f(a)) = τ(f(b)). □

Proof of Theorem 2.9. Given the code τ : A → B we have seen above that we
can construct an inner encoding (η, β) of θ and τ = τ ′ ◦ β. It remains to show
that Fτ ′ : Xη → Y ⊂ BZ is injective. Clearly Xη = Fβ(Xθ). Let x̃, ỹ ∈ Xη, so
x̃ = Fβ(x) and ỹ = Fβ(y) for some x, y ∈ Xθ, and suppose that Fτ ′(x̃) = Fτ ′(ỹ).
Hence Fτ (x) = Fτ (y). By Theorem A.2, πθ(x) = πY (Fτ (x)) = πY (Fτ (y)) = πθ(y).
Lemma A.3 implies that there is n such that σn(x), σn(y) ∈ θN (Xθ). Let x′, y′

be pre-images, θN (x′) = σn(x) and θN (y′) = σn(y). We thus have Fτ (θ
N (x′)) =

Fτ (θ
N (y′)) which means, for all k, τ(θN (x′

k)) = τ(θN (y′k)). Lemma A.4 implies
that τ(f(x′

k)) = τ(f(y′k)), for all k. Hence β(x′
k) = β(y′k), for all k. As θ maps

members of the partition defined by β into members of that partition we have
β(θ(x′

k)) = β(θ(y′k)) hence, by iteration, β(xk) = β(yk) for all k. Hence x̃ = ỹ. □

Next, we give a proof of Proposition 2.10. It is based on the proof of [5, Proposi-
tion 3.19], where there is a similar result bounding the radius of an automorphism
of a constant length substitution shift. Here, we bound the radius of a factor map
of a constant length substitution shift.

Proof of Proposition 2.10. Let l, r be the left, right radius of F respectively, and
let n = (−l, r). Then there is a code τ : Aθ(n) → B such that Fτ : Xθ(n) → Y is a
factor map and such that F = Fτ ◦ F−1

ı . Note that by Lemmas 2.4 and 2.6, F−1
ı

maps fixed points to fixed points.
To prove the second statement, suppose that Y = Xη for some length-ℓ sub-

stitution η and that F preserves the fibre of fixed points. Let R = max{l, r}.
We know that (F (x))i is determined by x[i−R,i+R], and thus (F (x))[0,ℓn) is deter-
mined by x[−R,ℓn+R). Thus, if we choose n ⩾ ⌈logℓ R⌉, this ensures R ⩽ ℓn, hence
(F (x))[0,ℓn) is entirely determined by x[−ℓn,2ℓn).

Fix n ⩾ ⌈logℓ R⌉. Since F sends fixed points to fixed points, then F (θn(Xθ)) ⊆
ηn(Xη). Define G : Xθ → Xη as G := η−n ◦ F ◦ θn. Note that F ◦ θn maps Xθ to
ηn(Xη), and the map η−n : ηn(Xη)→ Xη is well-defined by recognisability of η, so
G is also well-defined. It is not hard to check that G is continuous and G◦σ = σ◦G,
so G is also a factor map.

Given knowledge of x[−1,1], we know (θn(x))[−ℓn,2ℓn) and hence (F ◦ θn(x))[0,ℓn)
is also determined, as discussed above.

Recall that a substitution η is injective if the map η : A → Aℓ is injective. If
η is injective, then (F ◦ θn(x))[0,ℓn) determines (η−n ◦ F ◦ θn(x))0, and thus G has
left and right radius at most 1. Also, G must send fixed points to fixed points. If η
is non-injective on letters, we can replace it with an injectivisation η̃ of η, which is
the standard example of an inner encoding of η, with two letters identified if and
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only if their images under η are equal. As the associated conjugacy Xη → Xη̃ has
radius 0, this will not change the desired result, that G has left and right radius at
most 1.

It remains to show that the radius restriction for G implies the same restriction
for F . Minimality implies that any factor map Xθ → Xη is entirely determined
by the image of a single point. As the fixed point fibres of substitutions are finite,
there can only be finitely many factor maps Fi : Xθ → Xη which preserve the
fixed point fibre. Let F := {F1, . . . , Fk} be the collection of those. Let li, ri be
the left and right radius of each Fi. If we define R = max{l1, r1, . . . , lk, rk} and
take n ⩾ ⌈logℓ R⌉, then the above argument shows that η−n ◦ Fi ◦ θn preserves the
fixed point fibre of θ and hence the map F → F given by Fi 7→ η−n ◦ Fi ◦ θn is
well-defined. This map is a bijection. For, if η−n ◦ Fi ◦ θn = η−n ◦ Fj ◦ θn, then
Fi ◦ θn(u) = Fj ◦ θn(u) for any point u ∈ Xθ, and in particular for any fixed point
u of θ, so that Fi(u) = Fj(u) for u a fixed point. Now minimality implies that the
map is injective and since F is finite it is also surjective.

To conclude, we have seen above that every factor map of the form η−n ◦Fi ◦ θn
has left and right radius at most 1 and so the same must hold for all Fi. □

Appendix M

We formulate a theorem of Martin in a slightly more general way and provide
the proof for the convenience of the reader [16, Thm.8.11].

Theorem A.5. Let (Y, S) be an almost automorphic factor of (X,T ). Then there

exists a factor (Ỹ , S̃) of (X,T ) which is both an extension of (Y, S) and an almost
one-to-one extension of the maximal equicontinuous factor of (X,T ). If (Y, S) is

a proper almost automorphic factor of (X,T ) then (Ỹ , S̃) is also a proper almost
automorphic factor of (X,T ). If the factor map F : X → Y is isometric then the

factor map F̃ : X → Ỹ is also isometric.

Proof. See Figure 3. Let πX : X → Xmax be the maximal equicontinuous factor
map. Define the equivalence relation on X by x1 ∼ x2 if F (x1) = F (x2) and

πX(x1) = πX(x2). Let Ỹ = X/ ∼ and let F̃ : X → Ỹ denote the canonical

surjection. Clearly πX factors πX = π̃ ◦ F̃ , and F : X → Y factors F = G ◦ F̃ .
In particular Ỹ is an extension of Y . Let Ymax be the MEF of Y with factor map
πY . By maximality, Xmax factors onto Ymax and we can arrange the factor map
ρ : Xmax → Ymax in such a way that πY ◦ F = ρ ◦ πX .
We claim that π̃ : Ỹ → Xmax is almost one-to-one: Let η ∈ Ymax such that
π−1
Y (η) contains a single element, say y. Let ξ ∈ ρ−1(η). Let x ∈ π−1

X (ξ). Then

πY ◦ F (x) = η, hence F (x) = y. Hence any two elements x1, x2 ∈ π−1
X (ξ) satisfy

F (x1) = F (x2) and πX(x1) = πX(x2) so that F̃ (x1) = F̃ (x2). It follows that
π̃−1(ξ) contains only one element.

We claim that (Ỹ , S̃) is not equicontinuous. Indeed, if it were equicontinuous then

Y would also be equicontinuous, as it is a factor of Ỹ .
Finally, if F = G ◦ F̃ is isometric then F̃ must also be isometric. □

Appendix J

We recall some background material on subsemigroups of the semigroup F(X)
of maps from X to itself; see also [4, 10, 18]. Here X is just a set and the semigroup
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Y

X Ỹ Ymax

Xmax

πYF

πX

F̃
G

π̃
ρ

Figure 3. The commuting diagram for Theorem A.5.

product is composition of functions. For our purposes X will be a finite set. We
denote by P(X) the set of subsets of X.

Let f : X → Y . We denote by f−1 : P(Y ) → P(X) the pre-image map but
simply write f−1(y) for f−1({y}). The map f defines an equivalence relation as
x ∼ x′ if f(x) = f(x′). We denote the associated partition by Pf , that is,

Pf = {f−1(y) : y ∈ Y }.
The cardinality of Pf equals the rank of f , that is the cardinality of its image imf .

Recall two of Green’s equivalence relations L, R. They give a first way to
approach and organise a semigroup S. We say that a, b ∈ S are L-related, or R-
related, if they generate the same left, or right ideal, respectively. If S is a group,
then these relations coincide with the full relation. Each of the above relations
partition the semigroup. R is a left congruence and therefore S/R a left-S-module.
L is a right congruence and therefore S/L a right-S-module.

Lemma A.6. Let S be a semigroup of F(X). If f, g ∈ S are R-related then
imf = img. If f, g ∈ S are L-related then Pf = Pg.

Proof. Let f and g be R-related, that is, f = g or there is f ′, g′ such that f = gg′,
g = ff ′. Then clearly imf ⊂ img and img ⊂ imf .

Let f and g be L-related, that is, f = g or there is f ′, g′ such that f = g′g,
g = f ′f . Then f−1(x) = g−1(g′−1

(x)) showing that the members of the partition
Pf are unions of members of the partition of Pg, i.e. the partition Pg is finer than
Pf . A symmetric argument shows that Pf = Pg. □

An element f ∈ S ⊂ F(X) is completely regular if there exists g ∈ S such that
fgf = f and fg = gf . This implies that fg is an idempotent. As normal inverses
are unique we call fg the idempotent associated to f and denote it f0.

A completely simple semigroup is a semigroup which has no proper bilateral
ideals and which contains an idempotent. The kernel of a semigroup, if it exists, is
its smallest bilateral ideal. If X is finite then any sub-semigroup of F(X) admits
a kernel. We denote the kernel of S by kerS; if it contains an idempotent it is
completely simple, and any element is completely regular.

Lemma A.7. Let X be a finite set and S ⊂ F(X). Then S is completely simple
if and only if all its functions have the same rank. Moreover, if f, g ∈ S belong to
the same right ideal, then g0f = f , while if f, g belong to the same left ideal, then
f = fg0.

Proof. Given n ∈ N, the subset of functions of rank ≤ n form a bilateral ideal
in S. Hence the condition that all functions have the same rank is necessary for
simplicity.
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Now suppose that all functions of S have the same rank. Let f ∈ S. Then
imf = imfk for all k ≥ 1. As X is finite there must by a k > 0 such that f = fk+1.
Hence fk = f0 ∈ S. The restriction of f0 to imf is the identity. Let also g ∈ S.
As fg ∈ S the argument above shows that there is k > 0 such that the restriction
of (gf)k to imgf = img is the identity. It follows that (gf)kg = g. Hence g belongs
to the bilateral ideal generated by f . Choosing f ∈ kerS we see that S = kerS
and so is simple.

Suppose that f, g ∈ S belong to the same right ideal. Then f = gg′ for some
g′ ∈ S. Hence g0f = g0gg′ = gg′ = f . Similarily, if f, g ∈ S belong to the same left
ideal. Then f = g′g for some g′ ∈ S. Hence fg0 = g′gg0 = f . □

Corollary A.8. Let X be a finite set and S ⊂ F(X). The kernel of S is given by
its functions of minimal rank. It is completely simple.

The Rees structure theorem ([4, Theorem 3.5] or [13, Theorem 2.1]) tells us that
a completely simple semigroup (without zero) is isomorphic to a matrix semigroup
S ∼= I ×G×Λ where I indexes the right ideals of S, Λ indexes the left ideals of S,
G is a group and there is an I ×Λ matrix M such that multiplication in I ×G×Λ
is defined as

(i, g, λ)(i′, g′, λ′) = (i, gMλ,i′g
′, λ′)

The right ideals are given by {i}×G×Λ, i ∈ I, and the left ideals by I ×G×{λ},
λ ∈ Λ. In particular one sees that any right ideal intersects any left ideal non-
trivally.

Proposition A.9. Let S ⊂ F(X) be a completely simple semigroup and f, g,∈ S.
The following are equivalent.

R1 f and g are R-related.
R2 f and g belong to the same right ideal.
R3 f and g have the same image.

Moreover, the following are equivalent.

L1 f and g are L-related.
L2 f and g belong to the same left ideal.
L3 f and g define the same partition.

Proof. A completely simple semigroup (without zero) is the disjoint union of its
right ideals and all the right ideals are simple. As the R-class of any element of a
simple right ideal is that right ideal, we have equivalence between R1 and R2. It
remains to show that R3 implies R2: Suppose that f and g belong to the same left
ideal. Then fg0 = f . If also imf = img then g0f = f , hence f and g belong to
the same right ideal. Now suppose that f and g are arbitrary elements satisfying
imf = img. Then there is h ∈ S which is in the same right ideal as g and the same
left ideal as f . The first property implies imh = img and, by the above, h is also
in the same right ideal as f . Hence f and g belong to the same right ideal.

The equivalence between L1 and L2 is shown as for right ideals. We show that
L3 implies L2: Suppose that f and g belong to the same right ideal. Then g0f = f .
If also Pf = Pg then fg0 = f , hence f and g belong to the same left ideal. The
rest of the argument is as for right ideals. □

Lemma A.10. Let S be a semigroup which admits a kernel. Let Φ : S → T be
an epimorphism onto another semigroup T . The restriction of Φ to the kernel of S
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is an epimorphism onto the kernel of T . Morever, if S has a unique minimal left
ideal then also T has a unique minimal left ideal.

Proof. Any epimorphism preserves ideals: We show this for left ideals. Let I be a
left ideal of S and t ∈ T ; we ought to show that tΦ(I) ⊂ Φ(I). Since Φ is onto
there is s ∈ S such that Φ(s) = t. Then tΦ(I) = Φ(sI) ⊂ Φ(I).

Furthermore, the preimage of an ideal is an ideal: We show this for left ideals.
Let I be a left ideal of T and s ∈ S; we ought to show that sΦ−1(I) ⊂ Φ−1(I).
Indeed, Φ(sΦ−1(I)) = tI ⊂ I.

Now the above implies that I := Φ(kerS) is the kernel of T : Indeed, by the first
paragraph it is a bilateral ideal. Let J ⊂ I be a bilateral ideal of T . Then Φ−1(J) is
a bilateral ideal in S by the second paragraph. Φ−1(J) thus contains kerS. Hence
Φ(kerS) ⊂ J showing that J = I.

Suppose now that kerS is left simple and that L1, L2 are left ideals of kerT . Then
Φ−1(L1)∩kerS and Φ−1(L2)∩kerS belong to the same left ideal. As epimorphisms
preserve ideals their image under Φ belongs to the same left ideal. Hence L1 and
L2 belong to the same left ideal. Hence L1 = L2. □
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