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Chapter 14

Causality: fundamental
principles and tools

Irene Balelli?, Safaa Al-Ali?, Elise Dumas®, and Judith Abecassis®
aCentre Inria d’Université Cote d’Azur, Epione Team, Valbonne, France, "EPFL (Ecole
polytechnique fédérale de Lausanne), Lausanne, Switzerland, € Centre Inria de Saclay, CEA, Soda
Team, Palaiseau, France

ABSTRACT

The goal of this chapter is to provide a gentle introduction to Causal Learning (CL),
and motivation for its application to medical image analysis, seeking for more robustness
against data and domain drifts, and a reliable tool to answer conterfactuals questions
and get improved interpretability. The probabilistic formalism at the basis of CL will be
introduced, along with basic definitions and assumptions. A number of classical methods
to perform causal data analysis (both to establish the causal data generating structure,
and to intervene on it) will be illustrated, using simple synthetic datasets. Scaling up to
high dimensional and complex data such as medical images is not trivial, and requires the
combination of classical CL and modern Deep/Machine Learning techniques: this topic
will be further developed in Chapter 17.
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14.1 INTRODUCTION

Over the past few decades, the number of data-driven machine learning (ML)
and deep learning (DL) methods designed to solve a variety of tasks in medical
image analysis, such as segmentation, detection, classification or diagnosis,
has exploded. Their accuracy and prediction ability have shown a tremendous
improvement, while dealing with a variety of image modalities (e.g. CT, MRI,
PET, Ultrasound), with applications spanning from oncology to cardiology,
neurology and many others [1]. Daily clinical practice is increasingly benefiting
from such powerful computational tools, some of which have reached super-
human levels of performance.

However, despite their success and utility, purely data-driven approaches are
known to suffer from limited robustness and generalizability when confronted
with domain shift (or data drift) [2, 3], i.e. a shift from the training dataset
to the target real-world dataset, which may come from a population shift (e.g.



due to different data acquisition protocols and/or devices) or from a distribution
shift (e.g. an under-represented sub-population of interest in the training set,
for instance with respect to a specific targeted disease, or even the emergence
of new diseases). In addition, the real-world deployability of ML/DL models
by the healthcare end-users (clinicians, physicians, or patients) is tightly related
to the users’ ability to understand and trust the algorithmic prescriptions, the
encoded assumptions and, from a higher level perspective, the path leading from
the initial inputs to the model’s outputs, whereas ML and DL approaches mostly
operate as black boxes preventing a smooth machine-user interaction.

To alleviate both the generalizability and the transparency issues, causal
learning (CL) has emerged as a promising candidate solution, and is attracting
growing interest in the healthcare community. The seminal work of Turing
awarded J. Pearl [4, 5] posed the mathematical foundations of causality and causal
reasoning, and established a clear formalism to represent the data-generating
process and infer the causal effects of interventions on its variables. Rubin and
Neyman [6, 7] also strongly contributed to the development of this field, by
introducing an alternative statistical framework for causal inference.

The aim of this Chapter is to present the fundamentals of causality and its
applicability to healthcare. In Sec. 15.2 standard notations and basic definitions
of causal reasoning are recalled and illustrated. Sec. 15.3 is dedicated to causal
discovery, the branch of causality that attempts to disentangle the causal relation-
ships between the retained variables, hence learn the data generating process.
Sec. 15.4 focuses on causal inference, i.e. on estimating the causal effects of
external interventions on the system, after its data generating process has been
established. For the sake of completeness, Pearl’s formalism will be favored
in 15.3, while 15.4 will rely mainly on Rubin’s framework.

All code examples for this Chapter are available in this GitLab repository, which in-
cludes several notebooks for illustration of the presented tools. The README file pro-
vides all instructions for the requirements.

14.2 THE BASIS FOR BUILDING A CAUSAL REASONING

A common sense definition of causality can be stated as follows: if X causes Y,
then an intervention in the value or state of X implies a change in the value or state
of Y, whereas the reverse is not expected. Consider, for example, the relationship
between two variables: age and cognitive decline. It is well known that aging
induces cognitive decline, but abnormal cognitive decline won’t increase aging
speed. Hence, aging is a cause of cognitive decline, the effect. It is intuitive to
represent causal knowledge using nodes for variables of interest (here age and
cognitive level), and arrows pointing from each cause to its effects: this forms
a directed graph (Fig. 15.1 (a)). Let us now include an additional variable,
formal education, a protective factor against cognitive decline: a new arrow will
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(a) (b)

FIGURE 14.1 An illustrating example. (a) Two variables, X, the age, and X,, the cognitive
level, are considered at first: the directed arrows stress the causal directions. (b) A new variable is
added, X3, the education level. This diagram can be iteratively populated with additional variables.

point from education to cognitive decline (Fig. 15.1 (b)). Based on the domain
knowledge from Fig. 15.1 (b), given a dataset containing age, cognitive level
and former education level, one would expect to find a statistical correlation
between age and cognitive level, and between formal education and cognitive
level. Further, a correlation between age and education is also expected within
strata of cognitive levels, despite they are not causally linked. However, statistical
correlation is not informative about causation per se, making the knowledge of the
causal paths between variables a necessary condition for a robust interpretation
and analysis of collected data. Nowadays in healthcare, a huge variety of data
can be generated on each patient, such as genetic information, biomarkers, the
clinical history, up to imaging features. The underlying causal relationships
between all these variables may not be already fully established: is it possible
to recover it from available data? This is the central question tackled by causal
discovery (Sec. 15.3). In order to get there, a graphical causal formalism, first
proposed by J. Pearl, will be introduced.

Let X := {X1,...,Xn} be a set of N endogenous variables (i.e. variables
one wants to include by design in the model), which are assumed being ordered
in a cause-effect manner (Fig. 15.2 (a)). For each X; € X, let PA; denotes
the parents of X;, i.e. the set of all variables in X which directly causes X;:
PA; .= {X; € X | X; — X;}. Similarly, the ancestors of X;, Anc;, contains
all nodes preceding X; in a causal cascade, and the children and descendants of
X;, Ch; and Des; respectively, define the sets of nodes which causally follow
(directly and indirectly) X;. Formally:

e Anc; := {X; € X | d causal path from X; to X;},
o Ch, = {X] eX | X; —>X]'},
e Des; := {X; € X | 3 causal path from X; to X/},

where a path from a node X to a node X; is a set of consecutive edges from X to
X; following non-intersecting nodes. A path is said to be causal if it follows the
direction of the arrows. Clearly: PA; C Anc;, Ch; C Des;. Moreover, knowing
PA;, X; is independent from all his previous ancestors (Anc;/PA; = {X; €
Anc; and X; ¢ PA;}), in the causal order sense, meaning that if all variables in
PA; are observed, knowledge about previous ancestors of X; won’t add any extra
information to predict its current state. To each variable X; € X, an exogenous
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FIGURE 14.2 Bayesian Causal Networks and interventions. (a) Let us consider a set of 7
endogenous variables X; (represented with circles) and focus on X,. The exogenous noise variable
corresponding to Xy, Uy, is represented with a rectangular vertex. The ancestors of X, are highlighted
in the blue bounded region (the parent node of Xy is filled in blue), while its descendants are contained
in the green bounded region (children nodes are filled in green). (b) Let X be a patient characteristic
(or covariate), e.g. age, which both affects the outcome of interest Y e.g. the pace of a cancer
progression, and the choice of a treatment 7', e.g. chemotherapy, immunotherapy or a combination.
In a randomized clinical trial the randomization makes the treatment assignment for each participant
independent from his/her baseline characteristics: this can be investigated through the do operator.
An external intervention over the treatment assignment, do (T = #;) entails a modification of the
joint distribution of (X, 7T,Y) as it was initially defined. The modified probability distribution
results from the removal of all incoming causal links on the intervened variable, and the substitution
of its corresponding functional with the prescription 7" = ;.

unobserved noise variable U; € U := {Uj,..., Uy} is associated, to model the
unexplained variability of X;, i.e. the variability of X; which is not related to the
variation of any other endogenous variable X;, j # i. All U; € U are supposed
to be mutually independent, which implies U; 1L U;,Vj # i. Consequently, the
joint distributions of X and U are respectively:

N N
P(X) = HP(X,-|PAi) (14.1)  P(U) =1—[P(Ui) (14.2)
i=1 i=1

Eq. (15.1) reflecting the Markovian density of X is called the independent causal
mechanisms principle. Finally, the last ingredient needed to define a structural
causal model (SCM) is a set of functionals F := {fi,..., fy} relating in a
deterministic way X;, PA; and U;, foralli=1,...,N:

X; = f;(PA;, U;). (14.3)

A very convenient way to graphically illustrate all the components introduced
so far is by using a directed acyclic graph (DAG) - G, where directed means that
all arrows point in exactly one direction, while acyclic indicates that there exists
no directed causal path from any two variables (X;, X;) in G so that X; = X;, or
equivalently Vi = 1, ..., N, Anc;NDes; = 0. A Bayesian (causal) network (BCN
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- Fig. 15.2 (a)) is finally obtained when a SCM is coupled with its corresponding
DAG. A large amount of information can be encoded in a BCN, which serves
to build a clear causal reasoning, and select the variables to be controlled for
to reach conditional independence, and properly estimate the causal effect of
interest. Some node configurations are of particular relevance and deserve to be
defined here. Fig. 15.2 (a) will be used as a reference to illustrate them. In the
following, the conditional independence of two nodes X;, X; given Xj is denoted

with the symbol 1, .

Root and sink: variables with an empty parents’ set or with an empty children’
set, respectively. Root (resp. sink) variables are independent from all other
variables in X except their descendants (resp. except parents, given their
parents): Xyoor AL X/Desroor and Xsink LLpa, X/PAgink. In Fig. 15.2 (a), X,
and X, are root variables, while X5 and X7 are sink variables.

Collider: a common effect of two (or more) variables, such as X3, a collider
for X; and X,. When it happens, as in Fig. 15.2 (a), that X; and X, are
not causally linked, than despite being marginally independent, they become
conditionally dependent given their collider: X; 1L X5, but X1 Y x, X>.

Confounder: a common cause of two (or more) variables, such as Xy for
variables X5 and Xg. In this case, X5 and X are marginally dependent, but
become conditionally independent given X4: X5 L Xp, but X5 1l x, Xe.

Mediator: a variable that mediates between a cause and an effect, such as Xg
which mediates the effect of X4 over X7. Here, the cause X4, and the effect
X7, are marginally dependent, but become conditionally independent given
the mediator, Xs: X7 L X4, but X7 1 x, X4.

The reading and interpretation of a BCN, which provides a clear causal
representation of the variables of interest, and their dependencies, have now
been clarified. In healthcare, it is crucial to be able to assess the effect of
an intervention, such as the administration of a treatment or surgery, on some
outcomes, such as disease relapse or mortality. Observational data derived
from actual clinical practices are prone to confounding, i.e. the presence of
variables, such as patients’ baseline characteristics or their medical history, which
affect both the medical intervention decision and its outcomes, and may prevent
a reliable analysis of the intervention-outcome causal associations. A gold
standard solution to overcome this problem is provided by randomized clinical
trials, where the randomization allows to break the links between the (known)
confounders and the treatment. However, on the one hand, it is not always
possible to carry out clinical trials due, for example, to ethical or financial barriers
and, on the other hand, a large amount of observational data on treatment effects
is collected on a daily basis: this constitutes a precious source of information,
which in addition is not biased by the strict selection process of patients in an
experimental setting. Can actionable decisions be made on possible interventions
from observational data? This can be investigated through causal inference.

Two main frameworks have been developed for causal inference. The first



one, introduced as well by J. Pearl, is based on a new operator, called the do
operator, which defines firstly a way to intervene on a BCN, and secondly,
a proper formalism to capture the entailed perturbations in the data generating
process from a fully probabilistic perspective (Fig. 15.2 (b)). This framework will
not be covered further in this chapter. Alternatively, Rubin [6] and Imbens and
Rubin [7] formalized a fully statistical approach called the potential outcome (PO)
framework, widely used to reason about the effect of a treatment, in particular
when disposing of non-randomized (or observational) data, where the treatment
class assignment can not be controlled. Rubin’s PO framework will be further
developed in Sec. 15.5. Of note, theoretical bridges exist between SCMs and
Pearl’s do operator and the PO framework [8, 9].

In the following sections, some methods and existing tools will be illustrated,
for causal discovery (Sec. 15.3), to establish the most likely underlying BCN
relating the features at hand, and for causal inference (Sec. 15.4), to intervene
over a given BCN, and then quantify the downstream effects of the intervention
across the graph.

14.3 CAUSAL DISCOVERY OR THE QUERY FOR THE DATA GEN-
ERATING PROCESS

In healthcare, it is common to deal with complex systems, where several vari-
ables of interest can interact with each other and contribute to the evolution of the
underlying process. Domain experts may not have complete knowledge of these
relationships, which can be partially or completely unknown: this motivates
the use of causal discovery. Causal discovery aims to uncover cause-and-effect
relationships between the variables under consideration, based on a set of obser-
vations, thereby improving understanding and insight into the studied condition.
Several causal search algorithms have been developed over the last decades to
unveil causal connections between variables. Existing methods differ both in the
assumptions they rely on and in the type of data they use as input, which can be
observational data or a mix of experimental and observational data.

Firstly, some essential definitions and assumptions used during the stage
of discovery of the causal graph will be introduced. Secondly, several causal
discovery algorithms will be discussed and illustrated with practical examples.

14.3.1 Definitions and assumptions

Let Gx denote a causal graph on the node set X.

Skeleton: the fully undirected graph associated to Gx.

Causal sufficiency (CS): Gx satisfies the CS if for every pair X;, X; € X, all
their common causes are assumed to be observed and modeled in Gx.

Blocking path: X, is said to be blocking a path between X; and X; if (i) X,
is a mediator between X; and X, or (i) X, if a confounder for X; and X;,
or (iii) Xp; is not a collider in the path from X; to X, nor a descendant of a
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collider.

d—separation: given a set of pairwise disjoint subsets Vi, V;,, V3 C X, V3
d—separates V| and V, if it blocks all the paths between nodes in V; and
nodes in V;. This will be denoted: V| Ly, V,.

v—structure: atriplet (X, X5, X3) so that X}, X,, X3 are linked in the skeleton,
X; — X, — X3, and X is a collider or a confounder.

Causal Markov condition (CMC): Gx satisfies the CMC if VX; € Gx,
X; lLps, X/(Des; UPA;). In DAGs, the CMC is equivalent to the factoriza-
tion in Eq. (15.1).

Global Markov condition (GMC): The GMC holds if for every pairwise dis-
joint subsets Vi, V5, V3 c X, V, Llv, V=V, Ay, V,.

Faithfulness: Faithfulness reverses the GMC: V'V, V,, V3 C X pairwise dis-
joint, vV, v, Vo, =V, Lv, Vs.

14.3.2 Causal discovery for cross-sectional data

Cross-sectional (or stationary) data refers to a set of observations collected
at a specific time point, each observation belonging to a different individual:
causal discovery applied to such data is a very active research field. Two main
families of causal discovery algorithms can be distinguished: constraint-based
and (Bayesian) score-based algorithms [10, 11].

Constraint-based methods rely on the CMC and the faithfulness assumption.
They are based on the search for conditional independence relationships between
the observed variables through some appropriate statistical tests of conditional
independence, and return the graph(s) consistent with such constraints. They
can be applied to a wide range of data types, including continuous, categorical,
and textual data, and have the advantage of not making any assumption on
the structure of the functionals f;, and the distribution of the variables X; €
X. Nevertheless, a major limitation of such methods is due to the curse of
dimensionality, since the number of possible conditional independencies to be
tested grows exponentially with the number of variables.

On the other hand, score-based methods perform a search for all possible
causal graphs over X, trying to find the model that best fits the data. This is done
by maximizing a score typically derived from the likelihood of the data given the
graph Gx (e.g. Bayesian Information Criterion BIC, among others), according
to the factorization imposed by the graph Gx through the CMC. Such assumed
factorization allows efficient search-and-score learning, reducing the number of
computations needed for scoring each change on the graph Gx. Nevertheless,
score-based methods require careful consideration of the priors and the scoring
function with respect to the domain-specific context in which they are applied.
Of note: some hybrid methods have also been developed [12], but won’t be
detailed in this chapter.

In the following, classical constraint- and score-based causal discovery algo-
rithms will be introduced. They will be illustrated through practical examples
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FIGURE 14.3 PC algorithm steps over X := {X1, X2, X3, X4} from Fig. 15.2 (a). (a-c) skeleton
discovery phase, (d-e) edge direction phase.

on synthetic data generated according to the graph in Fig. 15.2 (a), and assuming
linear relationships. The code presented in this section relies on the python
package causallearn [13]. Other packages for causal discovery exist, both in
Python and R (see [10, 11]).

Data generation can be easily performed using Python: a code is available in the
GitLab repository.

Peter and Clark’s (PC) [14] is one of the first causal discovery algorithms
developed, and is still widely used in the community. It is a constraint-based
method and consists of two steps [15, 11]:

1. Skeleton discovery: the algorithm starts with a complete undirected graph
over all the observed variables (Fig. 15.3 (a)). For every pair of adjacent
variables, PC first tests their independence: if it holds, the edge connecting
them is removed (Fig. 15.3 (b)). Then, conditional independence with respect
to subsets of variables of increasing size is iteratively tested, and the skeleton
is updated accordingly (Fig. 15.3 (¢)).

2. Edge orientation: PC searches for v-structures, and uses the conditional
independence test to orient their edges (Fig. 15.3 (d)). Finally, it performs
the orientation propagation to the remaining undirected edges (Fig. 15.3 (e)):
for every triplet (X1, X7, X3) such that X; — X, — X3, if X| and X3 are not
adjacent in Gx, it concludes X, — X3.

PC can be imported from causallearn, which enables to set some customized ad-
vanced parameters, such as the conditional independence test (Fisher’s Z by default).
The output graph for PC with the default parameters is shown in Fig. 15.4 (a).
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i # import PC method from causallearn package
> from causallearn.search.ConstraintBased.PC import pc

4+ # Apply PC to numpy array data=(n_subjects,n_variables)
5 cg= pc(data=data)

7 # Use PC with kernel-based conditional independence test
s from causallearn.utils.cit import kci
9 cg= pc(data=data, indep_test=kci, kernelZ='Gaussian’)

11 # Create and visualize the causal graph

» from causallearn.utils.GraphUtils import GraphUtils
13 cg.draw_pydot_graph ()

14 pyd = GraphUtils.to_pydot(cg.G)

Of note, PC may fail in orienting some edges, so that the final output graph
may be only partially directed. Moreover, PC is order sensitive, meaning that
changing the order in which variables are considered during the skeleton dis-
covery phase may affect the final output skeleton, hence the subsequent edge
orientation phase. An alternative version, PC-stable [16], was later proposed
to address this issue. PC-stable stores the neighbors (or adjacency) set of every
node at each step of the skeleton discovery phase, so that an edge deletion will
not affect the conditional dependence tests of other variable pairs in the current
stage. Other PC variants have also been developed, in particular, conservative
PC [17], more cautious in the edge orientation phase.

A limitation of PC and its variants is that they all assume causal sufficiency, a
quite strong assumption. The Fast Causal Inference (FCI) [14] method allows
to relax CS by assuming that latent confounders may exist. It starts with a
skeleton discovery phase similar to PC, but then uses d—separation for the edge
orientation phase. Several types of relationships can be displayed in the FCI's
output graphs, among which bi-direction, which denotes the presence of an
unobserved confounder between the linked variables. Fig. 15.4 (b) shows an
example of an output graph with FCI applied to the synthetic data generated
from Fig. 15.2 (a). Similarly to PC, several variants of FCI have been proposed,
mostly to speed up the algorithm, such as Anytime FCI [18] and Really FCI[19].

Among score-based methods, the Greedy Equivalence Search (GES) [20],
together with its variants is widely applied. Unlike PC and FCI, GES starts from
an empty graph. It consists of two phases: a forward equivalence search, where
edges are iteratively added, followed by a backward iterative search, where edges
areiteratively removed. Inboth phases, GES evaluates every new resulting graph,
using a scoring function to assess the trade-off between the model complexity
and the quality of data fit. To avoid redundancy during the greedy search, GES
looks for equivalence classes among the graph structures.

The default score for GES is BIC (see the corresponding output graph in Fig. 15.4
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(c)), but other are available in causallearn, such as negative k-fold cross-validated
log-likelihood.

| # import GES method from causallearn
> from causallearn.search.ScoreBased.GES import ges

4+ # Apply GES to df, and recover the graph ([’G’])
5 cg = ges(data)[’G’]

7 # Use k-fold cross-validated log likelihood score
s c¢g = ges(data,score_func="local_score_CV_general’)[’G’]

More recently, causal discovery algorithms based on functional causal models

)., ()
()]
7

(a) PC with default parameters (b) ECI with default parameters
() (%) Legend:
@ @ —p Correctly discovered edge/arrow
—p Wrongly discovered edge/arrow

---[> Undiscovered existing edge/arrow
@  Possibly discovered non-existing arrow

O Possibly discovered existing arrow

(c) GES with default parameters

(d) ICALINGAM (e) DirectLiNGAM with prior knowledge

FIGURE 14.4 DAG:s obtained from different causal discovery algorithms applied to synthetic data
generated from the causal graph in Fig. 15.2 (a). (a) PC with Fisher’s Z test function (the default in
causallearn): most edges are correctly identified, but PC fails to unveil all directions. (b) Like
PC, FCI identifies the majority of links but fail in the edge orientation phase: of note, FCI clearly
highlights its doubts in edge direction using the dot arrowhead. (c) The score-based method GES
with BIC score identifies correctly the ground truth graph. (d) ICA-LiNGAM shows some erroneous
dependencies between X1, X, and X3: this can be corrected by (e) imposing that X| and X, are
root.
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were proposed, such as the Linear non-Gaussian acyclic model LINGAM [21],
which assumes linear relationships between each node and its parents, i.e.
VX; € X, X; = Xx;epa, bjiXj + Ui, where U; is a centered non-Gaussian ran-
dom variable with non-zero variance. LINGAM assumes faithfulness and the
acyclicity of Gx. It aims to estimate the matrix B := b;;, knowing that it can
be permuted to a strictly lower-triangular matrix, due to acyclicity. Several
extensions of LINGAM have been proposed, such as ICA-LiNGAM, which as-
sumes that the observed variables’ dependence may be due to unobserved latent
confounders and performs an Independent Component Analysis (ICA) before
applying LiINGAM, or DirectLiNGAM [22], which improves the robustness of
LiNGAM estimation method while providing formal convergence guarantees.

| # Import lingam-based methods from causallearn
> from causallearn.search.FCMBased import lingam

4 # Fit ICA-LiNGAM on data
5 model = lingam.ICALiNGAM(random_state=42)
s model.fit(data)

s # Make the causal graph using the adjacency matrix
o def make_graph(adjacency_matrix, **kwargs):
10 #

2 G = make_graph(model.adjacency_matrix_)

The output graph is shown in Fig. 15.4 (d).

In some contexts, the causal graph may already be partially established
through expert knowledge, hence some causal links do not need to be discovered.
It is of interest to incorporate this prior knowledge into the system in order to
drive the causal discovery search toward the true overall causal graph.

It may be known that X, X, are root. This information can be encoded in a matrix
M:= m;;, an adjacency matrix with partial information, i.e. so that m;; = 1 (resp. 0)
for all known existing (resp. absent) causal links X; — X, and mj; = —1 otherwise,
i.e. when no prior knowledge is available. Fig. 15.4 (e) shows the output graph of
DirectLINGAM after injecting the available prior knowledge through matrix M, so that
Vj=1,...,7, my=my =0 (mj; = —1for j ¢ {1,2}).

i # Define a prior knowledge matrix

> def make_prior(n_vars, root, sink, *args):
k #

i M = make_prior(n_vars=7, root=[0,1])

6 # Fit DirectLiNGAM on data using M as prior knowledge
7 model = lingam.DirectLiNGAM(prior_knowledge=M)
s model.fit(data)
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14.3.3 Causal discovery for time series data

Up to now, only stationary data have been considered, i.e. data which are
representative of a specific time stamp. Nevertheless, in many situations it may
be interesting to analyze the temporal evolution of a medical condition, e.g. a
disease, in case observations collected over a period of time are made available:
these are called time series or longitudinal data. The causal discovery approaches
presented so far are not adapted to account for temporal relationships in their
causal search: the temporal dimension has to be explicitly included in the model.

Most classical causal discovery algorithms already have their own extension
for time series data. For instance, the PCMCI method [23] is derived from PC.
As PC, itis a constraint-based method: it assumes time-lagged dependencies and
uses the momentary conditional independence (MCI) test. The time series FCI
(tsFCT) [24] is an adaptation of FCI which considers the temporal order of ob-
servations and seeks to identify causal links stable both within and between time
points. Among LiNGAM-based methods, VarLINGAM [25] is well adapted
to deal with time series data and combines autoregressive and non-Gaussian
models to estimate instantaneous and lagged causal effects.

Probably one of the most known frameworks for causal discovery with time
series data is Granger-causality (GC), introduced by Granger in 1969 [26]. GC-
based methods assume no latent confounders and no instantaneous dependencies,
i.e. only past values of the variables can be used to predict the current status of
the system. Following GC, Generalized Vector AutoRegression (GVAR) [27]
has been recently developed and can be applied to multivariate time series
under nonlinear dynamics. Another interesting approach is Amortized Causal
Discovery (ACD) [28], a GC-based method which can combine samples coming
from distinct causal graphs but that share common dynamics. It consists of
two blocks: an encoder to learn the causal graph and a decoder to simulate the
dynamics of the system for the next time-step. For a more comprehensive survey
of causal discovery methods for time series data you may refer e.g. to [29].

14.4 CAUSAL INFERENCE AND COUNTERFACTUAL QUESTIONS

Once a causal graph has been obtained, either through expert knowledge or using
a causal discovery algorithm, it can be used to perform causal inference, that is,
quantify the effect of an intervention on one variable of the graph, denoted T for
treatment, on another variable of the graph, denoted Y, the outcome.

The definition of the main causal estimands introduced throughout Sec. 15.4,
i.e. the quantities of interest to be estimated, will rely on the Potential Outcomes
framework, formalized by Neyman and Rubin [6, 7]. The variable T will be
referred to as the intervention or the treatment indifferently. Units that do not re-
ceive the intervention are sometimes called control units. The methods presented
in this section are designed for observational data, where the researchers do not
control the treatment assignment mechanism, though very similar approaches



Causality: fundamental principles and tools 13

can be applied to data where the treatment was randomized. Let us consider a
set of n observed units, with a binary treatment: 7; = 1 if auniti € {1,...,n}
is treated, 7; = O otherwise. Let ¥; be the observed outcome of unit i and Y; (¢)
the potential outcome for this unit, with ¢ in {0, 1} the intervention: this is the
outcome that would have occurred if the intervention had been ¢. In the data,
only one of those potential outcomes is observed, but the notion of potential
outcome allows to reason about what the outcome would have been under a
different intervention value. The unobserved potential outcome is sometimes
called the counterfactual outcome since it is "contrary to" the facts. The contrast
between two potential outcomes defines the individual treatment effect (ITE):

ITE; :=Y;(1) = Y;(0). (14.4)

The ITE can never be observed, as a unit either receives the intervention or
not: this is the fundamental problem of causal inference [30]. However, this
difficulty can be circumvented by reasoning at the scale of the population and
consider the average treatment effect:

ATE = 7 := E[Y (1) - Y(0)]. (14.5)

Finally, if one is interested in the heterogeneity of the treatment effect de-
pending on the unit’s characteristics, the conditional average treatment effect
can be considered:

CATE = 7(x) := B[Y (1) - Y(0)|X = x], (14.6)

where X represents covariates of interest.

For a given causal estimand, inference consists of two stages: first, the
identification, to verify that the available data are sufficient to eliminate all
potential sources of bias, and second, the estimation, to actually calculate the
causal effect using the data. The average treatment effect (ATE) will be privileged
in this section, but similar concepts and techniques can be applied to other
estimands. The code presented in this section relies on the Dolthy Python
package [31, 32], which covers all the steps of a causal analysis. DolWhy also
includes the EconML functionalities, which offer highly flexible estimators based
on machine learning (ML) models. There are numerous alternatives for R
practitioners [33].

14.4.1 Identification of the average causal effect

The causal estimand of interest is usually expressed as a function of potential
outcomes under two alternative treatments. However, both potential outcomes
are never observed, so the identification phase consists of moving from a causal
estimand to a statistical estimand that depends only on observable random vari-
ables. For the ATE, this transformation requires three assumptions [34]:
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Consistency (or SUTVA Stable Unit Treatment Value Assumption): Y = (1—
T)Y(0) + TY(1). Consistency establishes the link between the observed
outcome and the potential outcomes through the actual intervention. It is
achieved when there is no interference between units, and only one version
of the intervention.

Ignorability (or Unconfoundedness): {Y(0),Y (1)} lLx 7. Ignorability states
that the potential outcomes and the treatment assignment mechanism are
conditionally independent given the covariates, meaning that there is no
unmeasured confounder. This is a very strong and untestable assumption.

Positivity (or Overlap): 37 > 0,Vx € X,n <P(T = 11X =x) < 1 — 5 (with
X the support of X). Positivity means that the intervention assignment is not
deterministic, so every unit has a chance to receive the intervention or not.
This is necessary to compare the potential outcomes under intervention or
no intervention for all possible covariates combinations.

Under those assumptions, the ATE is identified:

ATE =E[Y(1) - Y(0)]
= Ex[E[Y (1) - Y(0)|X]]
=Ex[E[Y(1)|X,T =1]] = Ex[E[Y(0)|X,T = 0]] (ignorability and positivity)
=Ex [E[Y|X, T = l]] - EBx [E[le, T = 0]] (consistency). (14.7)

Indeed, Eq. (15.7) shows that the ATE can be expressed only with observable
random variables (¥, X and 7). In practice, consistency is established by con-
sidering the data collection mechanism. Regarding the positivity assumption,
it can be tested from the data [35]. Finally, the ignorability assumption can be
assessed using the properties of the causal graph: the variables in X constitute a
sufficient adjustment set if X d-separates T and Y. If the treatment is randomly
assigned, no adjustment is needed to enforce the ignorability assumption.

Some methods to estimate the ATE from the observed data will now be
presented. For illustration purposes, practical examples will be proposed using
synthetic data generated with DoWhy from the causal graph in Fig. 15.5.

import numpy as np
import dowhy, dowhy.datasets

4+ # Set a seed for reproducibility

s np.random.seed(18)

6 # Create a synthetic dataset. Note:

7 data = dowhy.datasets.linear_dataset(
8 num_common_causes=5,

9 num_instruments = 1,

10 num_effect_modifiers=1,

1 treatment_is_binary=True,

12 num_samples=3000,

13 num_discrete_common_causes=1,
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FIGURE 14.5 Causal graph underlying the example for estimation approaches. The ATE is
identified, and unconfoundedness is achieved by adjusting on variables X2 to X6 (the grey filled
nodes). X and X7 affect only either the treatment or the outcome and do not need to be controlled
for.

14 beta=10, stddev_treatment_noise=10)

16 # Create a CausalModel object

7 model = dowhy.CausalModel (data=datal[’df’],

18 treatment=data[’ treatment_name’],
19 outcome=data[’outcome_name’],

20 graph=data["gml_graph"])

» # Identify the causal effect

23 identified_estimand = model.identify_effect(
24 optimize_backdoor=True,

25 proceed_when_unidentifiable=True)

27 # True ATE
s print(np.round(data[’ate’], 2))
29 # 9.77

14.4.2 Estimation of the average causal effect

The objective of this step is to construct an estimator with good statistical
properties. The two main families of estimators will be presented: they are based
on either estimating the probability of receiving the treatment or on modeling of
the outcome by regression. More recent methods that combine both traditional
approaches into more robust estimators, will also be introduced.

A first idea to adjust for confounding variables is to reweight each observed
sample by the propensity score, which is the probability of receiving the inter-
vention given the covariates: e¢(X) = P(T = 1|X). The first step of the estimation
is to model this quantity using logistic regression. The estimated scores are then
plugged in the inverse-propensity weighting (IPW) estimator for the ATE:
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FIGURE 14.6 Illustration of the intuition behind the IPW estimator. The outcome of the treated and
the control individuals can be compared to estimate the intervention effect after reweighting to create
subpopulations for which the intervention assignment does not depend on the unit’s characteristics.
(a) Original data. (b) Reweighted observations: units that received the intervention but had a low
probability of receiving it are given more importance (and conversely for units that did not receive
the intervention).

— Il (T, (-TYY
ATEp =~ Z; (é(X,») “To0) (14.8)
The intuition behind /Tﬁn,w is that the weights balance the distribution of
the covariates between the intervention and the control groups, as shown in
Fig. 15.6. The reweighted observations can be handled as if the intervention was
assigned at random. If the propensity score model is consistent, and the three
identifiability assumptions hold, the IPW estimator is consistent for the ATE.

| estimate_ipw = model.estimate_effect(identified_estimand,
2 method_name="backdoor.propensity_score_weighting",

target_units = "ate",
4 method_params={"weighting_scheme":"ips_stabilized_weight"
1,

confidence_intervals="bootstrap")

6

7 print ("ATE Estimate: {:.2f}, confidence interval: {}.".format
(np.round(estimate_ipw.value,2),np.round(estimate_ipw.
get_confidence_intervals(),2)))

s # ATE Estimate: 10.13, confidence interval: [9.97 10.26].

Another approach to account for confounding variables in the estimation is
to directly model their impact on the outcome Y by regression. In the case of
the g-formula plug-in estimator, also called S-learner estimator (S for single),
one regression model Y = u(7,X) is fitted on the data, in which the outcome
is regressed on both the intervention 7" and the covariates X. Alternatively,
for the T-learner estimator, two models are fitted: ¥ = u;(X) on the treated
observations, and ¥ = po(X) on the controls. Here, the outcome is regressed
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FIGURE 14.7 [Illustration of the intuition behind the T-learner. Two regression models are fitted
to the data. This approach makes intervention effect heterogeneity explicit, as variations can be seen
in the distance between the two response surfaces depending on the covariate value.

only on the covariates. In both cases, the predictions of the model(s) are used to
compute the difference in the two alternative potential outcomes:

— 1 <
ATEs = — 3 A(1.X) ~ A4(0.X) (14.9)

i=1

— 1 &
ATEr = 3 i1 (X)) — fio(X;) (14.10)

n i=1

The T-learner estimator can handle treatment effect heterogeneity and is also
more sensitive to a small magnitude of the effect, as the model is forced to use
the treatment variable. However, it requires more data than the S-learner, since
the regression models are fitted only on a part of the dataset. Regression-based
estimators are consistent only if the regression models are consistent, and the
three identifiability assumptions hold. Regression-based approaches are a very
natural way to detect and visualize heterogeneous intervention effects, i.e. where
the effect depends on the covariates, as represented in Fig. 15.7. In this case, it
is more informative to consider the CATE estimand, rather than the ATE.

i from sklearn.linear_model import LinearRegression

3 # S-Learner

4 estimate_s = model.estimate_effect(

5 identified_estimand=identified_estimand,

6 method_name=’'backdoor.econml .metalearners.SLearner’,

7 target_units="ate’,

8 confidence_intervals=True,

9 method_params={’init_params’: {’overall_model’:
LinearRegression()},

10 "fit_params’: {’inference’: ’'bootstrap’}})

> ci_s = [c.mean() for c in estimate_s.get_confidence_intervals
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4 print ("ATE Estimate: {:.2f}, confidence interval: {}.".format
(np.round(estimate_s.value,2),

15 np.round(ci_s,2)))

16 # ATE Estimate: 9.77, confidence interval: [9.74 9.82].

The two strategies can be combined to obtain the Augmented IPW (AIPW)
estimator.

Y; - a1(Xp)
é(Xy)

Y; — fo(X;)

- (1-T) 1= 4(X))

— IR .
ATE arpw = — Z (,ul(Xi) - fo(X;) +T;
n

i=1

The AIPW estimator is double robust, i.e. it is consistent if either the
propensity score or the outcome models are consistent. More recent approaches,
such as targeted learning (TMLE) [36] and debiased ML [37] also allow the use
of more expressive ML models in causal effect estimation, and are available in
the DoWhy package as off-the-shelf implementations.

14.5 CONCLUSIONS

This chapter introduces the fundamentals of causal reasoning, as well as several
existing methods to perform causal data analysis and answer two key questions,
of paramount importance, particularly in healthcare. The why questions, in
search of the causal mechanisms governing the underlying process of data gener-
ation (causal discovery), and the what if questions, in search of a quantification
of the effect of an intervention on the system (causal inference). The proposed
methods have been illustrated through simple examples, with a limited number
of variables involved. Current research trends focus on how to transpose the
causal machinery to the unstructured, high-dimensional and multi-channels data
scenario, that is now becoming typical in healthcare. This scaling-up challenge
requires a specific framework to combine ML, a powerful tool for feature extrac-
tion and dimensionality reduction, with causal reasoning to generate actionable
insights, and will be discussed in Chapter 17.
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