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Abstract

Summary: MUSET is a novel set of utilities designed to efficiently construct abundance unitig matrices from sequencing
data. Unitig matrices extend the concept of k-mer matrices, which are gaining popularity for sequence-phenotype
association studies, by merging overlapping k-mers that unambiguously belong to the same sequence. MUSET addresses
the limitations of current software by integrating k-mer counting and unitig extraction to generate unitig matrices
containing abundance values, as opposed to only presence-absence in previous tools. These matrices preserve variations
between samples while reducing disk space and reducing the number of rows in comparison to k-mer matrices. We
evaluated MUSET’s performance using datasets derived from a 618-GB collection of ancient oral sequencing samples,
producing a filtered unitig matrix that records abundances in less than 10 hours and 20 GB memory. As a comprehensive
pipeline for generating these matrices, MUSET will facilitate the extraction of biologically significant sequences, making it
a valuable contribution to downstream sequencing data analyses such as genome-wide (or metagenome-wide) association
studies.
Availability and implementation: MUSET is open source and publicly available under the MIT licence in GitHub at
https://github.com/CamilaDuitama/muset.

Key words: unitigs, matrix, abundance, k-mers, de Bruijn graph

Introduction

Unitigs are biological sequences that compactly and exhaustively

represent sequencing data or assembled genomes. They are

constructed from k-mers, but unlike k-mers, they avoid the

redundancy problem of multiple overlapping sequences covering

the same genomic locus. They have proven useful for analyzing

genomic diversity across several sequencing datasets [6, 11, 12].

A more formal definition characterizes unitigs as maximal non-

branching paths in a de Bruijn graph (dBG). The de Bruijn

graph is a fundamental data structure in bioinformatics and

is widely used in many genomics applications [1, 5, 16]. It

represents a set of distinct k-mers (substrings of size k) and

their k − 1 prefix-suffix overlaps as a graph [3]. The process of

generating maximal unitigs from k-mers, known as compaction,

consists of consolidating all maximal non-branching paths of k-

mers into single strings [3, 17]. The resulting graph is called

compacted dBG. In this work, the term “unitigs” will always

refer to the deterministically unique set of maximal unitigs.

A unitig matrix is a data structure that represents sequence

content across multiple experiments by recording a numerical

value for each unitig across all samples. In a scenario involving a

collection S of samples, a binary unitig matrix M has elements

M(i, j) that indicate the presence (1) or absence (0) of unitig i

in sample j. In other words, rows are unitigs and columns are

samples.

Related work
Numerous cutting-edge tools that rely on the construction

of a de Bruijn graph for unitig computation have been

developed over the years, including BCALM [4], Cuttlefish [13],

Bifrost [10], and GGCAT [6]. By computing the unitigs of a

union of multiple samples, one can construct a binary unitig

matrix. However, current software overlooks the concept of

abundance, which estimates the frequency with which a unitig

appears in a sample.

BCALM and Cuttlefish simply produce a set of unitigs,

i.e. a compacted dBG, without recording the sample of origin.

GGCAT and Bifrost, on the other hand, can build colored

compacted dBGs, a variant of dBGs that additionally keeps

track of the source of each k-mer [11]. Such graphs are implicitly

binary unitig matrices. Notably, GGCAT has demonstrated

superior performance to its counterparts [6].

Unitig matrices are data structures analogous to k-

mer matrices, which are commonly used to represent
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sequence content across multiple experiments, e.g. for

indexing environmental metagenomes [14], source attribution of

pathogenic bacteria via supervised learning [2], transcriptomic

analyses [20], contamination removal and contamination

assessment of ancient metagenomic data [7, 9]. While k-

mer matrices can be constructed efficiently (e.g. using

kmtricks [15]), storing and processing large k-mer matrices

remains challenging, especially when integrating them

with existing libraries for machine learning, dimensionality

reduction, or visualization. As an alternative, unitig

matrices offer a more compact and manageable representation,

preserving the variations between samples while optimizing

disk-space usage and processing time. Individual k-mer counts

can be naturally averaged along a unitig to produce a single

abundance value per unitig, robustly approximating the counts

of all k-mers from that unitig [18].

Using unitigs instead of k-mers can reduce multiple testing

burden, a common challenge in the study of genomic variation

across datasets [12]. Presence-absence unitig matrices have

proven to be useful for statistical analyses in human genomic

studies, where the frequency of sequences that characterize

certain species can effectively distinguish between phenotypes

more accurately than their mere presence or absence [8]. Unitig

matrices also have the potential to be useful for RNA-Seq

differential expression analyses in transcriptomics, where low-

coverage unitigs can help identify sequencing errors. However,

to our knowledge, there is no software that effectively addresses

the gap that exists in the construction of abundance unitig

matrices, as opposed to presence-absence unitig matrices. For

this reason, we introduce MUSET, a pipeline designed for the

practical construction of abundance unitig matrices. Along with

it, we additionally provide kmat tools, a comprehensive suite

of tools (internally exploited by MUSET) for manipulating k-

mer matrices, and muset pa, a pipeline that uses GGCAT and

kmat tools to rapidly build a presence-absence unitig matrix

with no k-mer filtering.

Tool description and evaluation

MUSET overview
MUSET leverages kmtricks [15] for efficient k-mer counting

over large collections of genomic sequences provided as

FASTA/FASTQ files. It then uses GGCAT [6] for unitig

construction and SSHash [19] to assign k-mer counts to unitigs.

Intermediate filtering steps are performed at both k-mer and

unitig levels. The final output is a unitig matrix where rows

correspond to unitigs, columns correspond to samples, and

each element encodes the average abundance and fraction of

the unitig’s k-mers that are present in a sample. The pipeline

is depicted in Fig. 1 and consists of the following main steps

explained below: (i) k-mer matrix construction, (ii) k-mer

matrix filtering, (iii) unitig construction, and (iv) unitig matrix

construction.

k-mer matrix construction

kmtrick’s pipeline is run to build a k-mer matrix from the

input FASTA/Q files. The matrix is stored in partitions using

a custom lz4-compressed binary format.

k-mer matrix filtering

kmtricks’s matrix partitions are filtered concurrently and

merged into a single k-mer matrix in text format. The filtering

aims to retain k-mers that potentially reflect differences

FASTA/FASTQ files

k-mer matrix

filtered k-mer matrix

k-mers in FASTA format

unitigs

long unitigs

k-mer matrix

construction

k-mer

filtering

unitig

construction

unitigs

matrix

creation

abundance unitig matrix

Fig. 1. MUSET pipeline. It consists of four main steps: k-mer matrix

construction, k-mer matrix filtering, unitig creation, and unitig matrix

creation.

between samples. More precisely, by default, we keep k-mers

that are present in at least 10% of the samples and absent in at

least 10% of the samples. Users can set custom values to both

of these thresholds by providing either a fraction or an absolute

number.

Unitig construction

The k-mers of the filtered matrix are outputted in FASTA

format (command kmat tools fasta) to build a set of unitigs

with GGCAT. Unitigs shorter than a certain threshold (2k − 1

base pairs by default) are then discarded using the command

kmat tools fafmt.

Unitig matrix construction

This step involves the execution of the command kmat tools

unitig to create an abundance unitig matrix. First, an SSHash-

based dictionary is built from the (filtered) unitigs in order to

assign each k-mer to the unitig it belongs to. The filtered k-

mer matrix is then processed to extract abundance values and

k-mer presence, while simultaneously aggregating k-mer data

at the unitig level. The aggregation is done for each unitig, by

computing the fraction of the unitig’s k-mers belonging to a

given sample and their average abundance.

More precisely, the fraction of k-mers in a unitig u that are

present in a sample S is defined as:

f(u, S) =

∑N
i=1 xi

N
(1)

where N is the number of k-mers in u, and xi is a binary

variable that is 1 when the i-th k-mer is present in sample

S and 0 otherwise.
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Table 1. Running time, peak memory and disk usage of MUSET on the small and large datasets. The two datasets are derived

from the same collection of FASTQ files of ancient DNA reads. The small dataset corresponds to a subset of the k-mer matrix of the large

dataset. Wall-clock time and memory usage were computed using 20 threads.

Small dataset (11 GB) Large dataset (618 GB)

MUSET step Wall-clock time Peak memory Disk usage Wall-clock time Peak memory Disk usage

k-mer matrix construction 3h 6m 46s 2.4GB 11GB 7h 47m 59s 19GB 1437GB

k-mer filtering 0h 2m 04s <0.1GB 0.1GB 1h 37m 25s <0.1GB 80GB

Unitig creation (GGCAT) 0h 0m 28s 0.7GB <0.1GB 0h 2m 28s 1.2GB 0.9GB

Unitig matrix creation 0h 0m 01s <0.1GB <0.1GB 0h 15m 20s 2.3GB 2.7GB

Total 3h 8m 10s 2.4GB 11.2GB 9h 43m 12s 19GB 1525GB

Table 2. Comparison of running time, peak memory, and

disk usage between MUSET (filtered unitig matrix) and

GGCAT (unfiltered unitigs) on the large dataset. The large

dataset consists of a 618-GB collection of 360 samples (compressed

FASTQ files) from an ancient metagenomic dataset. Tools were run

using 20 threads.

Method Wall-clock time Peak memory Disk usage

MUSET 9h 43m 12s 19GB 1.5TB

GGCAT 24h 20m 40s 167GB 641GB

The average abundance of a unitig u with respect to a

sample S is defined as:

A(u, S) =

∑N
i=1 ci

N
(2)

where N is the number of k-mers in u, and ci is the abundance

of the i-th k-mer of u in sample S.

Evaluation
We evaluated the performance of MUSET (Table 1) on two

datasets composed of a collection of 360 ancient oral samples

and their potential contaminants [7]. This collection is made

of compressed FASTQ files which add up to 618GB. The first

dataset, referred to as the small dataset, consists of a subset of

rows of the full k-mer matrix obtained from the aforementioned

collection. The small-dataset matrix contains ≈ 14.3 million k-

mers and has a size of 11GB. The second dataset, denoted as

the large dataset, encompasses the entire matrix. The large-

dataset matrix contains ≈ 64.6 billion k-mers and has a size of

1.4TB. The instructions to reproduce our results are available

at the following link: https://github.com/CamilaDuitama/muset/

tree/main/reproducibility.

To the best of our knowledge, no other tool can directly

create an abundance unitig matrix from sequencing data.

The most similar state-of-the-art tool to produce analogous

presence-absence matrices is GGCAT (which we happen to use

inside MUSET). For this reason, we compared MUSET to a

stand-alone execution of GGCAT by running both tools on the

large test dataset.

In Table 2, MUSET demonstrates superior performance

over GGCAT in processing the large metagenomic dataset,

creating a filtered abundance unitig matrix more than twice

faster (9.7 h vs. 24.3 h), using 88% less memory (19GB vs.

167GB), yet at the expense of a higher disk usage (1.5TB vs.

641GB). Notably, MUSET is able to reduce the size of the k-

mer matrix by 2 (small dataset) to 3 (large dataset) orders of

magnitude when converting it to a unitig matrix. MUSET not

only achieves shorter running times and lower peak memory

usage than GGCAT due to its upstream k-mer filter, but it is

also more convenient and informative as it directly produces an

abundance unitig matrix. GGCAT instead produces a colored

compacted dBG in text format with colors in binary format,

and the user would have to generate a presence-absence unitig

matrix on their own: this is now directly achievable using the

muset pa tool we provide.

Discussion and conclusions

Abundance unitig matrices provide a compact, manageable,

and more informative representation of sequencing data across

multiple samples, offering a valuable resource for downstream

analyses in large-scale (meta/pan)genomic studies. Besides,

the representation of sequencing data as abundance unitig

matrices offers a versatile option with potential applications in

various contexts: from sequencing error filtering and indexing,

to reference-free comparison of sequencing samples. It also

provides a useful input for supervised and unsupervised

learning models built on large-scale sequencing datasets.

The most time-consuming and memory-intensive step in

MUSET is the k-mer matrix construction, which can be

optionally skipped if users have already created their own k-mer

matrix in text format. This is followed by the k-mer filtering

step (see Table 1). While k-mer filtering can theoretically

be bypassed by setting appropriate parameters, doing so will

increase disk space and peak memory usage in subsequent

pipeline steps. We recommend to apply this k-mer filtering

to discard “uninformative” k-mers and reduce computational

burden. However, stringent filtering may interfere with the

biological interpretation of unitigs, by possibly yielding

chimeric sequences, which is worth investigating and mitigating

in future work.

To conclude, MUSET addresses the technical gap associated

with generating abundance unitig matrices to represent

extensive collections of sequencing datasets. The tool utilizes

kmtricks for efficient indexing and k-mer counting, GGCAT

for constructing unitigs, and SSHash to efficiently map k-

mers to unitigs. Ultimately, MUSET reports the abundance

of each unitig in the collection of samples by estimating the

fraction of observed k-mers relative to the total number of

k-mers that constitute each unitig, in addition to calculating

the average abundance per sample (see Equation 2). We

anticipate that MUSET will be a valuable replacement to k-

mer matrices of sequencing data. By providing a tool that offers

a smaller representation with equivalent information content,

MUSET has the potential to accelerate and facilitate the

provision of biologically significant and reference-free insights

into sequencing data.

https://github.com/CamilaDuitama/muset/tree/main/reproducibility
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